An investigation has been made on the tensile fracture behavior of oriented single crystal DD100 superalloy at 850. The appearance of the fracture surface of DD100 reflects the glide plane decohension fracture mechan...An investigation has been made on the tensile fracture behavior of oriented single crystal DD100 superalloy at 850. The appearance of the fracture surface of DD100 reflects the glide plane decohension fracture mechanism, which is different from the fracture of oriented DD100. The tensile strength and elongation are lower than the oriented DD100. Oxygen in air has little effect on the strength of DD100 but reduces the tensile elongation obviously. Oxygen does not affect the fracture mode of DD100 but strongly accelerates the process of fracture.展开更多
The synthesis of diamond single crystal in the Fe64Ni36-C system with h-BN additive is investigated at pressure 6.5 GPa and temperature range of 1300-1400℃. The color of the obtained diamond crystals translates from ...The synthesis of diamond single crystal in the Fe64Ni36-C system with h-BN additive is investigated at pressure 6.5 GPa and temperature range of 1300-1400℃. The color of the obtained diamond crystals translates from yellow to dark green with increasing the h-BN addition. Fourier-transform infrared (FTIR) results indicate that sp2 hybridization B-N-B and B-N structures generate when the additive content reaches a certain value in the system. The two peaks are located at 745 and 1425cm-1, respectively. Fhrthermore, the FTIR characteristic peak resulting from nitrogen pairs is noticed and it tends to vanish when the h-BN addition reaches 1.1 wt%. Furthermore, Raman peak of the synthesized diamond shifts down to a lower wavenumber with increasing the h-BN ~ddition content in the synthesis system.展开更多
The inclusions in large diamond single crystals have effects on its ultimate performance, which restricts its industrial applications to a great extent. Therefore, it is necessary to study the inclusions systematicall...The inclusions in large diamond single crystals have effects on its ultimate performance, which restricts its industrial applications to a great extent. Therefore, it is necessary to study the inclusions systematically. In this paper, large diamond single crystals with different content values of inclusions are synthesized along the(100) surface by the temperature gradient method(TGM) under 5.6 GPa at different temperatures. With the synthetic temperature changing from 1200?C to 1270?C,the shapes of diamonds change from plate to low tower, to high tower, even to steeple. From the microscopic photographs of the diamond samples, it can be observed that with the shapes of the samples changing at different temperatures, the content values of inclusions in diamonds become zero, a little, much and most, correspondingly. Consequently, with the temperature growing from low to high, the content values of inclusions in crystals increase. The origin of inclusions is explained by the difference in growth rate between diamond crystal and its surface. The content values of inclusions in diamond samples are quantitatively calculated by testing the densities of diamond samples. And the composition and inclusion content are analyzed by energy dispersive spectroscopy(EDS) and x-ray diffraction(XRD). From contrasting scanning electron microscopy(SEM) photographs, it can be found that the more the inclusions in diamond, the more imperfect the diamond surface is.展开更多
A solar-blind photodetector is fabricated on single crystal Ga_2O_3 based on vertical structure Schottky barrier diode. A Cu Schottky contact electrode is prepared in a honeycomb porous structure to increase the ultra...A solar-blind photodetector is fabricated on single crystal Ga_2O_3 based on vertical structure Schottky barrier diode. A Cu Schottky contact electrode is prepared in a honeycomb porous structure to increase the ultraviolet(UV) transmittance.The quantum efficiency is about 400% at 42 V. The Ga_2O_3 photodetector shows a sharp cutoff wavelength at 259 nm with high solar-blind/visible(= 3213) and solar-blind/UV(= 834) rejection ratio. Time-resolved photoresponse of the photodetector is investigated at 253-nm illumination from room temperature(RT) to 85.8℃. The photodetector maintains a high reversibility and response speed, even at high temperatures.展开更多
The isothermal oxidation behavior of the second generation single crystal superalloy DD6 was studied at 1050 ℃ and 1100 ℃ in ambient atmosphere.Morphology of oxides was examined by SEM and their composition was anal...The isothermal oxidation behavior of the second generation single crystal superalloy DD6 was studied at 1050 ℃ and 1100 ℃ in ambient atmosphere.Morphology of oxides was examined by SEM and their composition was analyzed by XRD and EDS.The experimental results show that DD6 alloy obeys subparabolic rate law during oxidation of 100 h at 1050 ℃ and 1100 ℃.The oxide scale exposed at 1050 ℃ is made up of an outer NiO layer with a small amount of Al2O3 and an inner Al2O3 layer.The oxide scale exposed at 1100 ℃ is made up of an outer Al2O3 layer with a small amount of NiO,an intermediate layer,mainly composed of Cr2O3 and TaO2,and an inner Al2O3 layer.The γ'-free layer was formed under the oxide scale at two temperatures.展开更多
