During the plasma spheroidization process powders undergo different changes in their microstructures and crystal phases. In this paper, simple calculation of heat transfer between the plasma and a suspended particle w...During the plasma spheroidization process powders undergo different changes in their microstructures and crystal phases. In this paper, simple calculation of heat transfer between the plasma and a suspended particle was performed based on three hypotheses for the purpose of guiding experiments. Experimental investigation of the crystal phases and microstructural changes during the plasma processing was made using silica, alumina and nickel powders as starting materials. It has been revealed from the experimental results that these materials undergo different changes in crystal phases and microstructures, and these changes are essentially determined by the structures, properties and aggregate states of the starting materials.展开更多
8-Aminoquinoline nickel dichloride and bis(cyclopentadienyl)zirconium dichloride (Cp_2ZrCl_2) were supportedsimultaneously on silica to produce branched polyethylene successfully by combined polymerization. The suppor...8-Aminoquinoline nickel dichloride and bis(cyclopentadienyl)zirconium dichloride (Cp_2ZrCl_2) were supportedsimultaneously on silica to produce branched polyethylene successfully by combined polymerization. The supportedpolymerization results showed that the molecular weight of polyethylene increased while the molecular weight distributionbecame wider and the molecular chains of oligomers remaning in the final solution became shorter as compared to theoligomers obtained in polymerization processes with pure 8-aminoquinoline nickel dichloride catalysis, as well as theCp_2ZrCl_2 and nickel combination system. With decreasing amount of Ni catalyst in the supported catalyst, the molecular chains of oligomers in the resulting solution became shorter, while α-olefin selectivity increased.展开更多
A novel silica-supported tert-butyl 2-picolyamino-N-acetate chelating resin (Si-AMPY-1) was successfully synthesized and characterized by elemental analysis, FT-IR, SEM and 13 C CP/MAS NMR. The adsorption behaviors of...A novel silica-supported tert-butyl 2-picolyamino-N-acetate chelating resin (Si-AMPY-1) was successfully synthesized and characterized by elemental analysis, FT-IR, SEM and 13 C CP/MAS NMR. The adsorption behaviors of the Si-AMPY-1 resin for Cu(Ⅱ) and Ni(Ⅱ) were studied with batch and column methods. The batch experiments indicated that the Si-AMPY-1 resin adsorbed Ni(Ⅱ) mainly via physisorption, while adsorbed Cu(II) via chemisorption. The column dynamic breakthrough curves revealed thatthe Si-AMPY-1 resin can efficiently separate Cu(Ⅱ) from the simulated nickel electrolyte before the breakthrough point. Moreover, the concentration of Cu(Ⅱ) in the column effluent was decreased to be less than 3 mg/L within the first 43 BV (bed volumes), and the mass ratio of Cu/Ni was 21:1 in the saturated resin, which completely satisfied the industrial requirements of the nickel electrorefining process. Therefore, it was concluded that the Si-AMPY-1 resin can be a promising candidate for the deep removal of Cu(Ⅱ) from the nickel electrolyte.展开更多
Due to the sufficient ion diffusion channels provided by the large interlayer spacing, layered silicates are widely considered as potential anode materials for lithium ion and sodium ion batteries. However, due to the...Due to the sufficient ion diffusion channels provided by the large interlayer spacing, layered silicates are widely considered as potential anode materials for lithium ion and sodium ion batteries. However, due to the poor electronic conductivity, the application of layered silicates for electrochemical energy storage has been greatly limited. Carbon nanotube(CNT) film has excellent electrical conductivity and a unique interconnected network, making it an ideal matrix for composite electrochemical material. We herein report a CNT@nickel silicate composite film(CNT@NiSiO) fabricated by a SiO2-mediated hydrothermal conversion process, for sodium storage with excellent electrochemical properties. The obtained composite possesses a cladding structure with homogeneous nanosheets as the outermost and CNT film as the inner network matrix, providing abundant ion diffusion channels, high electronic conductivity, and good mechanical flexibility. Due to these merits, this material possesses an excellent electrochemical performance for sodium storage, including a high specific capacity up to 390 mAh g-1 at 50 mA g-1, good rate performance up to 205 mAh g-1 at 500 mA g-1, and excellent cycling stability. On this basis, this work would bring a promising material for various energy storage devices and other emerging applications.展开更多
A series of novel silica-based hybrid adsorbents were prepared by the crosslinking reaction of N-[3- (trimethoxysilyl)propyl] ethylene diamine (TMSPEDA) with epichlorohydrin (ECH) via a sol-gel process. Fourier ...A series of novel silica-based hybrid adsorbents were prepared by the crosslinking reaction of N-[3- (trimethoxysilyl)propyl] ethylene diamine (TMSPEDA) with epichlorohydrin (ECH) via a sol-gel process. Fourier transform infrared (FTIR) spectra confirmed that the reaction occurred. TGA curves showed that the thermal stability of these hybrid adsorbents reached as high as 180 ℃. As a typical example, the adsorption performance of nickel(U) ions onto an adsorbent (the volume ratio of TMSPEDA and ECH was 4:1 ) was explored. It was found that the adsorption of nickel(Ⅱ) ions onto this adsorbent followed the Lagergren pseudo-second-order kinetic model. The investigation of the adsorption mechanism demonstrated that nickel(Ⅱ) adsorption was chiefly controlled by diffusion-chemisorption, suggesting that more diffusion processes were involved in the adsorption of nickel(Ⅱ) ions onto this type of adsorbents. Desorption experiment indicates that these hybrid adsorbents can be regenerated. These findings reveal that this type of silica-based hybrid adsorbent is promising in the separation and recovery of nickel(Ⅱ) ions from Ni-containing wastewater or contaminated water.展开更多
The improvement of silica particle codeposition into a nickel electrodeposited composite coating (ECC) by a double face horizontal impinging jet cell (IJC) has been studied. The microstructure of coatings was examined...The improvement of silica particle codeposition into a nickel electrodeposited composite coating (ECC) by a double face horizontal impinging jet cell (IJC) has been studied. The microstructure of coatings was examined by means of scanning electron microscopy performed in backscattered electron mode. The embedded particles distribution was shown to be the densest and the most uniform in laminar low flow mode and when the nozzle is at a distance of 5 mm close from the cathode. Excrescences observed on the composite surface are due to the wave-like flow of the jet on the cathode surface. The silica content of the nickel composite coatings was assessed by energy dispersive X-ray spectroscopy. The amount of particles embedded in the coating decreases with an increasing Reynolds number and as the nozzle-to-sample distance d becomes larger. A maximum rate of 4.43 wt% of silica has been successfully loaded at a distance d equal to 5 mm in the Ni-SiO2 composite coating.展开更多
