By means of microstructure observation and measurement of creep properties,the high temperature creep behaviors of a single crystal nickel-based superalloy containing Re were investigated.Results show that the single ...By means of microstructure observation and measurement of creep properties,the high temperature creep behaviors of a single crystal nickel-based superalloy containing Re were investigated.Results show that the single crystal nickel-based superalloy containing 4.2% Re possesses a better creep resistance at high temperature.After being crept up to fracture,the various morphologies are displayed in the different areas of the sample,and the γ' phase is transformed into the rafted structure along the direction vertical to the applied stress axis in the regions far from the fracture.But the coarsening and twisting extents of the rafted γ' phase increase in the regions near the fracture,which is attributed to the occurrence of the larger plastic deformation.In the later stage of creep,the deformation mechanism of the alloy is that the dislocations with [01^-1]and [011] trace features shear into the rafted γ' phase.The main/secondary slipping dislocations are alternately activated to twist the rafted γ' phase up to the occurrence of creep fracture,which is thought to be the fracture mechanism of the alloy during creep.展开更多
The microstructual evolution and stability of a second generation single crystal (SC) nickel-based superalloy DD5 with minor grain boundary (GB) strengthening elements (C, B and Hf) were studied as a function of as-ca...The microstructual evolution and stability of a second generation single crystal (SC) nickel-based superalloy DD5 with minor grain boundary (GB) strengthening elements (C, B and Hf) were studied as a function of as-cast, heat treatment and thermal exposure. The microstructure and composition of the alloy were investigated by optical microscopy, scanning electron microanalysis (SEM), electron probe microanalysis (EPMA), energy dispersive spectrometry (EDS) and extraction analysis. In the as-cast condition,the microstructure observations and composition analysis showed that γ phase was the primary solidification phase and there were three microsegregations in the metal matrix. The morphology of these microsegregations depended on element segregations. After heat treatment, the dendrite cores contained fine and cuboidal-shaped γ′ particles with an average edge length of about 0.5 μm, whileinterdendritic regions contained irregularly-shaped γ′ particles and MC/M23C6 carbides. The mass fraction of γ′ phases was 61.685%.After exposure at 980 °C for 1000 h, no TCP phase was observed in both dendritic and interdendritic regions, indicating a good microstructual stability of the DD5 alloy at 980 °C.展开更多
The low-cycle fatigue (LCF) behavior of a nickel-based single crystal superalloy with [001] orientation was studied at an intermediate temperature of T0℃ and a higher temperature of To + 250℃ under a constant low...The low-cycle fatigue (LCF) behavior of a nickel-based single crystal superalloy with [001] orientation was studied at an intermediate temperature of T0℃ and a higher temperature of To + 250℃ under a constant low strain rate of 10^-3 s^-1 in ambient atmosphere. The superalloy exhibited cyclic tension-compression asymmetry which is dependent on the temperature and applied strain amplitude. Analysis on the fracture surfaces showed that the surface and subsurface casting micropores were the major crack initiation sites. Interior Ta-rich carbides were frequently observed in all specimens. Two distinct types of fracture were suggested by fractogaphy. One type was characterized by Mode-I cracking with a microscopically rough surface at To + 250℃. Whereas the other type at lower temperature T0℃ favored either one or several of the octahedral {111} planes, in contrast to the normal Mode-I growth mode typically observed at low loading frequencies (several Hz). The failure mechanisms for two cracking modes are shearing of γ' precipitates together with the matrix at T0℃ and cracking confined in the matrix and the γ/γ'interface at To - 250℃.展开更多
The service performance of the turbine blade root of an aero-engine depends on the microstructures in its superficial layer.This work investigated the surface deformation structures of turbine blade root of single cry...The service performance of the turbine blade root of an aero-engine depends on the microstructures in its superficial layer.This work investigated the surface deformation structures of turbine blade root of single crystal nickel-based superalloy produced under different creep feed grinding conditions.Gradient microstructures in the superficial layer were clarified and composed of a severely deformed layer(DFL)with nano-sized grains(48–67 nm)at the topmost surface,a DFL with submicron-sized grains(66–158 nm)and micron-sized laminated structures at the subsurface,and a dislocation accumulated layer extending to the bulk material.The formation of such gradient microstructures was found to be related to the graded variations in the plastic strain and strain rate induced in the creep feed grinding process,which were as high as 6.67 and 8.17×10^(7)s^(−1),respectively.In the current study,the evolution of surface gradient microstructures was essentially a transition process from a coarse single crystal to nano-sized grains and,simultaneously,from one orientation of a single crystal to random orientations of polycrystals,during which the dislocation slips dominated the creep feed grinding induced microstructure deformation of single crystal nickel-based superalloy.展开更多