The single crystal of nickel-base super alloy is widely used for making turbine blades.The microstructure of the alloy,especially the deviation of preferred orientation of single crystal,possesses the most important e...The single crystal of nickel-base super alloy is widely used for making turbine blades.The microstructure of the alloy,especially the deviation of preferred orientation of single crystal,possesses the most important effects on the mechanical properties of the blades.In this study,the single crystal ingot and blade of DZ417G alloy are prepared by means of the spiral crystal selector as well as the directional solidification method,and the effect of the parameters(i.e.,the shape of samples,the withdrawal rate)and the structure of the spiral crystal selector on the formation of single crystal and the crystal orientation are investigated.This method can prepare not only the single crystal ingot with simple shape but also the single crystal blades with the complex shape,the simple with rod-shape can form the single crystal easily with a relatively fast withdrawal rate,but the blade with complex shape requires much slower withdrawal rate to form single crystal.The length of the crystal selector almost has no effect on the crystal orientation.However,the angle of selector plays an obvious role on the orientation;the selector with a smaller angle can effectively reduce the deviation of preferred orientation;the appropriate angle of selector to obtain optimal orientation is found to be around30°and the deviation of preferred orientation is about30°for this selector.展开更多
The thermogravimetric analysis of binary Cu 80Ni alloys prepared respectively by conventional casting(CA) and mechanical alloying(MA) techniques and presenting widely different grain sizes was performed at 800 ℃ in a...The thermogravimetric analysis of binary Cu 80Ni alloys prepared respectively by conventional casting(CA) and mechanical alloying(MA) techniques and presenting widely different grain sizes was performed at 800 ℃ in air in order to study the effect of grain size change on the oxidation behavior of a solid solution alloy. The results show that the kinetic curves for the oxidation of the two alloys are complex and deviate from the parabolic rate law and usually are not composed of a single stage. Mixed scales were produced on the CACu 80Ni alloy surface, which consists of a mixture of copper and nickel oxides. However, oxide scale for MACu 80Ni alloy is mainly composed of a thick compact and continuous inner layer of nickel oxide. The reduction in the alloy grain size speeds up the diffusion of the more reactive component nickel from the alloy to alloy/oxide scale interface and completes the transition from a mixed scale to continuous scale of nickel oxide.展开更多
As one of important members of refractory materials,tungsten phosphide(WP)holds great potential for fundamental study and industrial applications in many fields of science and technology,due to its excellent propertie...As one of important members of refractory materials,tungsten phosphide(WP)holds great potential for fundamental study and industrial applications in many fields of science and technology,due to its excellent properties such as superconductivity and as-predicted topological band structure.However,synthesis of high-quality WP crystals is still a challenge by using tradition synthetic methods,because the synthesis temperature for growing its large crystals is very stringently required to be as high as 3000℃,which is far beyond the temperature capability of most laboratory-based devices for crystal growth.In addition,high temperature often induces the decomposition of metal phosphides,leading to off-stoichiometric samples based on which the materials'intrinsic properties cannot be explored.In this work,we report a high-pressure synthesis of single-crystal WP through a direct crystallization from cooling the congruent W-P melts at 5 GPa and^3200℃.In combination of x-ray diffraction,electron microscope,and thermal analysis,the crystal structure,morphology,and stability of recovered sample are well investigated.The final product is phase-pure and nearly stoichiometric WP in a single-crystal form with a large grain size,in excess of one millimeter,thus making it feasible to implement most experimental measurements,especially,for the case where a large crystal is required.Success in synthesis of high-quality WP crystals at high pressure can offer great opportunities for determining their intrinsic properties and also making more efforts to study the family of transition-metal phosphides.展开更多
The article considers one of the possible approaches to the solution of an urgent issue of metal consumption reduction, increase of operating life and maximum operating temperature as well as reduction of irrecoverabl...The article considers one of the possible approaches to the solution of an urgent issue of metal consumption reduction, increase of operating life and maximum operating temperature as well as reduction of irrecoverable losses of platinum products and alloys when operating under high temperature conditions, particularly for glassblowing and single crystal growing crucibles. A two-layered composite material based on platinum-group metals and corundum plasma ceramics is thoroughly investigated. A successful experience of crucibles exploitation, designed for production of high temperature optical glasses from the composite and results of the research on composite material specimens are described.展开更多