The hydrogenation of benzaldehyde over a series of nickel-containing mesoporous silicas with different nickel contents was studied at atmospheric pressure in the range temperature of 393 - 513 K under H2 ?ow. These ma...The hydrogenation of benzaldehyde over a series of nickel-containing mesoporous silicas with different nickel contents was studied at atmospheric pressure in the range temperature of 393 - 513 K under H2 ?ow. These materials (noted Nin-HMS with n = Si/Ni = 50, 25, 15) have been prepared at room temperature using a route based on hydrogen bonding and self-assembly between neutral primary amine micelles (S0) and neutral inorganic precursors (I0). They were characterized by their chemical analysis, BET surface area, XRD, FT-IR, and SEM microscopy. The obtained products were benzylalcohol, toluene, benzene with yields depending on the nickel content (Si/Ni ratio) and reaction temperature. The products of benzaldehyde hydrogenation (benzylalcohol, and toluene) and hydrogenolysis (benzene) were preferentially formed at low/middle and high reaction temperature respectively. The mesoporous Ni-containing materials were very active hydrogenation catalysts with almost 90% selectivity to benzylalcohol product and showed excellent stability. A mechanism in which the reaction could be initiated by a benzaldehyde reduction over Nin-HMS materials under hydrogen flow with formation of reaction products is proposed.展开更多
Economical water electrolysis requires highly active non-noble electrocatalysts to overcome the sluggish kinetics of the two half-cell reactions,oxygen evolution reaction,and hydrogen evolution reaction.Although inten...Economical water electrolysis requires highly active non-noble electrocatalysts to overcome the sluggish kinetics of the two half-cell reactions,oxygen evolution reaction,and hydrogen evolution reaction.Although intensive efforts have been committed to achieve a hydrogen economy,the expensive noble metal-based catalysts remain under consideration.Therefore,the engineering of self-supported electrocatalysts prepared using a direct growth strategy on three-dimensional(3D)nickel foam(NF)as a conductive substrate has garnered significant interest.This is due to the large active surface area and 3D porous network offered by these electrocatalysts,which can enhance the synergistic eff ect between the catalyst and the substrate,as well as improve electrocatalytic performance.Hydrothermal-assisted growth,microwave heating,electrodeposition,and other physical methods(i.e.,chemical vapor deposition and plasma treatment)have been applied to NF to fabricate competitive electrocatalysts with low overpotential and high stability.In this review,recent advancements in the development of self-supported electrocatalysts on 3D NF are described.Finally,we provide future perspectives of self-supported electrode platforms in electrochemical water splitting.展开更多
The electrocatalytic oxidation of biomass-derived furfural(FF)feedstocks into 2-furoic acid(FA)holds immense industrial potential in optics,cosmetics,polymers,and food.Herein,we fabricated Co O/Ni O/nickel foam(NF)and...The electrocatalytic oxidation of biomass-derived furfural(FF)feedstocks into 2-furoic acid(FA)holds immense industrial potential in optics,cosmetics,polymers,and food.Herein,we fabricated Co O/Ni O/nickel foam(NF)and Cu_(2)O/Ni O/NF electrodes via in situ pulsed laser irradiation in liquids(PLIL)for the bifunctional electrocatalysis of oxygen evolution reaction(OER)and furfural oxidation reaction(FOR),respectively.Simultaneous oxidation of NF surface to NiO and deposition of CoO and/or Cu_(2)O on NF during PLIL offer distinct advantages for enhancing both the OER and FOR.CoO/NiO/NF electrocatalyst provides a consistently low overpotential of~359 m V(OER)at 10 m A/cm^(2),achieving the maximum FA yield(~16.37 m M)with 61.5%selectivity,79.5%carbon balance,and a remarkable Faradaic efficiency of~90.1%during 2 h of FOR at 1.43 V(vs.reversible hydrogen electrode).Mechanistic pathway via in situ electrochemical-Raman spectroscopy on CoO/NiO/NF reveals the involvement of phase transition intermediates(NiOOH and CoOOH)as surface-active centers during electrochemical oxidation.The carbonyl carbon in FF is attacked by hydroxyl groups to form unstable hydrates that subsequently undergo further oxidation to yield FA products.This method holds promise for large-scale applications,enabling simultaneous production of renewable building materials and fuel.展开更多
In this research work silica coating was produced on nickel substrates by a sol-gel process. In order to increase the rate of hydrolysis and to reduce the rate of polymerization several acid catalysts including nitric...In this research work silica coating was produced on nickel substrates by a sol-gel process. In order to increase the rate of hydrolysis and to reduce the rate of polymerization several acid catalysts including nitric acid-hydrochloric acid, acetic acid, hydrochloric acid and nitric acid were add to silica sol. Conversely, in order to control the rate of hydrolysis and to increase the rate of polymerization, basic catalyst of ammonia and ammonia hydroxyl were introduced in to the solution. Nickel specimens of known surface roughness were chemically cleaned and prepared by dipping in the sols. In order to produce a suitable silica coating the drying and firing cycles were optimized on these substrates. The structure and uniformity of the coatings produced were examined by scanning electron microscopy. Coatings composition was determined using glow discharge optical spectroscopy and EDAX microanalysis. Experimental result showed that hydrochloric acid, acetic acid, ammonia and acetic acid - ammonia are suitable catalytic agents for silica coating formation on nickel type substrate.展开更多