The oxidation behavior of a novel Ni-based single-crystal 4774DD1 superalloy for industrial gas turbine applications was investigated by the isothermal oxidation at 980℃ and discontinuous oxidation weight gain method...The oxidation behavior of a novel Ni-based single-crystal 4774DD1 superalloy for industrial gas turbine applications was investigated by the isothermal oxidation at 980℃ and discontinuous oxidation weight gain methods.The phase constitution and morphology of surface oxides and the characteristics of the crosssection oxide film were analyzed by XRD,SEM and EDS.Results show that the oxidation kinetics of the 4774DD1 superalloy follows the cubic law,indicating its weak oxidation resistance at this temperature.As the oxidation time increases,the composition of the oxide film evolves as following:One layer consisting of a bottom Al_(2)O_(3)sublayer and an upper(Al_(2)O_(3)+NiO)mixture sublayer after oxidized for 25 h.Then,two layers composed of an outermost small NiO discontinuous grain layer and an internal layer for 75 h.This internal layer is consisted of the bottom Al_(2)O_(3)sublayer,an intermediate narrow CrTaO_(4)sublayer,and an upper(Al_(2)O_(3)+NiO)mixture sublayer.Also two layers comprising an outermost relative continuous NiO layer with large grain size and an internal layer as the oxidation time increases to 125 h.This internal layer is composed of the upper(Al_(2)O_(3)+NiO)mixture sublayer,an intermediate continuous(CrTaO_(4)+NiWO_(4))mixture sublayer,and a bottom Al_(2)O_(3)sublayer.Finally,three layers consisting of an outermost(NiAl2O_(4)+NiCr2O_(4))mixture layer,an intermediate(CrTaO_(4)+NiWO_(4))mixture layer,and a bottom Al_(2)O_(3)layer for 200 h.展开更多
The influence of Co, W and Ti on stress-rupture lives of a Ni-Cr-AI-Mo-Ta-Co-W-Ti single crystal nickel-base superalloy has been investigated using a L9 (34) orthogonal array design (OAD) by statistical analysis. ...The influence of Co, W and Ti on stress-rupture lives of a Ni-Cr-AI-Mo-Ta-Co-W-Ti single crystal nickel-base superalloy has been investigated using a L9 (34) orthogonal array design (OAD) by statistical analysis. At a selected composition range, Ti content was the most important factor to the effect of the stress-rupture lives and then followed by Co content. W content had the minimum effect on stress-rupture lives. The optimal alloy should contain 10 wt pct Co, 8 wt pct W and zero Ti. The optimized alloy also had good microstructural stability during thermal exposure at 870℃ for 500 h.展开更多
Fully reversed low cyclic fatigue (LCF) tests were conducted on [0 0 1], [0 1 2], [(1) over bar 1 2], [0 1 1] and [(1) over bar 1 4] oriented single crystals of nickel-bared superalloy DD3 with different cyclic strain...Fully reversed low cyclic fatigue (LCF) tests were conducted on [0 0 1], [0 1 2], [(1) over bar 1 2], [0 1 1] and [(1) over bar 1 4] oriented single crystals of nickel-bared superalloy DD3 with different cyclic strain rates at 950 degrees C. The cyclic strain rates were chosen as 1.0 x 10(-2), 1.33 x 10(-3) and 0.33 x 10(-3) s(-1). The octahedral slip systems were confirmed to be activated on all the specimens. The experimental result shows that the fatigue behavior depends an the crystallographic orientation and cyclic strain rate. Except [0 0 1] orientation specimens, it is found from the scanning electron microscopy(SEM) examination that there are typical fatigue striations on the fracture surfaces. These fatigue striations are made up of cracks. The width of the fatigue striations depends on the crystallographic orientation and varies with the total strain range. A simple linear relationship exists between the width and total shear strain range modified by an orientation and strain rate parameter. The nonconformity to the Schmid law of tensile/compressive flaw stress and plastic behavior existed at 95 degrees C, and an orientation and strain rate modified Lall-Chin-Pope ( LCP) model was derived for the nonconformity. The influence of crysrallographic orientation and cyclic strain rate on the LCF behavior can be predicted satisfactorily by the model. In terms of an orientation and strain rate modified total strain range, a model for fatigue life was proposed and used successfully to correlate the fatigue lives studied.展开更多
The creep and rupture behavior of a nickel-base single crystal superalloy with [001] orientation was investigated at temperature of 10001040℃ and stress in the range of 150320MPa. The creep features and micro...The creep and rupture behavior of a nickel-base single crystal superalloy with [001] orientation was investigated at temperature of 10001040℃ and stress in the range of 150320MPa. The creep features and microstructure were studied by means of the measurement of creep curves and TEM observation. The results show that all creep curves exhibit a short primary and a dominant accelerated creep stage. From the creep parameters and TEM observations, it is suggested that the primary deformation mechanism has a change from precipitatation shearing by pairs of dislocation in the high applied stress region to dislocations climb around the γ′ particles in the low applied stress region. Furthermore, the detailed failure process and fracture surfaces were analyzed by SEM observation.展开更多
