In this study,the extruded Mg-Zn-Mn-Ce-Ca alloy tube with a low compression anisotropy along the ED,45ED and TD was prepared.The effect of the second phases,initial texture and deformation behavior on this low mechani...In this study,the extruded Mg-Zn-Mn-Ce-Ca alloy tube with a low compression anisotropy along the ED,45ED and TD was prepared.The effect of the second phases,initial texture and deformation behavior on this low mechanical anisotropy was investigated.The results revealed that the alloy tube contains the high content(Mg1-xZnx)11Ce phase and the low content of Mg12Ce phase.These second phases are respectively incoherent and coherent with the Mg matrix,and their influence can be ignored.Additionally,the alloy tube exhibited a weak basal fiber texture,where the c-axis was aligned along the 0°∼30°tilt from TD to ED.Such a texture made the initial deformation(at 1.0%∼1.6%strain)of the three samples controlled by comparable basalslip.As deformation progressed(1.6∼9.0%strain),larger amounts of ETWs nucleated and gradually approached saturation in the three samples,re-orienting the c-axis to a 0°∼±30°deviation with respect to the loading directions.Meanwhile,the prismatic and pyramidal<c+a>slips replaced the dominant deformation progressively until fracture.Eventually,the similar deformation mechanisms determined by the weak initial texture in the three samples contribute to the comparable strain hardening rates,resulting in the low compressive anisotropy of the alloy tube.展开更多
Cold Metal Transfer (CMT) welding technique is a new welding technique introduced by Fronins company. CMT welding of nickel-based alloy with stainless steel was carried out using CuSi3 filler wire in this paper. Eff...Cold Metal Transfer (CMT) welding technique is a new welding technique introduced by Fronins company. CMT welding of nickel-based alloy with stainless steel was carried out using CuSi3 filler wire in this paper. Effects of welding parameters, including welding current, welding speed, etc, on weld surface appearance were tested. Microstructure and mechanical properties of CMT weld were studied. The results shaw that the thickness of interface reaction layer of the nickel- based alloy is 14. 3 μm, which is only 4. 33% of base material. The weld is made up of two phases, α-copper and iron-based solid solution. Rupture occurs initially at the welded seam near the edge of stainless steel in shear test. The maximum shear strength of the CuSi3 welded joint is 184. 9 MPa.展开更多
A quantitative relation between the γ/γ′ and γ/Laves intermetallics was investigated with the change of chemical composition, i.e., Ti, Al and Nb in the third generation of nickel-based superalloys. The ...A quantitative relation between the γ/γ′ and γ/Laves intermetallics was investigated with the change of chemical composition, i.e., Ti, Al and Nb in the third generation of nickel-based superalloys. The results demonstrated that the maximum amount of intermetallic eutectics (i.e., 41.5%, mass fraction) has been formed in 9.8% (Ti+Al). It is predicted that high level of intermetallics formed in the 3GSA-HNM-1 (γ-9.8%(Ti+Al)) deteriorates its castability. The type and morphology of eutectic intermetallics change and the amount considerably diminishes by decreasing Ti+Al in 3GSA-HNM-2 (γ-7.6%(Ti+Al), 1.5% Nb). Thus, it is predicted that the castability for the 3GSA-HNM-2 improves. The amount of Laves intermetallics shows an ascending behavior again, however, with less intensity by increasing the Nb content in the 3GSA-HNM-3 (γ-5.7%(Ti+Al), 2.9% Nb). It can be concluded that for 3GSA-HNM-3 with composition of γ-5.7%(Ti+Al) and 2.9% Nb, the optimized castability can be anticipated, because the minimum amount of eutectic intermetallics (i.e., 4.7%) is formed.展开更多
GH984G alloy is a significant candidate material for 650-700℃ ultra-supercritical coal-fired generating units.In this paper,creep rupture properties and microstructure stability of the GH984G alloy tube were studied,...GH984G alloy is a significant candidate material for 650-700℃ ultra-supercritical coal-fired generating units.In this paper,creep rupture properties and microstructure stability of the GH984G alloy tube were studied,and the findings indicated excellent creep rupture properties at 700℃.Furthermore,the extrapolated strength for 100000 h was found to be 153.8 MPa,which satisfies the requirements for the long-term performance of high-temperature materials in power stations.Aging at 700℃ with the extension of time,the grain boundary carbides and the particle size of the γ′phase on the matrix gradually coarsen,but its spherical morphology remains uniformly distributed.However,no harmful phase precipitates were found even after aging at 700℃ for up to 19144 h.Excellent microstructure stability guarantees the 700℃ creep rupture properties of the GH984G alloy tube.展开更多
The advanced ultra-supercritical power plants of the future will utilize steam pressures and temperatures that are too high for traditional ferritic steels,thus requiring austenitic materials.Older nickel-base superal...The advanced ultra-supercritical power plants of the future will utilize steam pressures and temperatures that are too high for traditional ferritic steels,thus requiring austenitic materials.Older nickel-base superalloys such as 263 and 617 were initially evaluated under the European THERMIE project beginning in the 1990s.An entirely new age-hardened alloy 740 which possesses exceptional fireside corrosion resistance and creep strength was also developed for boiler tubing capable of serving at 700C.Subsequently,interest in the USA considered other product forms such as steam header piping and steam turbine forgings for service as high as 760C.A more stable and weldable alloy version now called 740H was developed to meet these more demanding conditions.This paper summarizes the current status of work on alloys 740 and 740H.展开更多