Fluidized reduction roasting is an efficient metallurgical technique.However,its application to nickel laterite ore has rarely been reported.In this paper,the effects of reduction temperature,reduction time,CO concent...Fluidized reduction roasting is an efficient metallurgical technique.However,its application to nickel laterite ore has rarely been reported.In this paper,the effects of reduction temperature,reduction time,CO concentration,and material particle size on the roasting characteristics of ferronickel fluidization reduction were investigated.Combined with X-ray diffraction,scanning electron microscopy-energy dispersive spectrometry(SEM-EDS)characterization,the mineral phases and microscopic morphology of nickel laterite ore and its roasted ores were analyzed in depth.The results indicated that under the condition of a CO/CO_(2)ratio of 1:1,a reduction temperature of 800℃,and a reduction roasting time of 60 min,a nickel-iron concentrate with a nickel grade of 2.10%and an iron content of 45.96%was produced from a raw material with a nickel grade of 1.45%,achieving a remarkable nickel recovery rate of 46.26%.XRD and SEM-EDS analysis indicated that nickel in the concentrate mainly exists in the form of[Fe,Ni],while the unrecovered nickel in the tailings is primarily present in the form of[Fe,Ni]and Ni_(2)SiO_(4)in forsterite.This study established a theoretical foundation for further exploration of fluidized reduction roasting technology.展开更多
Ultra fine-grained pure metals and their alloys have high strength and low ductility.In this study,cryorolling under different strains followed by low-temperature short-time annealing was used to fabricate pure nickel...Ultra fine-grained pure metals and their alloys have high strength and low ductility.In this study,cryorolling under different strains followed by low-temperature short-time annealing was used to fabricate pure nickel sheets combining high strength with good ductility.The results show that,for different cryorolling strains,the uniform elongation was greatly increased without sacrificing the strength after annealing.A yield strength of 607 MPa and a uniform elongation of 11.7%were obtained after annealing at a small cryorolling strain(ε=0.22),while annealing at a large cryorolling strain(ε=1.6)resulted in a yield strength of 990 MPa and a uniform elongation of 6.4%.X-ray diffraction(XRD),transmission electron microscopy(TEM),scanning electron microscopy(SEM),and electron backscattered diffraction(EBSD)were used to characterize the microstructure of the specimens and showed that the high strength could be attributed to strain hardening during cryorolling,with an additional contribution from grain refinement and the formation of dislocation walls.The high ductility could be attributed to annealing twins and micro-shear bands during stretching,which improved the strain hardening capacity.The results show that the synergistic effect of strength and ductility can be regulated through low-temperature short-time annealing with different cryorolling strains,which provides a new reference for the design of future thermo-mechanical processes.展开更多
By using muon spin relaxation(μSR)measurements,we perform a comparative study of the microscopic magnetism in the parent compounds of infinite-layer nickelate superconductors RNiO_(2)(R=La,Nd).In either compound,the ...By using muon spin relaxation(μSR)measurements,we perform a comparative study of the microscopic magnetism in the parent compounds of infinite-layer nickelate superconductors RNiO_(2)(R=La,Nd).In either compound,the zero-fieldμSR spectra down to the lowest measured temperature reveal no long-range magnetic order.In LaNiO_(2),short-range spin correlations appear below T=150 K,and spins fully freeze below T∼10 K.NdNiO_(2)exhibits a more complex spin dynamics driven by the Nd 4f and Ni3d electron spin fluctuations.Further,it shows features suggesting the proximity to a spin-glass state occurring below T=5 K.In both compounds,the spin behavior with temperature is further confirmed by longitudinal-field μSR measurements.These results provide new insight into the magnetism of the parent compounds of the superconducting nickelates,crucial to understanding the microscopic origin of their superconductivity.展开更多
Gypsum was used as substrate,and silica gel was mixed into substrate at a certain mass ratio to prepare humidity-controlling composites;moreover,the moisture absorption and desorption properties of gypsum-based compos...Gypsum was used as substrate,and silica gel was mixed into substrate at a certain mass ratio to prepare humidity-controlling composites;moreover,the moisture absorption and desorption properties of gypsum-based composites were compared with adding different silica gel particle size and proportion.The morphological characteristics,the isothermal equilibrium moisture content curve,moisture absorption and desorption rate,moisture absorption and desorption stability,and humidity-conditioning performance were tested and analyzed.The experimental results show that,compared with pure-gypsum,the surface structure of the gypsum-based composites is relatively loose,the quantity,density and aperture of the pores in the structure increase.The absorption and desorption capacity increase along with the increase of silica gel particle size and silica gel proportion.When 3 mm silica gel particle size is added with a mass ratio of 40%,the maximum equilibrium moisture content of humidity-controlling composites is 0.161 g/g at 98% relative humidity(RH),3.22 times that of pure-gypsum.The moisture absorption and desorption rates are increased,the equilibrium moisture absorption and desorption rates are 2.68 times and 1.61 times that of pure-gypsum at 58.5% RH,respectively.The gypsum-based composites have a good stability,which has better timely response to dynamic humidity changes and can effectively regulate indoor humidity under natural conditions.展开更多
Discoveries of many coal seams at depths by drilling carried by Geological Survey of Pakistan in Sor Range and Harnai Gochina, extended the coal seams at depth which is challenge for mine owners to exploit feasibly. B...Discoveries of many coal seams at depths by drilling carried by Geological Survey of Pakistan in Sor Range and Harnai Gochina, extended the coal seams at depth which is challenge for mine owners to exploit feasibly. Bed to bed gypsum samplings (and their chemical analyses) of huge gypsum deposits from Sulaiman foldbelt is a base for industrialist and also planers to develop cement and gypsum industries to increase export and foreign exchange for the development of area and Pakistan. Low and high grade sedimentary iron deposits, silica sand and uranium host rocks and their extensions in Sulaiman and Kirthar foldbelts are presented. Anomalies of a few base metals arise as a result of geochemical exploration carried at part of Loralai District of Balochistan. Theropod dinosaurs were frequent in India, while Poripuchian titanosaurs (Sauropoda, Dinosauria) were frequent in Pakistan. Besides some ichnotaxa, many bone taxa such as 1 titanosauriform, 14 titanosaurian sauropod (including one new titanosaur), and 3 theropod dinosaurs are established from Pakistan. Among these 12 titanosaur species and 3 theropod species