Numerical calculations of creep damage development and life behavior of circular notched specimens of nickel-base single crystal had been performed. The creep stress distributions depend on the specimen geometry. For ...Numerical calculations of creep damage development and life behavior of circular notched specimens of nickel-base single crystal had been performed. The creep stress distributions depend on the specimen geometry. For a small notch radius, von Mises stress has an especial distribution. The damage distribution is greatly influenced by the notch depth, notch radius as well as notch type. The creep crack initiation place is different for each notched specimen. The characteristics of notch strengthening and notch weakening depend on the notch radius and notch type. For the same notch type, the creep rupture lives decrease with the decreasing of notch radius. A creep life model has been presented for the multiaxial stress states based on the crystallographic slip system theory.展开更多
An investigation has been made into strengthening mechanism in a single crystal nickel-base superalloy DD8 by transmission electron microscopy. The results show that the stress rupture strength of the alloy increases ...An investigation has been made into strengthening mechanism in a single crystal nickel-base superalloy DD8 by transmission electron microscopy. The results show that the stress rupture strength of the alloy increases with decreasing misfit, and the antiphase boundaries (APBs) formed in the ordered γ' phase, rather than the misfits, play a dominate role in strengthening of the single crystal Ni-base superalloy DD8.There are three kinds of mechanisms for forming the APBs which were observed in the present materials. One is mis-arrangement of the local ordered atoms in the γ' precipitates due to the local strain; the second arises from the 1/2<110> dislocations cutting into the γ', and the third is the formation of the APBs induced by the 1/2<110> matrix dislocation network. The contribution of the antiphase boundary energy to the strength of the alloy can be expressed by:where τ is the resistance to deformation provided by the APB energy; S is the long-range order degree in γ'; Tc is the transition temperature from order to disorder; f is the volume fraction of γ'; rs is the radius of γ'; b is the Burgers vector; a is the lattice constant; G is the shear modulus, and k is the proportional constant.展开更多
To increase efficiency and improve performance, reducing cost and emissions, advanced single crystal Ni-based superalloys are required in aerospace propulsion and power generating gas turbines. With the development of...To increase efficiency and improve performance, reducing cost and emissions, advanced single crystal Ni-based superalloys are required in aerospace propulsion and power generating gas turbines. With the development of alloy, significant improvements in casting techniques have been achieved by introducing the directionally solidified (DS) casting process followed by single crystal (SX) technique. The deviation of preferred orientation of single crystal superalloys is one of the most important defects in casting. In directional solidification equipment with high temperature gradient, single crystal specimens of DZ417G alloy were prepared successfully by the modified Bridgeman method with spiral grain selector. The orientation was investigated by means of X-ray diffraction (XRD) and electron backscattered diffraction (EBSD).The results show that the crystal selector with a smaller angle can effectively reduce the deviation of preferred orientation.展开更多
The isothermal oxidation behavior of the second generation single crystal superalloy DD6 was studied at 1050 ℃ and 1100 ℃ in ambient atmosphere.Morphology of oxides was examined by SEM and their composition was anal...The isothermal oxidation behavior of the second generation single crystal superalloy DD6 was studied at 1050 ℃ and 1100 ℃ in ambient atmosphere.Morphology of oxides was examined by SEM and their composition was analyzed by XRD and EDS.The experimental results show that DD6 alloy obeys subparabolic rate law during oxidation of 100 h at 1050 ℃ and 1100 ℃.The oxide scale exposed at 1050 ℃ is made up of an outer NiO layer with a small amount of Al2O3 and an inner Al2O3 layer.The oxide scale exposed at 1100 ℃ is made up of an outer Al2O3 layer with a small amount of NiO,an intermediate layer,mainly composed of Cr2O3 and TaO2,and an inner Al2O3 layer.The γ'-free layer was formed under the oxide scale at two temperatures.展开更多
Two experimental single crystal superalloys, the Ru-free alloy and the Ru-containing alloy with [001 ] orientation, were cast in a directionally solidified furnace, while other alloying element contents were kept unch...Two experimental single crystal superalloys, the Ru-free alloy and the Ru-containing alloy with [001 ] orientation, were cast in a directionally solidified furnace, while other alloying element contents were kept unchanged. The effects of Ru on the microstructure and phase stability of the single crystal superalloy were investigated, y' directional coarsening and rafting were observed in the Ru-free alloy and Ru-containing alloy after long-term aging at 1070~C for 800 h. Needle-shaped o topologically close packed (TCP) phases precipitated and grew along the fixed direction in both the alloys. The precipitating rate and volume fraction of TCP phases decreased significantly by adding Ru. The compositions ofy and y' phases measured using an energy-dispersive X-ray spectroscope (EDS) in transmission electron microscopy (TEM) analysis showed that the addition of Ru lessened the partition ratio of TCP forming elements, Re, W and Mo, and decreased the satu- ration degrees of these elements in y phase, which can enable the Ru-containing alloy to be more resistant to the formation of TCP phases. It is indicated that the addition of Ru to the Ni-based single crystal superalloy with high content of the refractory alloying element can enhance phase stability.展开更多