In order to obtain good understanding of complicated beam propagation behaviors in nickel-based alloy weldments , ray tracing simulation is established to predict the ultrasonic beam path in a special welded structure...In order to obtain good understanding of complicated beam propagation behaviors in nickel-based alloy weldments , ray tracing simulation is established to predict the ultrasonic beam path in a special welded structure of dissimilar steels. Also experimental examinations are carried out to measure the ultrasonic beam paths in the weldment. Then comparisons of the modeling predictions with experimental results are presented to reveal the complicated beam propagation behaviors.展开更多
In the present study, the passive film formed on the G3 nickel-base alloy tubing under corrosive conditions including H2S ,CO2 ,and Cl-at 130 ℃ and 205 ℃ is studied with X-ray photoelectron spectroscopy(XPS). The ...In the present study, the passive film formed on the G3 nickel-base alloy tubing under corrosive conditions including H2S ,CO2 ,and Cl-at 130 ℃ and 205 ℃ is studied with X-ray photoelectron spectroscopy(XPS). The results reveal that the passive film formed at 205℃ consists of Cr, Ni, Fe, S and O elements and is over 470 nm in thickness. The passive film can be divided into three layers, the outer-layer is composed of NiS2 and Cr2 S3 , the intermediate-layer of Cr(OH) 3, Ni (OH) 2, NiS2, Cr2 $3 and a small quantity of NiO and Cr2 O3, and the inner-layer of NiO, Cr2 O3, and alloy elements. Due to the invasion of S2 - into the passive film and the decrease of the content of chromium oxide in the film, the corrosion resistance of the G3 alloy in the sour environment at 205 ℃ is weakened.展开更多
Many gas turbine components are made from nickel alloy sheet. Most are used for directing or containing gases at high temperatures and pressures where metal temperatures can be as high as 1090℃ (2000°F). These a...Many gas turbine components are made from nickel alloy sheet. Most are used for directing or containing gases at high temperatures and pressures where metal temperatures can be as high as 1090℃ (2000°F). These applications included combustor systems, casings and liners, transition and exhaust ducting, afterburners, and thrust reversere. Light weight components and sub-assemblies call for alloy sheet with high levels of stength and oxidation resistance. Complex component design calls for excellent ductility and ease of fabrication.The wide range of nickel alloy sheet alloys presently used in aircraft and land-based gas turbines is briefly described and typical properties presented. New sheet alloy developments, involving INCONEL ̄* alloys 625LCF, 718SPF and MA754, are presented including the process routes involved and material properties.展开更多
The nickel-base alloy is one of the leading candidate materials for generation IV nuclear reactor pressure vessel.To evaluate its stability of helium damage and retention,helium ions with different energy of 80 keV an...The nickel-base alloy is one of the leading candidate materials for generation IV nuclear reactor pressure vessel.To evaluate its stability of helium damage and retention,helium ions with different energy of 80 keV and 180 keV were introduced by ion implantation to a certain dose(peak displacement damage 1-10 dpa).Then thermal desorption spectroscopy(TDS)of helium atoms was performed to discuss the helium desorption characteristic and trapping sites.The desorption peaks shift to a lower temperature with increasing dpa for both 80 keV and 180 keV irradiation,reflecting the reduced diffusion activation energy and faster diffusion within the alloy.The main release peak temperature of 180 keV helium injection is relatively higher than that of 80 keV at the same influence,which is because the irradiation damage of 180 keV,helium formation and entrapment occur deeper.The broadening of the spectra corresponds to different helium trapping sites(He-vacancies,grain boundary)and desorption mechanisms(different Hen Vm size).The helium retention amount of 80 keV is lower than that of 180 keV,and a saturation limit associated with the irradiation of 80 keV has been reached.The relatively low helium retention proves the better resistance to helium bubbles formation and helium brittleness.展开更多
The irradiation damage in nickel-base alloy C-276 irradiated with 115 keV Ar ions from low to very high doses was investigated. Structural characterization was performed using transmission electron microscopy (TEM),...The irradiation damage in nickel-base alloy C-276 irradiated with 115 keV Ar ions from low to very high doses was investigated. Structural characterization was performed using transmission electron microscopy (TEM), grazing incident X-ray diffraction (GIXRD) and atomic force microscopy (AFM). High density of interstitial type dislocation loops could be observed at a dose level of around 2.75 displacements per atom (dpa). With the irradiation dose increased to 27.5 dpa, the average size of loops increased from 5 nm to 16 nm, while the density of the loops decreased from 1.4 × 1011/cm2 to 4.6 × 1010/cm2. When the irradiation dose reached 82.5 dpa, original grains were transformed into subgrains whose sizes observed from TEM were about 20-60 nm. The fragmentation of grains was confirmed by GIXRD. The mean subgrain size was 40 nm, which was obtained from the full width at half maximum (FWHM) of the X-ray diffraction lines using the Scherrer formula and Williamson formula. AFM micrographs showed that nanometer-sized hillocks formed at the dose of 82.5 dpa, which provided further evidence of grain fragmentation at a high irradiation dose.展开更多
Nickel-based alloys have been considered as candidate structural materials used in generation IV nuclear reactors serving at high temperatures.In the present study,alloy 617 was irradiated with 180-keV helium ions to ...Nickel-based alloys have been considered as candidate structural materials used in generation IV nuclear reactors serving at high temperatures.In the present study,alloy 617 was irradiated with 180-keV helium ions to a fluence of 3.6×10^(17) ions/cm^(2) at room temperature.Throughout the cross-section transmission electron microscopy(TEM)image,numerous over-pressurized helium bubbles in spherical shape are observed with the actual concentration profile a little deeper than the SRIM predicted result.Post-implantation annealing was conducted at 700℃for 2 h to investigate the bubble evolution.The long-range migration of helium bubbles occurred during the annealing process,which makes the bubbles of the peak region transform into a faceted shape as well.Then the coarsening mechanism of helium bubbles at different depths is discussed and related to the migration and coalescence(MC)mechanism.With the diffusion of nickel atoms slowed down by the alloy elements,the migration and coalescence of bubbles are suppressed in alloy 617,leading to a better helium irradiation resistance.展开更多