are named in about 10 km<sup>2</sup> area of Vitakri dome and 2 titanosaur species are named in about a few hundred square meter area of Mari Bohri (Kachi Bohri) which is about 10 km westward from Vitakri dome. Pakistan is a unique country which discoverd 14 diversified titanosaurs in a short area and also in a short period (67 - 66 million years ago/Ma). About 400 bones found from a few meter thick upper part of upper shale horizon of latest Maastrichtian Vitakri Formation which is base for titanosaur taxa. Cranial material is in low fraction (but include significant diverse snouts), caudal vertebrae are prominent, the cervicals, dorsals and sacrals have significant numbers, forelimb and hind limb bones have balanced fraction. Humeri, femora and tibiae are most common. To know the position of Pakistani titanosaurs among titanosaurs and sauropods, there is a need to extend list of characters for phylogenetic analyses. This broad feature list should include main characters of titanosaurs from Pakistan and also from global world.展开更多
Colorectal cancer(CRC)is the third most common cancer worldwide and the second most common cause of cancer death.Nanotherapies are able to selectively target the delivery of cancer therapeutics,thus improving overall ...Colorectal cancer(CRC)is the third most common cancer worldwide and the second most common cause of cancer death.Nanotherapies are able to selectively target the delivery of cancer therapeutics,thus improving overall antitumor eff-iciency and reducing conventional chemotherapy side effects.Mesoporous silica nanoparticles(MSNs)have attracted the attention of many researchers due to their remarkable advantages and biosafety.We offer insights into the recent advances of MSNs in CRC treatment and their potential clinical application value.展开更多
Yolk-shell SiO2 particles(YP)with center-radial meso-channels were fabricated through a simple and effective method.Al-containing YP-supported NiMo catalysts with different Al amounts(NiMo/AYP-x,x=Si/Al molar proporti...Yolk-shell SiO2 particles(YP)with center-radial meso-channels were fabricated through a simple and effective method.Al-containing YP-supported NiMo catalysts with different Al amounts(NiMo/AYP-x,x=Si/Al molar proportion)were prepared and dibenzothiophene(DBT)and 4,6-dimethyl-dibenzothiophene(4,6-DMDBT)were employed as the probes to evaluate the hydrodesulfurization(HDS)catalytic performance.The as-prepared AYP-x carriers and corresponding catalysts were characterized by some advanced characterizations to obtain deeper correlations between physicochemical properties and the HDS performance.The average pore sizes of series AYP-x supports are above 6.0 nm,which favors the mass transfer of organic sulfides.The cavity between the yolk and the shell is beneficial for the enrichment of S-containing compounds and the accessibility between reactants and active metals.Aluminum embedded into the silica framework could facilitate the formation of Lewis(L)and Brønsted(B)acid sites and adjust the metal-support interaction(MSI).Among all the as-synthesized catalysts,NiMo/AYP-20 catalyst shows the highest HDS activities.The improved HDS activity of NiMo/AYP-20 catalyst is attributed to the perfect combination of excellent structural properties of the yolk-shell mesoporous silica,enhanced acidity,moderate MSI,and good accessibility/dispersion of active components.展开更多
ZSM-5 with hierarchical pore structure was synthesized by a simple two-step hydrothermal crystallization from silica fume without using any organic ammonium templates.The synthesized ZSM-5 were oval shaped particles w...ZSM-5 with hierarchical pore structure was synthesized by a simple two-step hydrothermal crystallization from silica fume without using any organic ammonium templates.The synthesized ZSM-5 were oval shaped particles with a particle size about 2.0 μm and weak acid-dominated with proper Brønsted(B)and Lewis(L)acid sites.The ZSM-5 was used for catalytic co-cracking of n-octane and guaiacol,lowdensity polyethylene(LDPE)and alkali lignin(AL)to enhance the production of benzene,toluene,ethylbenzene and xylene(BTEX).The most significant synergistic effect occurred at n-octane/guaiacol at 1:1 and LDPE/AL at 1:3,under the condition,the achieved BTEX selectivity were 24%and 33%(mass)higher than the calculated values(weighted average).The highest BTEX selectivity reached 88.5%,which was 3.7%and 54.2%higher than those from individual cracking LDPE and AL.The synthesized ZSM-5 exhibited superior catalytic performance compared to the commercial ZSM-5,indicating potential application prospect.展开更多
A numerical model based on measured fictive temperature distributions is explored to evaluate the residual stress fields of CO_(2)laser-annealed mitigated fused silica damage sites.The proposed model extracts the resi...A numerical model based on measured fictive temperature distributions is explored to evaluate the residual stress fields of CO_(2)laser-annealed mitigated fused silica damage sites.The proposed model extracts the residual strain from the differences in thermoelastic contraction of fused silica with different fictive temperatures from the initial frozen-in temperatures to ambient temperature.The residual stress fields of mitigated damage sites for the CO_(2)laser-annealed case are obtained by a finite element analysis of equilibrium equations and constitutive equations.The simulated results indicate that the proposed model can accurately evaluate the residual stress fields of laser-annealed mitigated damage sites with a complex thermal history.The calculated maximum hoop stress is in good agreement with the reported experimental result.The estimated optical retardance profiles from the calculated radial and hoop stress fields are consistent with the photoelastic measurements.These results provide sufficient evidence to demonstrate the suitability of the proposed model for describing the residual stresses of mitigated fused silica damage sites after CO_(2)laser annealing.展开更多
基金supported by National Natural Science Foundation of China (No.50574083)
文摘During the plasma spheroidization process powders undergo different changes in their microstructures and crystal phases. In this paper, simple calculation of heat transfer between the plasma and a suspended particle was performed based on three hypotheses for the purpose of guiding experiments. Experimental investigation of the crystal phases and microstructural changes during the plasma processing was made using silica, alumina and nickel powders as starting materials. It has been revealed from the experimental results that these materials undergo different changes in crystal phases and microstructures, and these changes are essentially determined by the structures, properties and aggregate states of the starting materials.