Solidification structure variation of single phase alloy with undercooling prior to nucleation has been widely studied. The progress, especially during the last decade, is reviewed so as to give a comprehensive knowle...Solidification structure variation of single phase alloy with undercooling prior to nucleation has been widely studied. The progress, especially during the last decade, is reviewed so as to give a comprehensive knowledge for it, in which the emphases are laid on the structure evolution mechanism and the potential application. Lastly, the future interesting subjects are presented.展开更多
Cold Metal Transfer (CMT) welding technique is a new welding technique introduced by Fronins company. CMT welding of nickel-based alloy with stainless steel was carried out using CuSi3 filler wire in this paper. Eff...Cold Metal Transfer (CMT) welding technique is a new welding technique introduced by Fronins company. CMT welding of nickel-based alloy with stainless steel was carried out using CuSi3 filler wire in this paper. Effects of welding parameters, including welding current, welding speed, etc, on weld surface appearance were tested. Microstructure and mechanical properties of CMT weld were studied. The results shaw that the thickness of interface reaction layer of the nickel- based alloy is 14. 3 μm, which is only 4. 33% of base material. The weld is made up of two phases, α-copper and iron-based solid solution. Rupture occurs initially at the welded seam near the edge of stainless steel in shear test. The maximum shear strength of the CuSi3 welded joint is 184. 9 MPa.展开更多
A quantitative relation between the γ/γ′ and γ/Laves intermetallics was investigated with the change of chemical composition, i.e., Ti, Al and Nb in the third generation of nickel-based superalloys. The ...A quantitative relation between the γ/γ′ and γ/Laves intermetallics was investigated with the change of chemical composition, i.e., Ti, Al and Nb in the third generation of nickel-based superalloys. The results demonstrated that the maximum amount of intermetallic eutectics (i.e., 41.5%, mass fraction) has been formed in 9.8% (Ti+Al). It is predicted that high level of intermetallics formed in the 3GSA-HNM-1 (γ-9.8%(Ti+Al)) deteriorates its castability. The type and morphology of eutectic intermetallics change and the amount considerably diminishes by decreasing Ti+Al in 3GSA-HNM-2 (γ-7.6%(Ti+Al), 1.5% Nb). Thus, it is predicted that the castability for the 3GSA-HNM-2 improves. The amount of Laves intermetallics shows an ascending behavior again, however, with less intensity by increasing the Nb content in the 3GSA-HNM-3 (γ-5.7%(Ti+Al), 2.9% Nb). It can be concluded that for 3GSA-HNM-3 with composition of γ-5.7%(Ti+Al) and 2.9% Nb, the optimized castability can be anticipated, because the minimum amount of eutectic intermetallics (i.e., 4.7%) is formed.展开更多
Microstructural stability of a nickel base single crystal alloy DD8 has been investigated.Standard heat treated specimen showed good microstructural stability at 950℃.While under the as-cast condition,a kind of rod-l...Microstructural stability of a nickel base single crystal alloy DD8 has been investigated.Standard heat treated specimen showed good microstructural stability at 950℃.While under the as-cast condition,a kind of rod-like phase precipitated in the interdendritic region of as-cast specimen during thermal exposure.The phase,which has bcc structure,was enriched with Cr.Thermo-calc also predicted precipitation of a bcc phase at around 950℃.The Cr-rich bcc phase was considered asα-Cr and formed due to the segregation of Cr under the as-cast condition.展开更多
The mechanism of stray grain formation at the platform of turbine blade simulator and the effect of withdrawal rate (V) on the stray grain phenomenon have been investigated using a macro-scale ProCAST coupled with a...The mechanism of stray grain formation at the platform of turbine blade simulator and the effect of withdrawal rate (V) on the stray grain phenomenon have been investigated using a macro-scale ProCAST coupled with a 3D Cel ular Automaton Finite Element (CAFE) model. The results indicate that the stray grains nucleate at the edges of platform at V=150μm·s-1 and 200μm·s-1. Using ProCAST computer simulation software, it was proven that the stray grain formation is signiifcantly dependent on the undercooling and the temperature ifeld distribution in the platform. The macroscopic curvature of the liquidus isotherm becomes markedly concave with an increase in the withdrawal rate. The probability of stray grain formation at the edges of platform can be increased by increasing the withdrawal rate in the range of 70μm·s-1 to 200μm·s-1.展开更多
To clarify the correlation of single-crystalline structure with corrosion performance in high-strength TiAl alloys, electrochemical and surface characterization was performed by comparing Ti–45Al–8Nb dual-phase sing...To clarify the correlation of single-crystalline structure with corrosion performance in high-strength TiAl alloys, electrochemical and surface characterization was performed by comparing Ti–45Al–8Nb dual-phase single crystals with their polycrystalline counterparts in NaCl solution. Polarization curves show a lower corrosion rate and a higher pitting potential of ~280 mV for the dual-phase single crystals. Electrochemical impedance spectroscopy and potentiostatic polarization plots revealed a higher impedance of the charge transfer through the compact passive film. Surface composition analysis indicated a compact film with more content of Nb, as twice as that in the film on the polycrystals.Our results reflect that the dual-phase Ti–45Al–8Nb single crystals possess a higher corrosion resistance in NaCl solution, compared with their polycrystalline counterpart, arising from a more homogeneous microstructure and composition distribution.展开更多