The electronic properties of passive films formed on G3 and G30 alloys in bicarbonate/carbonate buffer solution were comparatively studied by electrochemical impedance spectra(EIS) and Mott-Schottky analysis, the ch...The electronic properties of passive films formed on G3 and G30 alloys in bicarbonate/carbonate buffer solution were comparatively studied by electrochemical impedance spectra(EIS) and Mott-Schottky analysis, the chemical composition of the passive film formed on G3 alloy was detected by X-ray photoelectron spectroscopy (XPS). The results show that passive film on G3 alloy had better protection than that on G30 alloy. The transfer resistance, film resistance and diffusion resistance of the passive films on both alloys increased with increasing formation potential, prolonging formation time, increasing pH value, decreasing formation temperature, and decreasing chloride and sulphide ions concentration. Mott-Schottky plot reveals that the passive films on the two alloys show a p-n semi-conductive character. XPS analysis indicates that the passive film on G3 alloy was composed of an inner Cr oxide and an outer Fe, Mo/Ni oxides.展开更多
The use of high-temperature materials is especially important in power station construction, heating systems engineering, furnace industry, chemical and petrochemical industry, waste incineration plants, coal gasifica...The use of high-temperature materials is especially important in power station construction, heating systems engineering, furnace industry, chemical and petrochemical industry, waste incineration plants, coal gasification plants and for flying gas turbines in civil and military aircrafts and helicopters. Particularly in recent years, the development of new processes and the drive to improve the economics of existing processes have increased the requirements significantly so that it is necessary to change from well-proven materials to new alloys. Hitherto, heat resistant ferritic steels sufficed in conventional power station constructions for temperatures up to 550℃ newly developed ferritic/martensitic steels provide sufficient strength up to about 600 - 620℃. In new processes, e.g. fluidized-bed combustion of coal, process temperatures up to 900℃ occur. However, this is not the upper limit, since in combustion engines, e.g. gas turbines. Material temperatures up to 1100℃ are reached locally. Similar development trends can also be identified in the petrochemical industry and in the heat treatment and furnace engineering. The advance to ever higher material temperatures now not only has the consequence of having to use materials with enhanced high-strength properties, considerable attention now also has to be given to their chemical stability in corrosive media. Therefore not only examples of the use of high-temperature alloys for practical applications will be given but also be contributed to some general rules for material selection with regard to their high-temperature strength and corrosion resistance.展开更多
The sulfide stress corrosion cracking( SSC) performance of G3 and 028 nickel-based alloys w as studied using slow strain rate test( SSRT) and the four-point bend( FPB) test under simulated dow nhole conditions. ...The sulfide stress corrosion cracking( SSC) performance of G3 and 028 nickel-based alloys w as studied using slow strain rate test( SSRT) and the four-point bend( FPB) test under simulated dow nhole conditions. The effect of high temperature,high H2 S / CO2 partial pressure,and the presence of sulfur on SSC susceptibility w as investigated. The G3 alloy w as found to have a higher SSC resistance than the 028 alloy. Presence of sulfur and temperature bear a strong influence on the SSC performance of the metals,particularly on the 028 alloy. The applicability of 028 and G3 alloys may be expanded and both could safely be used beyond the limits set by the ISO15156-3 standard.展开更多
The role of niobium in nickel-based superalloys is reviewed. The importance of niobium as a strengthener is discussed. New developments in nickel-based superalloys are also briefly mentioned, including some results th...The role of niobium in nickel-based superalloys is reviewed. The importance of niobium as a strengthener is discussed. New developments in nickel-based superalloys are also briefly mentioned, including some results that show improved resistance to sulfidation by niobium. Research results from a current program on the role of niobium in the Russian powder metallurgy alloy EP741NP are presented. Future research plans on the role of niobium in superalloys are also discussed.展开更多
This paper introduces a thick 690 nickel-based alloy plate produced by the former Baosteel Special Steel Co.,Ltd.used as the steam-generator divider plate in the pressurized water reactor nuclear power plant.According...This paper introduces a thick 690 nickel-based alloy plate produced by the former Baosteel Special Steel Co.,Ltd.used as the steam-generator divider plate in the pressurized water reactor nuclear power plant.According to the product characteristics and design requirements of the thick nickel-based alloy plate,multidimensional sampling and testing were conducted to investigate its microstructure and mechanical properties.The results show that all the property indexes of the thick hot-rolled nickel-based alloy plate meet the design requirements,and there is good uniformity in the microstructure and mechanical properties in different dimensions.These findings indicate that China has mastered the core manufacturing technology of thick nickel-based alloy plates for their use as divider plates in nuclear power steam generators.展开更多