基金This work was also supported by the Core Research for Engineering Innovation KGCX2-203 of the Chinese Academy of Sciences, National Natural Science Foundation of China (No. 20272062) and the "One Hundred Talents" Fund foWen-Hua Sun.
文摘8-Aminoquinoline nickel dichloride and bis(cyclopentadienyl)zirconium dichloride (Cp_2ZrCl_2) were supportedsimultaneously on silica to produce branched polyethylene successfully by combined polymerization. The supportedpolymerization results showed that the molecular weight of polyethylene increased while the molecular weight distributionbecame wider and the molecular chains of oligomers remaning in the final solution became shorter as compared to theoligomers obtained in polymerization processes with pure 8-aminoquinoline nickel dichloride catalysis, as well as theCp_2ZrCl_2 and nickel combination system. With decreasing amount of Ni catalyst in the supported catalyst, the molecular chains of oligomers in the resulting solution became shorter, while α-olefin selectivity increased.
基金Project (2014CB643401) supported by the National Basic Research Program of ChinaProjects (51134007,51474256) supported by the National Natural Science Foundation of ChinaProject (2016TP1007) supported by the Hunan Provincial Science and Technology Plan Project in China
文摘A novel silica-supported tert-butyl 2-picolyamino-N-acetate chelating resin (Si-AMPY-1) was successfully synthesized and characterized by elemental analysis, FT-IR, SEM and 13 C CP/MAS NMR. The adsorption behaviors of the Si-AMPY-1 resin for Cu(Ⅱ) and Ni(Ⅱ) were studied with batch and column methods. The batch experiments indicated that the Si-AMPY-1 resin adsorbed Ni(Ⅱ) mainly via physisorption, while adsorbed Cu(II) via chemisorption. The column dynamic breakthrough curves revealed thatthe Si-AMPY-1 resin can efficiently separate Cu(Ⅱ) from the simulated nickel electrolyte before the breakthrough point. Moreover, the concentration of Cu(Ⅱ) in the column effluent was decreased to be less than 3 mg/L within the first 43 BV (bed volumes), and the mass ratio of Cu/Ni was 21:1 in the saturated resin, which completely satisfied the industrial requirements of the nickel electrorefining process. Therefore, it was concluded that the Si-AMPY-1 resin can be a promising candidate for the deep removal of Cu(Ⅱ) from the nickel electrolyte.
基金supported by the National Natural Science Foundation of China (No.51072130 and 51502045)the Australian Research Council (ARC) through Discovery Early Career Researcher Award (DECRA, No.DE170100871) program。
文摘Due to the sufficient ion diffusion channels provided by the large interlayer spacing, layered silicates are widely considered as potential anode materials for lithium ion and sodium ion batteries. However, due to the poor electronic conductivity, the application of layered silicates for electrochemical energy storage has been greatly limited. Carbon nanotube(CNT) film has excellent electrical conductivity and a unique interconnected network, making it an ideal matrix for composite electrochemical material. We herein report a CNT@nickel silicate composite film(CNT@NiSiO) fabricated by a SiO2-mediated hydrothermal conversion process, for sodium storage with excellent electrochemical properties. The obtained composite possesses a cladding structure with homogeneous nanosheets as the outermost and CNT film as the inner network matrix, providing abundant ion diffusion channels, high electronic conductivity, and good mechanical flexibility. Due to these merits, this material possesses an excellent electrochemical performance for sodium storage, including a high specific capacity up to 390 mAh g-1 at 50 mA g-1, good rate performance up to 205 mAh g-1 at 500 mA g-1, and excellent cycling stability. On this basis, this work would bring a promising material for various energy storage devices and other emerging applications.
基金Supported by the National Natural Science Foundation of China(21376059)the Key Discipline of Hefei University(2014xk01)
文摘A series of novel silica-based hybrid adsorbents were prepared by the crosslinking reaction of N-[3- (trimethoxysilyl)propyl] ethylene diamine (TMSPEDA) with epichlorohydrin (ECH) via a sol-gel process. Fourier transform infrared (FTIR) spectra confirmed that the reaction occurred. TGA curves showed that the thermal stability of these hybrid adsorbents reached as high as 180 ℃. As a typical example, the adsorption performance of nickel(U) ions onto an adsorbent (the volume ratio of TMSPEDA and ECH was 4:1 ) was explored. It was found that the adsorption of nickel(Ⅱ) ions onto this adsorbent followed the Lagergren pseudo-second-order kinetic model. The investigation of the adsorption mechanism demonstrated that nickel(Ⅱ) adsorption was chiefly controlled by diffusion-chemisorption, suggesting that more diffusion processes were involved in the adsorption of nickel(Ⅱ) ions onto this type of adsorbents. Desorption experiment indicates that these hybrid adsorbents can be regenerated. These findings reveal that this type of silica-based hybrid adsorbent is promising in the separation and recovery of nickel(Ⅱ) ions from Ni-containing wastewater or contaminated water.