基金Project(50571070) supported by the National Natural Science Foundation of China
文摘By means of microstructure observation and measurement of creep properties,the high temperature creep behaviors of a single crystal nickel-based superalloy containing Re were investigated.Results show that the single crystal nickel-based superalloy containing 4.2% Re possesses a better creep resistance at high temperature.After being crept up to fracture,the various morphologies are displayed in the different areas of the sample,and the γ' phase is transformed into the rafted structure along the direction vertical to the applied stress axis in the regions far from the fracture.But the coarsening and twisting extents of the rafted γ' phase increase in the regions near the fracture,which is attributed to the occurrence of the larger plastic deformation.In the later stage of creep,the deformation mechanism of the alloy is that the dislocations with [01^-1]and [011] trace features shear into the rafted γ' phase.The main/secondary slipping dislocations are alternately activated to twist the rafted γ' phase up to the occurrence of creep fracture,which is thought to be the fracture mechanism of the alloy during creep.
文摘The microstructual evolution and stability of a second generation single crystal (SC) nickel-based superalloy DD5 with minor grain boundary (GB) strengthening elements (C, B and Hf) were studied as a function of as-cast, heat treatment and thermal exposure. The microstructure and composition of the alloy were investigated by optical microscopy, scanning electron microanalysis (SEM), electron probe microanalysis (EPMA), energy dispersive spectrometry (EDS) and extraction analysis. In the as-cast condition,the microstructure observations and composition analysis showed that γ phase was the primary solidification phase and there were three microsegregations in the metal matrix. The morphology of these microsegregations depended on element segregations. After heat treatment, the dendrite cores contained fine and cuboidal-shaped γ′ particles with an average edge length of about 0.5 μm, whileinterdendritic regions contained irregularly-shaped γ′ particles and MC/M23C6 carbides. The mass fraction of γ′ phases was 61.685%.After exposure at 980 °C for 1000 h, no TCP phase was observed in both dendritic and interdendritic regions, indicating a good microstructual stability of the DD5 alloy at 980 °C.
基金supported by the National Natural Science Foundation of China(No.50371042).
文摘The low-cycle fatigue (LCF) behavior of a nickel-based single crystal superalloy with [001] orientation was studied at an intermediate temperature of T0℃ and a higher temperature of To + 250℃ under a constant low strain rate of 10^-3 s^-1 in ambient atmosphere. The superalloy exhibited cyclic tension-compression asymmetry which is dependent on the temperature and applied strain amplitude. Analysis on the fracture surfaces showed that the surface and subsurface casting micropores were the major crack initiation sites. Interior Ta-rich carbides were frequently observed in all specimens. Two distinct types of fracture were suggested by fractogaphy. One type was characterized by Mode-I cracking with a microscopically rough surface at To + 250℃. Whereas the other type at lower temperature T0℃ favored either one or several of the octahedral {111} planes, in contrast to the normal Mode-I growth mode typically observed at low loading frequencies (several Hz). The failure mechanisms for two cracking modes are shearing of γ' precipitates together with the matrix at T0℃ and cracking confined in the matrix and the γ/γ'interface at To - 250℃.
基金This work was financially supported by the National Nat-ural Science Foundation of China(Nos.51921003,51775275 and 51905363)the Natural Science Foundation of Jiangsu Province(No.BK20190940)+1 种基金the National Major Science and Technology Projects of China(No.2017-VII-0002-0095)the Six Talents Summit Project in Jiangsu Province(No.JXQC-002).
文摘The service performance of the turbine blade root of an aero-engine depends on the microstructures in its superficial layer.This work investigated the surface deformation structures of turbine blade root of single crystal nickel-based superalloy produced under different creep feed grinding conditions.Gradient microstructures in the superficial layer were clarified and composed of a severely deformed layer(DFL)with nano-sized grains(48–67 nm)at the topmost surface,a DFL with submicron-sized grains(66–158 nm)and micron-sized laminated structures at the subsurface,and a dislocation accumulated layer extending to the bulk material.The formation of such gradient microstructures was found to be related to the graded variations in the plastic strain and strain rate induced in the creep feed grinding process,which were as high as 6.67 and 8.17×10^(7)s^(−1),respectively.In the current study,the evolution of surface gradient microstructures was essentially a transition process from a coarse single crystal to nano-sized grains and,simultaneously,from one orientation of a single crystal to random orientations of polycrystals,during which the dislocation slips dominated the creep feed grinding induced microstructure deformation of single crystal nickel-based superalloy.