A continuous semisolid extending extrusion (CSEP) method was proposed. Temperature field and metal flow during continuous semisolid extending extrusion process of 6201 alloy tube were studied. During the process, th...A continuous semisolid extending extrusion (CSEP) method was proposed. Temperature field and metal flow during continuous semisolid extending extrusion process of 6201 alloy tube were studied. During the process, the temperature in the roll-shoe cavity decreases gradually, and the isothermal lines of the alloy deviate from the shoe side to the work roll side in the roll–shoe gap. Metal flow velocity decreases gradually from the surface of the work roll to the surface of the shoe. In the extrusion mould, alloy temperature decreases gradually from the entrance to the exit and from the center to the sidewall of the mould. The extending cavity is radially filled with the alloy. The flow lines in the tube corresponding to the centers of the splitflow orifices and the welding gaps are dense, and the corresponding harness values are high; there are 8 transitional bands between them. In order to prepare 6201 alloy tubes with good surface quality, the pouring temperature from 750 ℃ to 780 ℃ was suggested.展开更多
As a new attempt,ball spinning was used to manufacture the nickel-titanium shape memory alloy(NiTi SMA) tube at elevated temperature.The NiTi bar with a nominal composition of Ni50.9Ti49.1(mole fraction,%) was sol...As a new attempt,ball spinning was used to manufacture the nickel-titanium shape memory alloy(NiTi SMA) tube at elevated temperature.The NiTi bar with a nominal composition of Ni50.9Ti49.1(mole fraction,%) was solution treated and was used as the original tube blank for ball spinning.Based on the variable temperature field and the constitutive equation,rigid-viscoplastic finite element method(FEM) was applied in order to simulate the ball spinning of NiTi SMA tube.The temperature field,the stress field,the strain field and the load prediction were obtained by means of FEM.FEM results reveal that there is a temperature increase of about 160 ℃ in the principal deformation zone of the spun part.It can be found from the stress fields and the strain fields that the outer wall of NiTi SMA tube is easier to meet the plastic yield criterion than the inner wall,and the plastic deformation zone is caused to be in a three-dimensional compressive stress state.The radial strain and the tangential strain are characterized by the compressive strain,while the axial strain belongs to the tensile strain.The variation of spinning loads with the progression of the ball is of great importance in predicting the stable flow of the spun part.展开更多
As a new attempt, equal channel angular extrusion (ECAE) of nickel-titanium shape memory alloy (NiTi SMA) tube was investigated by means of process experiment, finite element method (FEM) and microscopy. NiTi SM...As a new attempt, equal channel angular extrusion (ECAE) of nickel-titanium shape memory alloy (NiTi SMA) tube was investigated by means of process experiment, finite element method (FEM) and microscopy. NiTi SMA tube with the steel core in it was inserted into the steel can during ECAE of NiTi SMA tube. Based on rigid-viscoplastic FEM, multiple coupled boundary conditions and multiple constitutive models were used for finite element simulation of ECAE of NiTi SMA tube, where the effective stress field, the effective strain field and the velocity field were obtained. Finite element simulation results are in good accordance with the experimental ones. Finite element simulation results reveal that the velocity field shows the minimum value in the corner of NiTi SMA tube, where severe shear deformation occurs. Microstructural observation results reveal that severe plastic deformation leads to a certain grain orientation as well as occurrence of substructures in the grain interior and dynamic recovery occurs during ECAE of NiTi SMA tube. ECAE of NiTi SMA tube provides a new approach to manufacturing ultrafine-grained NiTi SMA tube.展开更多
Fine gauge extruded aluminium alloy tubes can experience preferential corrosion and early failure when they are formed into "u-bend" via cold deformation. The relationship between the electrochemical reactivity and ...Fine gauge extruded aluminium alloy tubes can experience preferential corrosion and early failure when they are formed into "u-bend" via cold deformation. The relationship between the electrochemical reactivity and the microstructure of the bent vs straight parts of the tube was established. Investigations were carried out on two alloys containing 0.08% and 0.22% (mass fraction) of manganese. The corrosion morphology of bent tubes after immersion in salt water acetic acid test (SWAAT) solution showed the highest attack at the bent region of the high-Mn alloy. SEM characterisation of the alloys showed that each alloy has one main type of coarse intermetallic particle. However, TEM observation showed that there is a distinct difference in particle morphology between the bent and straight regions of the high-Mn tubes, the bent region revealed an additional population of 10 50 nm Mn-rich intermetallic particles, which increased both the anodic and cathodic reactivity. For the low-Mn alloy, no such effects were observed. The results suggested that cold deformation of the high-Mn tube allowed room temperature precipitation of fine Mn-rich particles, which increased the cathodic reactivity of that region by providing more cathodic sites, and increased the susceptibility to pitting by removing noble Mn from solid solution. Such an effect was not observed for the low-Mn alloy.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51974082,51901037)State Key Laboratory of Baiyunobo Rare Earth Resource Research and Comprehensive Utilization(No.2021H2279)Programme of Introducing Talents of Discipline Innovation to Universities 2.0(the 111 Project 2.0 of China,No.BP0719037).