文摘The improvement of silica particle codeposition into a nickel electrodeposited composite coating (ECC) by a double face horizontal impinging jet cell (IJC) has been studied. The microstructure of coatings was examined by means of scanning electron microscopy performed in backscattered electron mode. The embedded particles distribution was shown to be the densest and the most uniform in laminar low flow mode and when the nozzle is at a distance of 5 mm close from the cathode. Excrescences observed on the composite surface are due to the wave-like flow of the jet on the cathode surface. The silica content of the nickel composite coatings was assessed by energy dispersive X-ray spectroscopy. The amount of particles embedded in the coating decreases with an increasing Reynolds number and as the nozzle-to-sample distance d becomes larger. A maximum rate of 4.43 wt% of silica has been successfully loaded at a distance d equal to 5 mm in the Ni-SiO2 composite coating.
文摘The hydrogenation of benzaldehyde over a series of nickel-containing mesoporous silicas with different nickel contents was studied at atmospheric pressure in the range temperature of 393 - 513 K under H2 ?ow. These materials (noted Nin-HMS with n = Si/Ni = 50, 25, 15) have been prepared at room temperature using a route based on hydrogen bonding and self-assembly between neutral primary amine micelles (S0) and neutral inorganic precursors (I0). They were characterized by their chemical analysis, BET surface area, XRD, FT-IR, and SEM microscopy. The obtained products were benzylalcohol, toluene, benzene with yields depending on the nickel content (Si/Ni ratio) and reaction temperature. The products of benzaldehyde hydrogenation (benzylalcohol, and toluene) and hydrogenolysis (benzene) were preferentially formed at low/middle and high reaction temperature respectively. The mesoporous Ni-containing materials were very active hydrogenation catalysts with almost 90% selectivity to benzylalcohol product and showed excellent stability. A mechanism in which the reaction could be initiated by a benzaldehyde reduction over Nin-HMS materials under hydrogen flow with formation of reaction products is proposed.
基金supported by The Chinese Academy of Sciences (CAS) President’s International Fellowship Initiative (No. 2023VCB0014)The National Natural Science Foundation of China (No. 52203284)Shenzhen Science and Technology Program (Nos. GJHZ20220913143801003 and RCBS20221008093057026)
文摘Economical water electrolysis requires highly active non-noble electrocatalysts to overcome the sluggish kinetics of the two half-cell reactions,oxygen evolution reaction,and hydrogen evolution reaction.Although intensive efforts have been committed to achieve a hydrogen economy,the expensive noble metal-based catalysts remain under consideration.Therefore,the engineering of self-supported electrocatalysts prepared using a direct growth strategy on three-dimensional(3D)nickel foam(NF)as a conductive substrate has garnered significant interest.This is due to the large active surface area and 3D porous network offered by these electrocatalysts,which can enhance the synergistic eff ect between the catalyst and the substrate,as well as improve electrocatalytic performance.Hydrothermal-assisted growth,microwave heating,electrodeposition,and other physical methods(i.e.,chemical vapor deposition and plasma treatment)have been applied to NF to fabricate competitive electrocatalysts with low overpotential and high stability.In this review,recent advancements in the development of self-supported electrocatalysts on 3D NF are described.Finally,we provide future perspectives of self-supported electrode platforms in electrochemical water splitting.
基金supported by the Korea Basic Science Institute(National research Facilities and Equipment Center)grant funded by the Ministry of Education(2019R1A6C1010042,2021R1A6C103A427)the financial support from the National Research Foundation of Korea(NRF)(2022R1A2C2010686,2022R1A4A3033528,2021R1I1A1A01060380,2021R1C1C2010726,2019H1D3A1A01071209)。
文摘The electrocatalytic oxidation of biomass-derived furfural(FF)feedstocks into 2-furoic acid(FA)holds immense industrial potential in optics,cosmetics,polymers,and food.Herein,we fabricated Co O/Ni O/nickel foam(NF)and Cu_(2)O/Ni O/NF electrodes via in situ pulsed laser irradiation in liquids(PLIL)for the bifunctional electrocatalysis of oxygen evolution reaction(OER)and furfural oxidation reaction(FOR),respectively.Simultaneous oxidation of NF surface to NiO and deposition of CoO and/or Cu_(2)O on NF during PLIL offer distinct advantages for enhancing both the OER and FOR.CoO/NiO/NF electrocatalyst provides a consistently low overpotential of~359 m V(OER)at 10 m A/cm^(2),achieving the maximum FA yield(~16.37 m M)with 61.5%selectivity,79.5%carbon balance,and a remarkable Faradaic efficiency of~90.1%during 2 h of FOR at 1.43 V(vs.reversible hydrogen electrode).Mechanistic pathway via in situ electrochemical-Raman spectroscopy on CoO/NiO/NF reveals the involvement of phase transition intermediates(NiOOH and CoOOH)as surface-active centers during electrochemical oxidation.The carbonyl carbon in FF is attacked by hydroxyl groups to form unstable hydrates that subsequently undergo further oxidation to yield FA products.This method holds promise for large-scale applications,enabling simultaneous production of renewable building materials and fuel.
基金supported by electroceramics research center in Malek Ashtar university of Technology(Shahin-Shahr)and Isfahan university of Technology
文摘In this research work silica coating was produced on nickel substrates by a sol-gel process. In order to increase the rate of hydrolysis and to reduce the rate of polymerization several acid catalysts including nitric acid-hydrochloric acid, acetic acid, hydrochloric acid and nitric acid were add to silica sol. Conversely, in order to control the rate of hydrolysis and to increase the rate of polymerization, basic catalyst of ammonia and ammonia hydroxyl were introduced in to the solution. Nickel specimens of known surface roughness were chemically cleaned and prepared by dipping in the sols. In order to produce a suitable silica coating the drying and firing cycles were optimized on these substrates. The structure and uniformity of the coatings produced were examined by scanning electron microscopy. Coatings composition was determined using glow discharge optical spectroscopy and EDAX microanalysis. Experimental result showed that hydrochloric acid, acetic acid, ammonia and acetic acid - ammonia are suitable catalytic agents for silica coating formation on nickel type substrate.