基金supported by the fund of State Key Laboratory of Long-life High Temperature Materials(Grant No.DTCC28EE200787)the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2022JQ-553)+3 种基金the China Postdoctoral Science Foundation(Grant No.2021M692555)the Excellent Youth Foundation of Shaanxi Province of China(Grant No.2021JC-08)the Beilin district of Xi’an Science and Technology Project(Grant No.GX2123)the support from the Youth Innovation Team of Shaanxi Universities。
文摘The oxidation behavior of a novel Ni-based single-crystal 4774DD1 superalloy for industrial gas turbine applications was investigated by the isothermal oxidation at 980℃ and discontinuous oxidation weight gain methods.The phase constitution and morphology of surface oxides and the characteristics of the crosssection oxide film were analyzed by XRD,SEM and EDS.Results show that the oxidation kinetics of the 4774DD1 superalloy follows the cubic law,indicating its weak oxidation resistance at this temperature.As the oxidation time increases,the composition of the oxide film evolves as following:One layer consisting of a bottom Al_(2)O_(3)sublayer and an upper(Al_(2)O_(3)+NiO)mixture sublayer after oxidized for 25 h.Then,two layers composed of an outermost small NiO discontinuous grain layer and an internal layer for 75 h.This internal layer is consisted of the bottom Al_(2)O_(3)sublayer,an intermediate narrow CrTaO_(4)sublayer,and an upper(Al_(2)O_(3)+NiO)mixture sublayer.Also two layers comprising an outermost relative continuous NiO layer with large grain size and an internal layer as the oxidation time increases to 125 h.This internal layer is composed of the upper(Al_(2)O_(3)+NiO)mixture sublayer,an intermediate continuous(CrTaO_(4)+NiWO_(4))mixture sublayer,and a bottom Al_(2)O_(3)sublayer.Finally,three layers consisting of an outermost(NiAl2O_(4)+NiCr2O_(4))mixture layer,an intermediate(CrTaO_(4)+NiWO_(4))mixture layer,and a bottom Al_(2)O_(3)layer for 200 h.
基金This work was supported by the National Natural Science Foundation of China under grand No.50474058.
文摘The influence of Co, W and Ti on stress-rupture lives of a Ni-Cr-AI-Mo-Ta-Co-W-Ti single crystal nickel-base superalloy has been investigated using a L9 (34) orthogonal array design (OAD) by statistical analysis. At a selected composition range, Ti content was the most important factor to the effect of the stress-rupture lives and then followed by Co content. W content had the minimum effect on stress-rupture lives. The optimal alloy should contain 10 wt pct Co, 8 wt pct W and zero Ti. The optimized alloy also had good microstructural stability during thermal exposure at 870℃ for 500 h.
文摘Fully reversed low cyclic fatigue (LCF) tests were conducted on [0 0 1], [0 1 2], [(1) over bar 1 2], [0 1 1] and [(1) over bar 1 4] oriented single crystals of nickel-bared superalloy DD3 with different cyclic strain rates at 950 degrees C. The cyclic strain rates were chosen as 1.0 x 10(-2), 1.33 x 10(-3) and 0.33 x 10(-3) s(-1). The octahedral slip systems were confirmed to be activated on all the specimens. The experimental result shows that the fatigue behavior depends an the crystallographic orientation and cyclic strain rate. Except [0 0 1] orientation specimens, it is found from the scanning electron microscopy(SEM) examination that there are typical fatigue striations on the fracture surfaces. These fatigue striations are made up of cracks. The width of the fatigue striations depends on the crystallographic orientation and varies with the total strain range. A simple linear relationship exists between the width and total shear strain range modified by an orientation and strain rate parameter. The nonconformity to the Schmid law of tensile/compressive flaw stress and plastic behavior existed at 95 degrees C, and an orientation and strain rate modified Lall-Chin-Pope ( LCP) model was derived for the nonconformity. The influence of crysrallographic orientation and cyclic strain rate on the LCF behavior can be predicted satisfactorily by the model. In terms of an orientation and strain rate modified total strain range, a model for fatigue life was proposed and used successfully to correlate the fatigue lives studied.
文摘The creep and rupture behavior of a nickel-base single crystal superalloy with [001] orientation was investigated at temperature of 10001040℃ and stress in the range of 150320MPa. The creep features and microstructure were studied by means of the measurement of creep curves and TEM observation. The results show that all creep curves exhibit a short primary and a dominant accelerated creep stage. From the creep parameters and TEM observations, it is suggested that the primary deformation mechanism has a change from precipitatation shearing by pairs of dislocation in the high applied stress region to dislocations climb around the γ′ particles in the low applied stress region. Furthermore, the detailed failure process and fracture surfaces were analyzed by SEM observation.