文摘In this study,the extruded Mg-Zn-Mn-Ce-Ca alloy tube with a low compression anisotropy along the ED,45ED and TD was prepared.The effect of the second phases,initial texture and deformation behavior on this low mechanical anisotropy was investigated.The results revealed that the alloy tube contains the high content(Mg1-xZnx)11Ce phase and the low content of Mg12Ce phase.These second phases are respectively incoherent and coherent with the Mg matrix,and their influence can be ignored.Additionally,the alloy tube exhibited a weak basal fiber texture,where the c-axis was aligned along the 0°∼30°tilt from TD to ED.Such a texture made the initial deformation(at 1.0%∼1.6%strain)of the three samples controlled by comparable basalslip.As deformation progressed(1.6∼9.0%strain),larger amounts of ETWs nucleated and gradually approached saturation in the three samples,re-orienting the c-axis to a 0°∼±30°deviation with respect to the loading directions.Meanwhile,the prismatic and pyramidal<c+a>slips replaced the dominant deformation progressively until fracture.Eventually,the similar deformation mechanisms determined by the weak initial texture in the three samples contribute to the comparable strain hardening rates,resulting in the low compressive anisotropy of the alloy tube.
文摘Cold Metal Transfer (CMT) welding technique is a new welding technique introduced by Fronins company. CMT welding of nickel-based alloy with stainless steel was carried out using CuSi3 filler wire in this paper. Effects of welding parameters, including welding current, welding speed, etc, on weld surface appearance were tested. Microstructure and mechanical properties of CMT weld were studied. The results shaw that the thickness of interface reaction layer of the nickel- based alloy is 14. 3 μm, which is only 4. 33% of base material. The weld is made up of two phases, α-copper and iron-based solid solution. Rupture occurs initially at the welded seam near the edge of stainless steel in shear test. The maximum shear strength of the CuSi3 welded joint is 184. 9 MPa.
文摘A quantitative relation between the γ/γ′ and γ/Laves intermetallics was investigated with the change of chemical composition, i.e., Ti, Al and Nb in the third generation of nickel-based superalloys. The results demonstrated that the maximum amount of intermetallic eutectics (i.e., 41.5%, mass fraction) has been formed in 9.8% (Ti+Al). It is predicted that high level of intermetallics formed in the 3GSA-HNM-1 (γ-9.8%(Ti+Al)) deteriorates its castability. The type and morphology of eutectic intermetallics change and the amount considerably diminishes by decreasing Ti+Al in 3GSA-HNM-2 (γ-7.6%(Ti+Al), 1.5% Nb). Thus, it is predicted that the castability for the 3GSA-HNM-2 improves. The amount of Laves intermetallics shows an ascending behavior again, however, with less intensity by increasing the Nb content in the 3GSA-HNM-3 (γ-5.7%(Ti+Al), 2.9% Nb). It can be concluded that for 3GSA-HNM-3 with composition of γ-5.7%(Ti+Al) and 2.9% Nb, the optimized castability can be anticipated, because the minimum amount of eutectic intermetallics (i.e., 4.7%) is formed.
文摘GH984G alloy is a significant candidate material for 650-700℃ ultra-supercritical coal-fired generating units.In this paper,creep rupture properties and microstructure stability of the GH984G alloy tube were studied,and the findings indicated excellent creep rupture properties at 700℃.Furthermore,the extrapolated strength for 100000 h was found to be 153.8 MPa,which satisfies the requirements for the long-term performance of high-temperature materials in power stations.Aging at 700℃ with the extension of time,the grain boundary carbides and the particle size of the γ′phase on the matrix gradually coarsen,but its spherical morphology remains uniformly distributed.However,no harmful phase precipitates were found even after aging at 700℃ for up to 19144 h.Excellent microstructure stability guarantees the 700℃ creep rupture properties of the GH984G alloy tube.