基金Project(XDA 29020100)supported by the Strategic Priority Research Program of the Chinese Academy of SciencesProject(2022YFE0206600)supported by National Key R&D Program of China。
文摘Fluidized reduction roasting is an efficient metallurgical technique.However,its application to nickel laterite ore has rarely been reported.In this paper,the effects of reduction temperature,reduction time,CO concentration,and material particle size on the roasting characteristics of ferronickel fluidization reduction were investigated.Combined with X-ray diffraction,scanning electron microscopy-energy dispersive spectrometry(SEM-EDS)characterization,the mineral phases and microscopic morphology of nickel laterite ore and its roasted ores were analyzed in depth.The results indicated that under the condition of a CO/CO_(2)ratio of 1:1,a reduction temperature of 800℃,and a reduction roasting time of 60 min,a nickel-iron concentrate with a nickel grade of 2.10%and an iron content of 45.96%was produced from a raw material with a nickel grade of 1.45%,achieving a remarkable nickel recovery rate of 46.26%.XRD and SEM-EDS analysis indicated that nickel in the concentrate mainly exists in the form of[Fe,Ni],while the unrecovered nickel in the tailings is primarily present in the form of[Fe,Ni]and Ni_(2)SiO_(4)in forsterite.This study established a theoretical foundation for further exploration of fluidized reduction roasting technology.
基金the financial support from the High-Tech Industry Technology Innovation Leading Plan of Hunan Province,China(2020GK2032)the Innovation Driven Program of Central South University(CSU)(2019CX006)the Research Fund of the Key Laboratory of High Performance Complex Manufacturing at CSU。
文摘Ultra fine-grained pure metals and their alloys have high strength and low ductility.In this study,cryorolling under different strains followed by low-temperature short-time annealing was used to fabricate pure nickel sheets combining high strength with good ductility.The results show that,for different cryorolling strains,the uniform elongation was greatly increased without sacrificing the strength after annealing.A yield strength of 607 MPa and a uniform elongation of 11.7%were obtained after annealing at a small cryorolling strain(ε=0.22),while annealing at a large cryorolling strain(ε=1.6)resulted in a yield strength of 990 MPa and a uniform elongation of 6.4%.X-ray diffraction(XRD),transmission electron microscopy(TEM),scanning electron microscopy(SEM),and electron backscattered diffraction(EBSD)were used to characterize the microstructure of the specimens and showed that the high strength could be attributed to strain hardening during cryorolling,with an additional contribution from grain refinement and the formation of dislocation walls.The high ductility could be attributed to annealing twins and micro-shear bands during stretching,which improved the strain hardening capacity.The results show that the synergistic effect of strength and ductility can be regulated through low-temperature short-time annealing with different cryorolling strains,which provides a new reference for the design of future thermo-mechanical processes.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFA1402203)the National Natural Science Foundation of China(Grant No.12174065)supported by the Shenzhen Fundamental Research Program(Grant Nos.JCYJ20220818100405013 and JCYJ20230807093204010)。
文摘By using muon spin relaxation(μSR)measurements,we perform a comparative study of the microscopic magnetism in the parent compounds of infinite-layer nickelate superconductors RNiO_(2)(R=La,Nd).In either compound,the zero-fieldμSR spectra down to the lowest measured temperature reveal no long-range magnetic order.In LaNiO_(2),short-range spin correlations appear below T=150 K,and spins fully freeze below T∼10 K.NdNiO_(2)exhibits a more complex spin dynamics driven by the Nd 4f and Ni3d electron spin fluctuations.Further,it shows features suggesting the proximity to a spin-glass state occurring below T=5 K.In both compounds,the spin behavior with temperature is further confirmed by longitudinal-field μSR measurements.These results provide new insight into the magnetism of the parent compounds of the superconducting nickelates,crucial to understanding the microscopic origin of their superconductivity.
基金Funded by the National Natural Science Foundation of China(No.51678254)。
文摘Gypsum was used as substrate,and silica gel was mixed into substrate at a certain mass ratio to prepare humidity-controlling composites;moreover,the moisture absorption and desorption properties of gypsum-based composites were compared with adding different silica gel particle size and proportion.The morphological characteristics,the isothermal equilibrium moisture content curve,moisture absorption and desorption rate,moisture absorption and desorption stability,and humidity-conditioning performance were tested and analyzed.The experimental results show that,compared with pure-gypsum,the surface structure of the gypsum-based composites is relatively loose,the quantity,density and aperture of the pores in the structure increase.The absorption and desorption capacity increase along with the increase of silica gel particle size and silica gel proportion.When 3 mm silica gel particle size is added with a mass ratio of 40%,the maximum equilibrium moisture content of humidity-controlling composites is 0.161 g/g at 98% relative humidity(RH),3.22 times that of pure-gypsum.The moisture absorption and desorption rates are increased,the equilibrium moisture absorption and desorption rates are 2.68 times and 1.61 times that of pure-gypsum at 58.5% RH,respectively.The gypsum-based composites have a good stability,which has better timely response to dynamic humidity changes and can effectively regulate indoor humidity under natural conditions.