基金supported by the National Natural Science Foundation of China(50005016,50375124)Natural Science Foundation of Shaanxi Province and China Aviation Foundation(02C53011,03B53003)as well as the Yangtze River Foundation
文摘Numerical calculations of creep damage development and life behavior of circular notched specimens of nickel-base single crystal had been performed. The creep stress distributions depend on the specimen geometry. For a small notch radius, von Mises stress has an especial distribution. The damage distribution is greatly influenced by the notch depth, notch radius as well as notch type. The creep crack initiation place is different for each notched specimen. The characteristics of notch strengthening and notch weakening depend on the notch radius and notch type. For the same notch type, the creep rupture lives decrease with the decreasing of notch radius. A creep life model has been presented for the multiaxial stress states based on the crystallographic slip system theory.
文摘An investigation has been made into strengthening mechanism in a single crystal nickel-base superalloy DD8 by transmission electron microscopy. The results show that the stress rupture strength of the alloy increases with decreasing misfit, and the antiphase boundaries (APBs) formed in the ordered γ' phase, rather than the misfits, play a dominate role in strengthening of the single crystal Ni-base superalloy DD8.There are three kinds of mechanisms for forming the APBs which were observed in the present materials. One is mis-arrangement of the local ordered atoms in the γ' precipitates due to the local strain; the second arises from the 1/2<110> dislocations cutting into the γ', and the third is the formation of the APBs induced by the 1/2<110> matrix dislocation network. The contribution of the antiphase boundary energy to the strength of the alloy can be expressed by:where τ is the resistance to deformation provided by the APB energy; S is the long-range order degree in γ'; Tc is the transition temperature from order to disorder; f is the volume fraction of γ'; rs is the radius of γ'; b is the Burgers vector; a is the lattice constant; G is the shear modulus, and k is the proportional constant.
基金Project (51074105) supported by the National Natural Science Foundation of ChinaProjects (08DZ1130100, 10520706400) supported by the Science and Technology Commission of Shanghai Municipality, ChinaProject (2007CB613606) supported by the National Basic Research Program of China
文摘To increase efficiency and improve performance, reducing cost and emissions, advanced single crystal Ni-based superalloys are required in aerospace propulsion and power generating gas turbines. With the development of alloy, significant improvements in casting techniques have been achieved by introducing the directionally solidified (DS) casting process followed by single crystal (SX) technique. The deviation of preferred orientation of single crystal superalloys is one of the most important defects in casting. In directional solidification equipment with high temperature gradient, single crystal specimens of DZ417G alloy were prepared successfully by the modified Bridgeman method with spiral grain selector. The orientation was investigated by means of X-ray diffraction (XRD) and electron backscattered diffraction (EBSD).The results show that the crystal selector with a smaller angle can effectively reduce the deviation of preferred orientation.
文摘The isothermal oxidation behavior of the second generation single crystal superalloy DD6 was studied at 1050 ℃ and 1100 ℃ in ambient atmosphere.Morphology of oxides was examined by SEM and their composition was analyzed by XRD and EDS.The experimental results show that DD6 alloy obeys subparabolic rate law during oxidation of 100 h at 1050 ℃ and 1100 ℃.The oxide scale exposed at 1050 ℃ is made up of an outer NiO layer with a small amount of Al2O3 and an inner Al2O3 layer.The oxide scale exposed at 1100 ℃ is made up of an outer Al2O3 layer with a small amount of NiO,an intermediate layer,mainly composed of Cr2O3 and TaO2,and an inner Al2O3 layer.The γ'-free layer was formed under the oxide scale at two temperatures.
文摘Two experimental single crystal superalloys, the Ru-free alloy and the Ru-containing alloy with [001 ] orientation, were cast in a directionally solidified furnace, while other alloying element contents were kept unchanged. The effects of Ru on the microstructure and phase stability of the single crystal superalloy were investigated, y' directional coarsening and rafting were observed in the Ru-free alloy and Ru-containing alloy after long-term aging at 1070~C for 800 h. Needle-shaped o topologically close packed (TCP) phases precipitated and grew along the fixed direction in both the alloys. The precipitating rate and volume fraction of TCP phases decreased significantly by adding Ru. The compositions ofy and y' phases measured using an energy-dispersive X-ray spectroscope (EDS) in transmission electron microscopy (TEM) analysis showed that the addition of Ru lessened the partition ratio of TCP forming elements, Re, W and Mo, and decreased the satu- ration degrees of these elements in y phase, which can enable the Ru-containing alloy to be more resistant to the formation of TCP phases. It is indicated that the addition of Ru to the Ni-based single crystal superalloy with high content of the refractory alloying element can enhance phase stability.