Two experimental single crystal superalloys Y-free alloy and Y-containing alloy were cast in the directionally solidified furnace, while other alloying element contents were basically kept unchanged. The isothermal ox...Two experimental single crystal superalloys Y-free alloy and Y-containing alloy were cast in the directionally solidified furnace, while other alloying element contents were basically kept unchanged. The isothermal oxidation behavior of two single crystal superalloy was studied at 1100 ℃ in ambient atmosphere. Morphology of oxides was examined by scanning electron microscopy (SEM) and their compostion was analyzed by X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The effect of yt- trium on the high temperature oxidation resistance of the single crystal superalloy was investigated. The results showed that the oxi- dation resistance of Ni-base single crystal superalloy was substantially improved by adding a little amount of rare earth yttrium. Yt- trium could promote the oxide of A1 formation and decreased the proportion of NiO. Yttrium increased the coherence between the oxide scale and the alloy substrate to decrease the spallation of oxide scale. Yttrium reduced the oxide grain size and the thickness of oxide layer.展开更多
Polysynthetic twinned(PST)TiAl single crystal possesses great potentials for high-temperature applications due to its excellent combination of strength,ductility and creep resistance.However,a critical property for hi...Polysynthetic twinned(PST)TiAl single crystal possesses great potentials for high-temperature applications due to its excellent combination of strength,ductility and creep resistance.However,a critical property for high-temperature application of such material involving high-temperature fatigue properties remains unknown.Here,the high-temperature high-cycle fatigue performance of PST TiAl single crystal has been studied.The result shows that PST TiAl single crystal can withstand more than 107 cyclic loadings at 975℃ under a stress amplitude of 270 MPa,which is significantly higher than traditional TiAl alloys.Experimental observations and atomistic simulations indicate that the improvement of fatigue resistance is attributed to the plastic strain delocalization in uniform lamellar structure,and the plastic deformation is well-distributed and sufficient in each lamella.Even in theα2 lamella with difficult slippage,a large number of stacking fault structures can be observed.The{c+a}dislocations inα2 tend to dissociate into a Frank partial with b=1/6<2^(-)20^(-)3>,forming a ribbon of I1 fault which ensures the continuity of deformation.展开更多
In order to meet the design requirements of the aging treatment process of a 4th generation nickel-based single crystal superalloy(Ni-SX)developed independently,the effects of aging temperatures and aging times on the...In order to meet the design requirements of the aging treatment process of a 4th generation nickel-based single crystal superalloy(Ni-SX)developed independently,the effects of aging temperatures and aging times on the precipitation and morphological evolution ofγprecipitates are studied.The morphological evolution behavior ofγprecipitates during the aging process is summarized subsequently and the coarsening behavior ofγprecipitates is discussed by comparing with the Lifshitz-Slyozov-Wagner model(LSW)and the trans-interface diffusion-controlled model(TIDC).It is demonstrated that primary aging temperature and secondary aging time dominate the size and squareness ofγprecipitates respectively,a narrow primary aging temperature range and a suitable secondary aging time are allowed to obtain the optimized morphology ofγprecipitates.The optimal aging process of the Ni-SX investigated in the present work is obtained for 1100-1120°C/4 h and 870°C/16 h,confirmed by the corresponding creep tests.The coarsening growth ofγprecipitates in short-term aging also conforms to the LSW model well.Besides,the aging process design rules of various Ni-SXs of different generations are also summarized.展开更多
Recently,the research team led by Prof.Chen Guang(陈光)at the Engineering Research Center of Materials Behavior and Design,Ministry of Education,Nanjing University of Science and Technology,successfully manufactured a...Recently,the research team led by Prof.Chen Guang(陈光)at the Engineering Research Center of Materials Behavior and Design,Ministry of Education,Nanjing University of Science and Technology,successfully manufactured a new kind of high-temperature polysynthetic twinned(PST)TiAl single展开更多
Single crystal Dy3+ doped YNbO4phosphors were prepared via a high-temperature high-pressure hydrothermal procedure. Under excitation at 270 nm, the Dy3+-doped YNbO4 phosphor shows bright white emission, which is com...Single crystal Dy3+ doped YNbO4phosphors were prepared via a high-temperature high-pressure hydrothermal procedure. Under excitation at 270 nm, the Dy3+-doped YNbO4 phosphor shows bright white emission, which is composed of two strong bands at 492 and 576 nm corresponding to the characteristic 4F9/2→6H15/2 and aF9/2→6H13/2 transitions of Dy3+, respectively. The dominant band was observed at 352 nm, which corresponds to the 6H15/2→6p7/2 transition of Dy3+. Nearly white light was achieved at 2ex 270, 310 and 388 nm and the CIE(International Commission on Illumination) values were (0.3135, 0.3421), (0.3088, 0.3380) and (0.3146, 0.3296), respectively.展开更多