文摘The advanced ultra-supercritical power plants of the future will utilize steam pressures and temperatures that are too high for traditional ferritic steels,thus requiring austenitic materials.Older nickel-base superalloys such as 263 and 617 were initially evaluated under the European THERMIE project beginning in the 1990s.An entirely new age-hardened alloy 740 which possesses exceptional fireside corrosion resistance and creep strength was also developed for boiler tubing capable of serving at 700C.Subsequently,interest in the USA considered other product forms such as steam header piping and steam turbine forgings for service as high as 760C.A more stable and weldable alloy version now called 740H was developed to meet these more demanding conditions.This paper summarizes the current status of work on alloys 740 and 740H.
基金supported by National Natural Science Foundation of China (Grant No. 50775054)International Joint Research Program of China (Grant No. 2007DFR70070)
文摘In order to obtain good understanding of complicated beam propagation behaviors in nickel-based alloy weldments , ray tracing simulation is established to predict the ultrasonic beam path in a special welded structure of dissimilar steels. Also experimental examinations are carried out to measure the ultrasonic beam paths in the weldment. Then comparisons of the modeling predictions with experimental results are presented to reveal the complicated beam propagation behaviors.
文摘In the present study, the passive film formed on the G3 nickel-base alloy tubing under corrosive conditions including H2S ,CO2 ,and Cl-at 130 ℃ and 205 ℃ is studied with X-ray photoelectron spectroscopy(XPS). The results reveal that the passive film formed at 205℃ consists of Cr, Ni, Fe, S and O elements and is over 470 nm in thickness. The passive film can be divided into three layers, the outer-layer is composed of NiS2 and Cr2 S3 , the intermediate-layer of Cr(OH) 3, Ni (OH) 2, NiS2, Cr2 $3 and a small quantity of NiO and Cr2 O3, and the inner-layer of NiO, Cr2 O3, and alloy elements. Due to the invasion of S2 - into the passive film and the decrease of the content of chromium oxide in the film, the corrosion resistance of the G3 alloy in the sour environment at 205 ℃ is weakened.
文摘Many gas turbine components are made from nickel alloy sheet. Most are used for directing or containing gases at high temperatures and pressures where metal temperatures can be as high as 1090℃ (2000°F). These applications included combustor systems, casings and liners, transition and exhaust ducting, afterburners, and thrust reversere. Light weight components and sub-assemblies call for alloy sheet with high levels of stength and oxidation resistance. Complex component design calls for excellent ductility and ease of fabrication.The wide range of nickel alloy sheet alloys presently used in aircraft and land-based gas turbines is briefly described and typical properties presented. New sheet alloy developments, involving INCONEL ̄* alloys 625LCF, 718SPF and MA754, are presented including the process routes involved and material properties.
基金Project supported by Special Funds for Fundamental Research Funds for Central Universities,China(Grant Nos.2018 NTST29 and 2018 NTST04)the National Natural Science Foundation of China(Grant No.61176003)+1 种基金Chinese Postdoctoral Science Foundation(Grant No.2019M650524)Guangdong Province Key Area R&D Program,China(Grant No.2019B090909002)。
文摘The nickel-base alloy is one of the leading candidate materials for generation IV nuclear reactor pressure vessel.To evaluate its stability of helium damage and retention,helium ions with different energy of 80 keV and 180 keV were introduced by ion implantation to a certain dose(peak displacement damage 1-10 dpa).Then thermal desorption spectroscopy(TDS)of helium atoms was performed to discuss the helium desorption characteristic and trapping sites.The desorption peaks shift to a lower temperature with increasing dpa for both 80 keV and 180 keV irradiation,reflecting the reduced diffusion activation energy and faster diffusion within the alloy.The main release peak temperature of 180 keV helium injection is relatively higher than that of 80 keV at the same influence,which is because the irradiation damage of 180 keV,helium formation and entrapment occur deeper.The broadening of the spectra corresponds to different helium trapping sites(He-vacancies,grain boundary)and desorption mechanisms(different Hen Vm size).The helium retention amount of 80 keV is lower than that of 180 keV,and a saturation limit associated with the irradiation of 80 keV has been reached.The relatively low helium retention proves the better resistance to helium bubbles formation and helium brittleness.
基金supported by the National Basic Research Program of China (No. 2007CB209800)National Natural Science Foundation of China(Nos. 10775108, 11075119)the Fundamental Research Funds for the Central Universities (20102020201000013)
文摘The irradiation damage in nickel-base alloy C-276 irradiated with 115 keV Ar ions from low to very high doses was investigated. Structural characterization was performed using transmission electron microscopy (TEM), grazing incident X-ray diffraction (GIXRD) and atomic force microscopy (AFM). High density of interstitial type dislocation loops could be observed at a dose level of around 2.75 displacements per atom (dpa). With the irradiation dose increased to 27.5 dpa, the average size of loops increased from 5 nm to 16 nm, while the density of the loops decreased from 1.4 × 1011/cm2 to 4.6 × 1010/cm2. When the irradiation dose reached 82.5 dpa, original grains were transformed into subgrains whose sizes observed from TEM were about 20-60 nm. The fragmentation of grains was confirmed by GIXRD. The mean subgrain size was 40 nm, which was obtained from the full width at half maximum (FWHM) of the X-ray diffraction lines using the Scherrer formula and Williamson formula. AFM micrographs showed that nanometer-sized hillocks formed at the dose of 82.5 dpa, which provided further evidence of grain fragmentation at a high irradiation dose.