文摘Discoveries of many coal seams at depths by drilling carried by Geological Survey of Pakistan in Sor Range and Harnai Gochina, extended the coal seams at depth which is challenge for mine owners to exploit feasibly. Bed to bed gypsum samplings (and their chemical analyses) of huge gypsum deposits from Sulaiman foldbelt is a base for industrialist and also planers to develop cement and gypsum industries to increase export and foreign exchange for the development of area and Pakistan. Low and high grade sedimentary iron deposits, silica sand and uranium host rocks and their extensions in Sulaiman and Kirthar foldbelts are presented. Anomalies of a few base metals arise as a result of geochemical exploration carried at part of Loralai District of Balochistan. Theropod dinosaurs were frequent in India, while Poripuchian titanosaurs (Sauropoda, Dinosauria) were frequent in Pakistan. Besides some ichnotaxa, many bone taxa such as 1 titanosauriform, 14 titanosaurian sauropod (including one new titanosaur), and 3 theropod dinosaurs are established from Pakistan. Among these 12 titanosaur species and 3 theropod species are named in about 10 km<sup>2</sup> area of Vitakri dome and 2 titanosaur species are named in about a few hundred square meter area of Mari Bohri (Kachi Bohri) which is about 10 km westward from Vitakri dome. Pakistan is a unique country which discoverd 14 diversified titanosaurs in a short area and also in a short period (67 - 66 million years ago/Ma). About 400 bones found from a few meter thick upper part of upper shale horizon of latest Maastrichtian Vitakri Formation which is base for titanosaur taxa. Cranial material is in low fraction (but include significant diverse snouts), caudal vertebrae are prominent, the cervicals, dorsals and sacrals have significant numbers, forelimb and hind limb bones have balanced fraction. Humeri, femora and tibiae are most common. To know the position of Pakistani titanosaurs among titanosaurs and sauropods, there is a need to extend list of characters for phylogenetic analyses. This broad feature list should include main characters of titanosaurs from Pakistan and also from global world.
基金Supported by The Natural Science Foundation of Liaoning Province,No.2022-MS-435Shenyang Science and Technology Plan Project,No.22-321-33-79.
文摘Colorectal cancer(CRC)is the third most common cancer worldwide and the second most common cause of cancer death.Nanotherapies are able to selectively target the delivery of cancer therapeutics,thus improving overall antitumor eff-iciency and reducing conventional chemotherapy side effects.Mesoporous silica nanoparticles(MSNs)have attracted the attention of many researchers due to their remarkable advantages and biosafety.We offer insights into the recent advances of MSNs in CRC treatment and their potential clinical application value.
基金The authors acknowledge the financial supports from the National Science Foundation of China(U1908204,91845201,and 22002093)the funds that Central Government Guides Local Science and Technology Development(2022JH6/100100052)Scientific Research Project of Education Department of Liaoning Province(LQN202006).
文摘Yolk-shell SiO2 particles(YP)with center-radial meso-channels were fabricated through a simple and effective method.Al-containing YP-supported NiMo catalysts with different Al amounts(NiMo/AYP-x,x=Si/Al molar proportion)were prepared and dibenzothiophene(DBT)and 4,6-dimethyl-dibenzothiophene(4,6-DMDBT)were employed as the probes to evaluate the hydrodesulfurization(HDS)catalytic performance.The as-prepared AYP-x carriers and corresponding catalysts were characterized by some advanced characterizations to obtain deeper correlations between physicochemical properties and the HDS performance.The average pore sizes of series AYP-x supports are above 6.0 nm,which favors the mass transfer of organic sulfides.The cavity between the yolk and the shell is beneficial for the enrichment of S-containing compounds and the accessibility between reactants and active metals.Aluminum embedded into the silica framework could facilitate the formation of Lewis(L)and Brønsted(B)acid sites and adjust the metal-support interaction(MSI).Among all the as-synthesized catalysts,NiMo/AYP-20 catalyst shows the highest HDS activities.The improved HDS activity of NiMo/AYP-20 catalyst is attributed to the perfect combination of excellent structural properties of the yolk-shell mesoporous silica,enhanced acidity,moderate MSI,and good accessibility/dispersion of active components.
基金supported by the National Natural Science Foundation of China(22078076)Guangxi Natural Science Foundation(2020GXNSFAA159174)the Opening Project of National Enterprise Technology Center of Guangxi Bossco Environmental Protection Technology Co.,Ltd(GXU-BFY-2020-005).
文摘ZSM-5 with hierarchical pore structure was synthesized by a simple two-step hydrothermal crystallization from silica fume without using any organic ammonium templates.The synthesized ZSM-5 were oval shaped particles with a particle size about 2.0 μm and weak acid-dominated with proper Brønsted(B)and Lewis(L)acid sites.The ZSM-5 was used for catalytic co-cracking of n-octane and guaiacol,lowdensity polyethylene(LDPE)and alkali lignin(AL)to enhance the production of benzene,toluene,ethylbenzene and xylene(BTEX).The most significant synergistic effect occurred at n-octane/guaiacol at 1:1 and LDPE/AL at 1:3,under the condition,the achieved BTEX selectivity were 24%and 33%(mass)higher than the calculated values(weighted average).The highest BTEX selectivity reached 88.5%,which was 3.7%and 54.2%higher than those from individual cracking LDPE and AL.The synthesized ZSM-5 exhibited superior catalytic performance compared to the commercial ZSM-5,indicating potential application prospect.
基金Project supported by the National Natural Science Foundation of China(Grant No.62275235).
文摘A numerical model based on measured fictive temperature distributions is explored to evaluate the residual stress fields of CO_(2)laser-annealed mitigated fused silica damage sites.The proposed model extracts the residual strain from the differences in thermoelastic contraction of fused silica with different fictive temperatures from the initial frozen-in temperatures to ambient temperature.The residual stress fields of mitigated damage sites for the CO_(2)laser-annealed case are obtained by a finite element analysis of equilibrium equations and constitutive equations.The simulated results indicate that the proposed model can accurately evaluate the residual stress fields of laser-annealed mitigated damage sites with a complex thermal history.The calculated maximum hoop stress is in good agreement with the reported experimental result.The estimated optical retardance profiles from the calculated radial and hoop stress fields are consistent with the photoelastic measurements.These results provide sufficient evidence to demonstrate the suitability of the proposed model for describing the residual stresses of mitigated fused silica damage sites after CO_(2)laser annealing.