Five equiatomic alloys(Ti Zr Hf VNb, Ti Zr Hf VTa, Ti Zr Nb Mo V, Ti Zr Hf Mo V and Zr Nb Mo Hf V) composed of five elements with high melting temperature, respectively were prepared by arc-melting to develop a novel ...Five equiatomic alloys(Ti Zr Hf VNb, Ti Zr Hf VTa, Ti Zr Nb Mo V, Ti Zr Hf Mo V and Zr Nb Mo Hf V) composed of five elements with high melting temperature, respectively were prepared by arc-melting to develop a novel high temperature alloy. The five alloys exhibit different dendritic and interdendritic morphologies. The Ti Zr Hf VNb, Ti Zr Hf VTa and Ti Zr Nb Mo V alloys formed disordered solid solution phases with body-centered cubic structure, and exhibited high compressive strength and good plasticity. The Ti Zr Hf Mo V and Zr Nb Mo Hf V alloys are composed with Laves phase(Hf Mo2) and disordered solid solution phases with body-centered cubic structure. The Ti Zr Hf Mo V and Zr Nb Mo Hf V alloys are harder and more brittle than the other three alloys due to the existence of hard and brittle Laves phases. At high temperatures, the strength decreases to below 300 MPa for the Ti Zr Hf VNb and Ti Zr Hf Mo V alloys. Solution strengthening is the primary strengthening mechanism of the Ti Zr Hf VNb, Ti Zr Hf VTa and Ti Zr Nb Mo V alloys, and brittle Laves phase is the main cause for the low ductility of the Ti Zr Hf Mo V and Zr Nb Mo Hf V alloys.展开更多
We have successfully synthesized Sr 2 CuO3+δ single crystals under high pressure and high temperature for the first time. The structure analysis show that this material crystallizes into tetragonal structure isostruc...We have successfully synthesized Sr 2 CuO3+δ single crystals under high pressure and high temperature for the first time. The structure analysis show that this material crystallizes into tetragonal structure isostructural La 2 CuO4 with single CuO 2 plane. The magnetic susceptibility as well as resistance measurements indicates that the bulk superconductivity with the critical transition temperature 37 K is achieved in the crystal.展开更多
The air oxidation of Cu Ni alloys with 50% and 70% nickel (mole fraction) at 800?℃ was studied. The kinetic curves for the oxidation of the two alloys are complex and deviate from the parabolic rate law. Typical doub...The air oxidation of Cu Ni alloys with 50% and 70% nickel (mole fraction) at 800?℃ was studied. The kinetic curves for the oxidation of the two alloys are complex and deviate from the parabolic rate law. Typical double layered scales are produced, which consist of a CuO outer layer and an inner layer containing a mixture of Cu 2O and NiO with many pores. Cu 50Ni presents a small degree of internal oxidation of nickel, which is observed in many binary double phase systems, but is quite rare in single phase systems.展开更多
The nanocrystallization behaviour of a bulk Zr-based metallic glass subjected to compressive stress is investigated in the supercooled liquid region. Compared with annealing treatments without compressive stress, comp...The nanocrystallization behaviour of a bulk Zr-based metallic glass subjected to compressive stress is investigated in the supercooled liquid region. Compared with annealing treatments without compressive stress, compressive deformation promotes the development of nucleation and suppresses the coarsening of nanocrystallites at high temperatures.展开更多
To elucidate the regulation mechanism of catalyst geometry structure to diamond growth,we establish three catalyst modes with different structures.The simulation results show that with the decrease of the protruding h...To elucidate the regulation mechanism of catalyst geometry structure to diamond growth,we establish three catalyst modes with different structures.The simulation results show that with the decrease of the protruding height of the catalyst,the low-temperature region gradually moves toward the center of the catalyst,which causes the distribution characteristics of the temperature and convection field in the catalyst to change.The temperature difference in vertical direction of the catalyst decreases gradually and increases in the horizontal direction,while the catalyst convection velocity has the same variation regularity in the corresponding directions.The variation of temperature difference and convection velocity lead the crystal growth rate in different crystal orientations to change,which directly affects the crystal morphology of the synthetic diamond.The simulation results are consistent with the experimental results,which shows the correctness of the theoretical rational analysis.This work is expected to be able to facilitate the understanding of catalyst structure regulation mechanism on diamond morphology and the providing of an important theoretical basis for the controllable growth of special crystal shape diamond under HPHT process.展开更多
文摘An investigation has been made on the tensile fracture behavior of oriented single crystal DD100 superalloy at 850. The appearance of the fracture surface of DD100 reflects the glide plane decohension fracture mechanism, which is different from the fracture of oriented DD100. The tensile strength and elongation are lower than the oriented DD100. Oxygen in air has little effect on the strength of DD100 but reduces the tensile elongation obviously. Oxygen does not affect the fracture mode of DD100 but strongly accelerates the process of fracture.