基金This work was supported by the National Natural Science Foundation of China under grant No. 50171043 and the Open Foundation from State Key Laboratory of Solidification Process-ing.
文摘Solidification structure variation of single phase alloy with undercooling prior to nucleation has been widely studied. The progress, especially during the last decade, is reviewed so as to give a comprehensive knowledge for it, in which the emphases are laid on the structure evolution mechanism and the potential application. Lastly, the future interesting subjects are presented.
文摘Cold Metal Transfer (CMT) welding technique is a new welding technique introduced by Fronins company. CMT welding of nickel-based alloy with stainless steel was carried out using CuSi3 filler wire in this paper. Effects of welding parameters, including welding current, welding speed, etc, on weld surface appearance were tested. Microstructure and mechanical properties of CMT weld were studied. The results shaw that the thickness of interface reaction layer of the nickel- based alloy is 14. 3 μm, which is only 4. 33% of base material. The weld is made up of two phases, α-copper and iron-based solid solution. Rupture occurs initially at the welded seam near the edge of stainless steel in shear test. The maximum shear strength of the CuSi3 welded joint is 184. 9 MPa.
文摘A quantitative relation between the γ/γ′ and γ/Laves intermetallics was investigated with the change of chemical composition, i.e., Ti, Al and Nb in the third generation of nickel-based superalloys. The results demonstrated that the maximum amount of intermetallic eutectics (i.e., 41.5%, mass fraction) has been formed in 9.8% (Ti+Al). It is predicted that high level of intermetallics formed in the 3GSA-HNM-1 (γ-9.8%(Ti+Al)) deteriorates its castability. The type and morphology of eutectic intermetallics change and the amount considerably diminishes by decreasing Ti+Al in 3GSA-HNM-2 (γ-7.6%(Ti+Al), 1.5% Nb). Thus, it is predicted that the castability for the 3GSA-HNM-2 improves. The amount of Laves intermetallics shows an ascending behavior again, however, with less intensity by increasing the Nb content in the 3GSA-HNM-3 (γ-5.7%(Ti+Al), 2.9% Nb). It can be concluded that for 3GSA-HNM-3 with composition of γ-5.7%(Ti+Al) and 2.9% Nb, the optimized castability can be anticipated, because the minimum amount of eutectic intermetallics (i.e., 4.7%) is formed.
文摘Microstructural stability of a nickel base single crystal alloy DD8 has been investigated.Standard heat treated specimen showed good microstructural stability at 950℃.While under the as-cast condition,a kind of rod-like phase precipitated in the interdendritic region of as-cast specimen during thermal exposure.The phase,which has bcc structure,was enriched with Cr.Thermo-calc also predicted precipitation of a bcc phase at around 950℃.The Cr-rich bcc phase was considered asα-Cr and formed due to the segregation of Cr under the as-cast condition.
基金financially supported by the fund of the State Key Laboratory of Solidifi cation Processing at NWPU(No.SKLSP201407)
文摘The mechanism of stray grain formation at the platform of turbine blade simulator and the effect of withdrawal rate (V) on the stray grain phenomenon have been investigated using a macro-scale ProCAST coupled with a 3D Cel ular Automaton Finite Element (CAFE) model. The results indicate that the stray grains nucleate at the edges of platform at V=150μm·s-1 and 200μm·s-1. Using ProCAST computer simulation software, it was proven that the stray grain formation is signiifcantly dependent on the undercooling and the temperature ifeld distribution in the platform. The macroscopic curvature of the liquidus isotherm becomes markedly concave with an increase in the withdrawal rate. The probability of stray grain formation at the edges of platform can be increased by increasing the withdrawal rate in the range of 70μm·s-1 to 200μm·s-1.
基金financially supported by the CityU internal supports under “The Structural Material Development Funding” program (No. CityU 7004894)National Natural Science Foundation of China (Nos. 51901086 and 51731006)Natural Science Foundation of Jiangsu Province, China (Nos. BK20190977 and BK 20180984)。
文摘To clarify the correlation of single-crystalline structure with corrosion performance in high-strength TiAl alloys, electrochemical and surface characterization was performed by comparing Ti–45Al–8Nb dual-phase single crystals with their polycrystalline counterparts in NaCl solution. Polarization curves show a lower corrosion rate and a higher pitting potential of ~280 mV for the dual-phase single crystals. Electrochemical impedance spectroscopy and potentiostatic polarization plots revealed a higher impedance of the charge transfer through the compact passive film. Surface composition analysis indicated a compact film with more content of Nb, as twice as that in the film on the polycrystals.Our results reflect that the dual-phase Ti–45Al–8Nb single crystals possess a higher corrosion resistance in NaCl solution, compared with their polycrystalline counterpart, arising from a more homogeneous microstructure and composition distribution.