基金Project supported by the Special Funds for the Key Research and Development Program of the Ministry of Science and Technology of China(Grant Nos.2017YFB0702201 and 2020YFB1901800)the National Natural Science Foundation of China(Grant Nos.11975135 and 12005017).
文摘Nickel-based alloys have been considered as candidate structural materials used in generation IV nuclear reactors serving at high temperatures.In the present study,alloy 617 was irradiated with 180-keV helium ions to a fluence of 3.6×10^(17) ions/cm^(2) at room temperature.Throughout the cross-section transmission electron microscopy(TEM)image,numerous over-pressurized helium bubbles in spherical shape are observed with the actual concentration profile a little deeper than the SRIM predicted result.Post-implantation annealing was conducted at 700℃for 2 h to investigate the bubble evolution.The long-range migration of helium bubbles occurred during the annealing process,which makes the bubbles of the peak region transform into a faceted shape as well.Then the coarsening mechanism of helium bubbles at different depths is discussed and related to the migration and coalescence(MC)mechanism.With the diffusion of nickel atoms slowed down by the alloy elements,the migration and coalescence of bubbles are suppressed in alloy 617,leading to a better helium irradiation resistance.
基金Supported by the National Natural Science Foundation of China(Nos.51075228 50721004)
文摘The electronic properties of passive films formed on G3 and G30 alloys in bicarbonate/carbonate buffer solution were comparatively studied by electrochemical impedance spectra(EIS) and Mott-Schottky analysis, the chemical composition of the passive film formed on G3 alloy was detected by X-ray photoelectron spectroscopy (XPS). The results show that passive film on G3 alloy had better protection than that on G30 alloy. The transfer resistance, film resistance and diffusion resistance of the passive films on both alloys increased with increasing formation potential, prolonging formation time, increasing pH value, decreasing formation temperature, and decreasing chloride and sulphide ions concentration. Mott-Schottky plot reveals that the passive films on the two alloys show a p-n semi-conductive character. XPS analysis indicates that the passive film on G3 alloy was composed of an inner Cr oxide and an outer Fe, Mo/Ni oxides.
文摘The use of high-temperature materials is especially important in power station construction, heating systems engineering, furnace industry, chemical and petrochemical industry, waste incineration plants, coal gasification plants and for flying gas turbines in civil and military aircrafts and helicopters. Particularly in recent years, the development of new processes and the drive to improve the economics of existing processes have increased the requirements significantly so that it is necessary to change from well-proven materials to new alloys. Hitherto, heat resistant ferritic steels sufficed in conventional power station constructions for temperatures up to 550℃ newly developed ferritic/martensitic steels provide sufficient strength up to about 600 - 620℃. In new processes, e.g. fluidized-bed combustion of coal, process temperatures up to 900℃ occur. However, this is not the upper limit, since in combustion engines, e.g. gas turbines. Material temperatures up to 1100℃ are reached locally. Similar development trends can also be identified in the petrochemical industry and in the heat treatment and furnace engineering. The advance to ever higher material temperatures now not only has the consequence of having to use materials with enhanced high-strength properties, considerable attention now also has to be given to their chemical stability in corrosive media. Therefore not only examples of the use of high-temperature alloys for practical applications will be given but also be contributed to some general rules for material selection with regard to their high-temperature strength and corrosion resistance.
文摘The sulfide stress corrosion cracking( SSC) performance of G3 and 028 nickel-based alloys w as studied using slow strain rate test( SSRT) and the four-point bend( FPB) test under simulated dow nhole conditions. The effect of high temperature,high H2 S / CO2 partial pressure,and the presence of sulfur on SSC susceptibility w as investigated. The G3 alloy w as found to have a higher SSC resistance than the 028 alloy. Presence of sulfur and temperature bear a strong influence on the SSC performance of the metals,particularly on the 028 alloy. The applicability of 028 and G3 alloys may be expanded and both could safely be used beyond the limits set by the ISO15156-3 standard.
文摘The role of niobium in nickel-based superalloys is reviewed. The importance of niobium as a strengthener is discussed. New developments in nickel-based superalloys are also briefly mentioned, including some results that show improved resistance to sulfidation by niobium. Research results from a current program on the role of niobium in the Russian powder metallurgy alloy EP741NP are presented. Future research plans on the role of niobium in superalloys are also discussed.
基金sponsored by Special Fund for Indus-trial Transformation and Upgrading in Shanghai(No.GYQJ-2018-2-03)Program of Shanghai Academ-ic/Technology Research Leader(No.17XD1420200).