基金Supported by the National Natural Science Foundation of China under Grant No 51172089the Natural Science Foundation of Guizhou Province Education Department under Grant No KY[2013]183the Natural Science Foundation of Guizhou Province Science and Technology Agency under Grant Nos LH[2015]7232 and LH[2015]7228
文摘The synthesis of diamond single crystal in the Fe64Ni36-C system with h-BN additive is investigated at pressure 6.5 GPa and temperature range of 1300-1400℃. The color of the obtained diamond crystals translates from yellow to dark green with increasing the h-BN addition. Fourier-transform infrared (FTIR) results indicate that sp2 hybridization B-N-B and B-N structures generate when the additive content reaches a certain value in the system. The two peaks are located at 745 and 1425cm-1, respectively. Fhrthermore, the FTIR characteristic peak resulting from nitrogen pairs is noticed and it tends to vanish when the h-BN addition reaches 1.1 wt%. Furthermore, Raman peak of the synthesized diamond shifts down to a lower wavenumber with increasing the h-BN ~ddition content in the synthesis system.
基金Project supported by the Natural Science Foundation of Henan Province,China(Grant No.182300410279)the Key Science and Technology Research Project of Henan Province,China(Grant No.182102210311)+2 种基金the Key Scientific Research Project in Colleges and Universities of Henan Province,China(Grant No.18A430017)the Professional Practice Demonstration Base Program for Professional Degree Graduate in Material Engineering of Henan Polytechnic University,China(Grant No.2016YJD03)the Fund for the Innovative Research Team(in Science and Technology)in the University of Henan Province,China(Grant No.19IRTSTHN027)
文摘The inclusions in large diamond single crystals have effects on its ultimate performance, which restricts its industrial applications to a great extent. Therefore, it is necessary to study the inclusions systematically. In this paper, large diamond single crystals with different content values of inclusions are synthesized along the(100) surface by the temperature gradient method(TGM) under 5.6 GPa at different temperatures. With the synthetic temperature changing from 1200?C to 1270?C,the shapes of diamonds change from plate to low tower, to high tower, even to steeple. From the microscopic photographs of the diamond samples, it can be observed that with the shapes of the samples changing at different temperatures, the content values of inclusions in diamonds become zero, a little, much and most, correspondingly. Consequently, with the temperature growing from low to high, the content values of inclusions in crystals increase. The origin of inclusions is explained by the difference in growth rate between diamond crystal and its surface. The content values of inclusions in diamond samples are quantitatively calculated by testing the densities of diamond samples. And the composition and inclusion content are analyzed by energy dispersive spectroscopy(EDS) and x-ray diffraction(XRD). From contrasting scanning electron microscopy(SEM) photographs, it can be found that the more the inclusions in diamond, the more imperfect the diamond surface is.
基金Project supported by National Key Research and Development Plan of China(Grant Nos.2016YFB0400600 and 2016YFB0400601)the National Natural Science Foundation of China(Grant Nos.61574026,11675198,61774072,and 11405017)+2 种基金the Natural Science Foundation of Liaoning Province,China(Grant Nos.201602453 and 201602176)China Postdoctoral Science Foundation Funded Project(Grant No.2016M591434)the Dalian Science and Technology Innovation Fund(Grant No.2018J12GX060)
文摘A solar-blind photodetector is fabricated on single crystal Ga_2O_3 based on vertical structure Schottky barrier diode. A Cu Schottky contact electrode is prepared in a honeycomb porous structure to increase the ultraviolet(UV) transmittance.The quantum efficiency is about 400% at 42 V. The Ga_2O_3 photodetector shows a sharp cutoff wavelength at 259 nm with high solar-blind/visible(= 3213) and solar-blind/UV(= 834) rejection ratio. Time-resolved photoresponse of the photodetector is investigated at 253-nm illumination from room temperature(RT) to 85.8℃. The photodetector maintains a high reversibility and response speed, even at high temperatures.
文摘The isothermal oxidation behavior of the second generation single crystal superalloy DD6 was studied at 1050 ℃ and 1100 ℃ in ambient atmosphere.Morphology of oxides was examined by SEM and their composition was analyzed by XRD and EDS.The experimental results show that DD6 alloy obeys subparabolic rate law during oxidation of 100 h at 1050 ℃ and 1100 ℃.The oxide scale exposed at 1050 ℃ is made up of an outer NiO layer with a small amount of Al2O3 and an inner Al2O3 layer.The oxide scale exposed at 1100 ℃ is made up of an outer Al2O3 layer with a small amount of NiO,an intermediate layer,mainly composed of Cr2O3 and TaO2,and an inner Al2O3 layer.The γ'-free layer was formed under the oxide scale at two temperatures.
基金Project(51074105)supported by the National Natural Science Foundation of ChinaProjects(08DZ1130100,10520706400)supported by the Science and Technology Commission of Shanghai Municipality,ChinaProject(2007CB613606)supported by the National Basic Research Program of China
文摘The single crystal of nickel-base super alloy is widely used for making turbine blades.The microstructure of the alloy,especially the deviation of preferred orientation of single crystal,possesses the most important effects on the mechanical properties of the blades.In this study,the single crystal ingot and blade of DZ417G alloy are prepared by means of the spiral crystal selector as well as the directional solidification method,and the effect of the parameters(i.e.,the shape of samples,the withdrawal rate)and the structure of the spiral crystal selector on the formation of single crystal and the crystal orientation are investigated.This method can prepare not only the single crystal ingot with simple shape but also the single crystal blades with the complex shape,the simple with rod-shape can form the single crystal easily with a relatively fast withdrawal rate,but the blade with complex shape requires much slower withdrawal rate to form single crystal.The length of the crystal selector almost has no effect on the crystal orientation.However,the angle of selector plays an obvious role on the orientation;the selector with a smaller angle can effectively reduce the deviation of preferred orientation;the appropriate angle of selector to obtain optimal orientation is found to be around30°and the deviation of preferred orientation is about30°for this selector.
文摘The thermogravimetric analysis of binary Cu 80Ni alloys prepared respectively by conventional casting(CA) and mechanical alloying(MA) techniques and presenting widely different grain sizes was performed at 800 ℃ in air in order to study the effect of grain size change on the oxidation behavior of a solid solution alloy. The results show that the kinetic curves for the oxidation of the two alloys are complex and deviate from the parabolic rate law and usually are not composed of a single stage. Mixed scales were produced on the CACu 80Ni alloy surface, which consists of a mixture of copper and nickel oxides. However, oxide scale for MACu 80Ni alloy is mainly composed of a thick compact and continuous inner layer of nickel oxide. The reduction in the alloy grain size speeds up the diffusion of the more reactive component nickel from the alloy to alloy/oxide scale interface and completes the transition from a mixed scale to continuous scale of nickel oxide.
基金the National Key Research and Development Program of China(Grant Nos.2016YFA0401503 and 2018YFA0305700)the National Natural Science Foundation of China(Grant No.11575288)+4 种基金the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2016006)the Key Research Platforms and Research Projects of Universities in Guangdong Province,China(Grant No.2018KZDXM062)the Guangdong Innovative&Entrepreneurial Research Team Program,China(Grant No.2016ZT06C279)the Shenzhen Peacock Plan,China(Grant No.KQTD2016053019134356)the Shenzhen Development&Reform Commission Foundation for Novel Nano-Material Sciences,China,the Research Platform for Crystal Growth&Thin-Film Preparation at SUST,China,and the Shenzhen Development and Reform Commission Foundation for Shenzhen Engineering Research Center for Frontier Materials Synthesis at High Pressure,China.
文摘As one of important members of refractory materials,tungsten phosphide(WP)holds great potential for fundamental study and industrial applications in many fields of science and technology,due to its excellent properties such as superconductivity and as-predicted topological band structure.However,synthesis of high-quality WP crystals is still a challenge by using tradition synthetic methods,because the synthesis temperature for growing its large crystals is very stringently required to be as high as 3000℃,which is far beyond the temperature capability of most laboratory-based devices for crystal growth.In addition,high temperature often induces the decomposition of metal phosphides,leading to off-stoichiometric samples based on which the materials'intrinsic properties cannot be explored.In this work,we report a high-pressure synthesis of single-crystal WP through a direct crystallization from cooling the congruent W-P melts at 5 GPa and^3200℃.In combination of x-ray diffraction,electron microscope,and thermal analysis,the crystal structure,morphology,and stability of recovered sample are well investigated.The final product is phase-pure and nearly stoichiometric WP in a single-crystal form with a large grain size,in excess of one millimeter,thus making it feasible to implement most experimental measurements,especially,for the case where a large crystal is required.Success in synthesis of high-quality WP crystals at high pressure can offer great opportunities for determining their intrinsic properties and also making more efforts to study the family of transition-metal phosphides.
文摘The article considers one of the possible approaches to the solution of an urgent issue of metal consumption reduction, increase of operating life and maximum operating temperature as well as reduction of irrecoverable losses of platinum products and alloys when operating under high temperature conditions, particularly for glassblowing and single crystal growing crucibles. A two-layered composite material based on platinum-group metals and corundum plasma ceramics is thoroughly investigated. A successful experience of crucibles exploitation, designed for production of high temperature optical glasses from the composite and results of the research on composite material specimens are described.