文摘This paper introduces a thick 690 nickel-based alloy plate produced by the former Baosteel Special Steel Co.,Ltd.used as the steam-generator divider plate in the pressurized water reactor nuclear power plant.According to the product characteristics and design requirements of the thick nickel-based alloy plate,multidimensional sampling and testing were conducted to investigate its microstructure and mechanical properties.The results show that all the property indexes of the thick hot-rolled nickel-based alloy plate meet the design requirements,and there is good uniformity in the microstructure and mechanical properties in different dimensions.These findings indicate that China has mastered the core manufacturing technology of thick nickel-based alloy plates for their use as divider plates in nuclear power steam generators.
基金Projects (51034002, 50974038) supported by the National Natural Science Foundation of ChinaProject (132002) supported by the Fok Ying Tong Education FoundationProject (2011CB610405) supported by National Basic Research Program of China
文摘A continuous semisolid extending extrusion (CSEP) method was proposed. Temperature field and metal flow during continuous semisolid extending extrusion process of 6201 alloy tube were studied. During the process, the temperature in the roll-shoe cavity decreases gradually, and the isothermal lines of the alloy deviate from the shoe side to the work roll side in the roll–shoe gap. Metal flow velocity decreases gradually from the surface of the work roll to the surface of the shoe. In the extrusion mould, alloy temperature decreases gradually from the entrance to the exit and from the center to the sidewall of the mould. The extending cavity is radially filled with the alloy. The flow lines in the tube corresponding to the centers of the splitflow orifices and the welding gaps are dense, and the corresponding harness values are high; there are 8 transitional bands between them. In order to prepare 6201 alloy tubes with good surface quality, the pouring temperature from 750 ℃ to 780 ℃ was suggested.
基金Project(51071056) supported by the National Natural Science Foundation of ChinaProject(HEUCF121712) supported by the Fundamental Research Funds for the Central Universities of China
文摘As a new attempt,ball spinning was used to manufacture the nickel-titanium shape memory alloy(NiTi SMA) tube at elevated temperature.The NiTi bar with a nominal composition of Ni50.9Ti49.1(mole fraction,%) was solution treated and was used as the original tube blank for ball spinning.Based on the variable temperature field and the constitutive equation,rigid-viscoplastic finite element method(FEM) was applied in order to simulate the ball spinning of NiTi SMA tube.The temperature field,the stress field,the strain field and the load prediction were obtained by means of FEM.FEM results reveal that there is a temperature increase of about 160 ℃ in the principal deformation zone of the spun part.It can be found from the stress fields and the strain fields that the outer wall of NiTi SMA tube is easier to meet the plastic yield criterion than the inner wall,and the plastic deformation zone is caused to be in a three-dimensional compressive stress state.The radial strain and the tangential strain are characterized by the compressive strain,while the axial strain belongs to the tensile strain.The variation of spinning loads with the progression of the ball is of great importance in predicting the stable flow of the spun part.
基金Project(51071056)supported by the National Natural Science Foundation of ChinaProjects(HEUCF121712,HEUCF201317002)supported by the Fundamental Research Funds for the Central Universities of China
文摘As a new attempt, equal channel angular extrusion (ECAE) of nickel-titanium shape memory alloy (NiTi SMA) tube was investigated by means of process experiment, finite element method (FEM) and microscopy. NiTi SMA tube with the steel core in it was inserted into the steel can during ECAE of NiTi SMA tube. Based on rigid-viscoplastic FEM, multiple coupled boundary conditions and multiple constitutive models were used for finite element simulation of ECAE of NiTi SMA tube, where the effective stress field, the effective strain field and the velocity field were obtained. Finite element simulation results are in good accordance with the experimental ones. Finite element simulation results reveal that the velocity field shows the minimum value in the corner of NiTi SMA tube, where severe shear deformation occurs. Microstructural observation results reveal that severe plastic deformation leads to a certain grain orientation as well as occurrence of substructures in the grain interior and dynamic recovery occurs during ECAE of NiTi SMA tube. ECAE of NiTi SMA tube provides a new approach to manufacturing ultrafine-grained NiTi SMA tube.
文摘Fine gauge extruded aluminium alloy tubes can experience preferential corrosion and early failure when they are formed into "u-bend" via cold deformation. The relationship between the electrochemical reactivity and the microstructure of the bent vs straight parts of the tube was established. Investigations were carried out on two alloys containing 0.08% and 0.22% (mass fraction) of manganese. The corrosion morphology of bent tubes after immersion in salt water acetic acid test (SWAAT) solution showed the highest attack at the bent region of the high-Mn alloy. SEM characterisation of the alloys showed that each alloy has one main type of coarse intermetallic particle. However, TEM observation showed that there is a distinct difference in particle morphology between the bent and straight regions of the high-Mn tubes, the bent region revealed an additional population of 10 50 nm Mn-rich intermetallic particles, which increased both the anodic and cathodic reactivity. For the low-Mn alloy, no such effects were observed. The results suggested that cold deformation of the high-Mn tube allowed room temperature precipitation of fine Mn-rich particles, which increased the cathodic reactivity of that region by providing more cathodic sites, and increased the susceptibility to pitting by removing noble Mn from solid solution. Such an effect was not observed for the low-Mn alloy.