文摘Two experimental single crystal superalloys Y-free alloy and Y-containing alloy were cast in the directionally solidified furnace, while other alloying element contents were basically kept unchanged. The isothermal oxidation behavior of two single crystal superalloy was studied at 1100 ℃ in ambient atmosphere. Morphology of oxides was examined by scanning electron microscopy (SEM) and their compostion was analyzed by X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The effect of yt- trium on the high temperature oxidation resistance of the single crystal superalloy was investigated. The results showed that the oxi- dation resistance of Ni-base single crystal superalloy was substantially improved by adding a little amount of rare earth yttrium. Yt- trium could promote the oxide of A1 formation and decreased the proportion of NiO. Yttrium increased the coherence between the oxide scale and the alloy substrate to decrease the spallation of oxide scale. Yttrium reduced the oxide grain size and the thickness of oxide layer.
基金financially supported by the National Natural Science Foundation of China(Nos.51731006,51771093,91860104)the support of the National Key Laboratory for Precision Hot Processing of Metals,Harbin Institute of Technology(Grant No.6142909190104)Fundamental Research Funds for the Central Universities(Grant No.30919011295)。
文摘Polysynthetic twinned(PST)TiAl single crystal possesses great potentials for high-temperature applications due to its excellent combination of strength,ductility and creep resistance.However,a critical property for high-temperature application of such material involving high-temperature fatigue properties remains unknown.Here,the high-temperature high-cycle fatigue performance of PST TiAl single crystal has been studied.The result shows that PST TiAl single crystal can withstand more than 107 cyclic loadings at 975℃ under a stress amplitude of 270 MPa,which is significantly higher than traditional TiAl alloys.Experimental observations and atomistic simulations indicate that the improvement of fatigue resistance is attributed to the plastic strain delocalization in uniform lamellar structure,and the plastic deformation is well-distributed and sufficient in each lamella.Even in theα2 lamella with difficult slippage,a large number of stacking fault structures can be observed.The{c+a}dislocations inα2 tend to dissociate into a Frank partial with b=1/6<2^(-)20^(-)3>,forming a ribbon of I1 fault which ensures the continuity of deformation.
基金supported by the National Natural Science Foundation of China(No.91960201)the Zhejiang Provincial Natural Science Foundation of China(Nos.LR22E010003,LY20E010004)+3 种基金the Key Basic Research Program of Zhejiang Province(No.2020C01002)the Fundamental Research Funds for the Central Universities(No.226-2022-00050)the Fundamental Research Funds of the Zhejiang Provincial Universities(No.2021XZZX011)National Science and Technology Major Project of China(No.J2019-Ⅲ-0008-0051)。
文摘In order to meet the design requirements of the aging treatment process of a 4th generation nickel-based single crystal superalloy(Ni-SX)developed independently,the effects of aging temperatures and aging times on the precipitation and morphological evolution ofγprecipitates are studied.The morphological evolution behavior ofγprecipitates during the aging process is summarized subsequently and the coarsening behavior ofγprecipitates is discussed by comparing with the Lifshitz-Slyozov-Wagner model(LSW)and the trans-interface diffusion-controlled model(TIDC).It is demonstrated that primary aging temperature and secondary aging time dominate the size and squareness ofγprecipitates respectively,a narrow primary aging temperature range and a suitable secondary aging time are allowed to obtain the optimized morphology ofγprecipitates.The optimal aging process of the Ni-SX investigated in the present work is obtained for 1100-1120°C/4 h and 870°C/16 h,confirmed by the corresponding creep tests.The coarsening growth ofγprecipitates in short-term aging also conforms to the LSW model well.Besides,the aging process design rules of various Ni-SXs of different generations are also summarized.
文摘Recently,the research team led by Prof.Chen Guang(陈光)at the Engineering Research Center of Materials Behavior and Design,Ministry of Education,Nanjing University of Science and Technology,successfully manufactured a new kind of high-temperature polysynthetic twinned(PST)TiAl single
基金the National Natural Science Foundation of China
文摘Single crystal Dy3+ doped YNbO4phosphors were prepared via a high-temperature high-pressure hydrothermal procedure. Under excitation at 270 nm, the Dy3+-doped YNbO4 phosphor shows bright white emission, which is composed of two strong bands at 492 and 576 nm corresponding to the characteristic 4F9/2→6H15/2 and aF9/2→6H13/2 transitions of Dy3+, respectively. The dominant band was observed at 352 nm, which corresponds to the 6H15/2→6p7/2 transition of Dy3+. Nearly white light was achieved at 2ex 270, 310 and 388 nm and the CIE(International Commission on Illumination) values were (0.3135, 0.3421), (0.3088, 0.3380) and (0.3146, 0.3296), respectively.
基金financially supported by the 973 project(2011CB610406)Natural Science Foundation of Hei Longjiang Province(JC201209)
文摘Five equiatomic alloys(Ti Zr Hf VNb, Ti Zr Hf VTa, Ti Zr Nb Mo V, Ti Zr Hf Mo V and Zr Nb Mo Hf V) composed of five elements with high melting temperature, respectively were prepared by arc-melting to develop a novel high temperature alloy. The five alloys exhibit different dendritic and interdendritic morphologies. The Ti Zr Hf VNb, Ti Zr Hf VTa and Ti Zr Nb Mo V alloys formed disordered solid solution phases with body-centered cubic structure, and exhibited high compressive strength and good plasticity. The Ti Zr Hf Mo V and Zr Nb Mo Hf V alloys are composed with Laves phase(Hf Mo2) and disordered solid solution phases with body-centered cubic structure. The Ti Zr Hf Mo V and Zr Nb Mo Hf V alloys are harder and more brittle than the other three alloys due to the existence of hard and brittle Laves phases. At high temperatures, the strength decreases to below 300 MPa for the Ti Zr Hf VNb and Ti Zr Hf Mo V alloys. Solution strengthening is the primary strengthening mechanism of the Ti Zr Hf VNb, Ti Zr Hf VTa and Ti Zr Nb Mo V alloys, and brittle Laves phase is the main cause for the low ductility of the Ti Zr Hf Mo V and Zr Nb Mo Hf V alloys.
基金supported by the National Natural Science Foundation of China (Grant No. 90921005)the Ministry of Science and Technology of China (Grant Nos. 2009CB929402 and 2011CBA00103)
文摘We have successfully synthesized Sr 2 CuO3+δ single crystals under high pressure and high temperature for the first time. The structure analysis show that this material crystallizes into tetragonal structure isostructural La 2 CuO4 with single CuO 2 plane. The magnetic susceptibility as well as resistance measurements indicates that the bulk superconductivity with the critical transition temperature 37 K is achieved in the crystal.
文摘The air oxidation of Cu Ni alloys with 50% and 70% nickel (mole fraction) at 800?℃ was studied. The kinetic curves for the oxidation of the two alloys are complex and deviate from the parabolic rate law. Typical double layered scales are produced, which consist of a CuO outer layer and an inner layer containing a mixture of Cu 2O and NiO with many pores. Cu 50Ni presents a small degree of internal oxidation of nickel, which is observed in many binary double phase systems, but is quite rare in single phase systems.
基金Supported by the Science Foundation for Excellent Young Scholars of Heilongjiang Province under Grant No JC-05-11, the Program for New Century Excellent Talents in University of China under Grant No NCET-04-0322, and the Specialized Research Fund for the Doctoral Programme of Higher Education of China under Grant No 20040213049)
文摘The nanocrystallization behaviour of a bulk Zr-based metallic glass subjected to compressive stress is investigated in the supercooled liquid region. Compared with annealing treatments without compressive stress, compressive deformation promotes the development of nucleation and suppresses the coarsening of nanocrystallites at high temperatures.
基金Project supported by the National Natural Science Foundation of China(Grant No.11804305)the Natural Science Foundation of Chongqing,China(Grant No.cstc2019jcyj-msxmX0391)+1 种基金the Science and Technology Research Program of Chongqing Municipal Education Commission,China(Grant No.KJ201901405)the Open Project of State Key Laboratory of Superhard Materials,Jilin University,China(Grant No.201912).
文摘To elucidate the regulation mechanism of catalyst geometry structure to diamond growth,we establish three catalyst modes with different structures.The simulation results show that with the decrease of the protruding height of the catalyst,the low-temperature region gradually moves toward the center of the catalyst,which causes the distribution characteristics of the temperature and convection field in the catalyst to change.The temperature difference in vertical direction of the catalyst decreases gradually and increases in the horizontal direction,while the catalyst convection velocity has the same variation regularity in the corresponding directions.The variation of temperature difference and convection velocity lead the crystal growth rate in different crystal orientations to change,which directly affects the crystal morphology of the synthetic diamond.The simulation results are consistent with the experimental results,which shows the correctness of the theoretical rational analysis.This work is expected to be able to facilitate the understanding of catalyst structure regulation mechanism on diamond morphology and the providing of an important theoretical basis for the controllable growth of special crystal shape diamond under HPHT process.