A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were...A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were used to characterize the different Ni–P coatings’ morphologies, phase structures, elemental compositions, and corrosion protection. The gradient coating showed good adhesion and high corrosion and wear resistance, enabling the application of aluminum alloy in harsh environments. The results showed that the double zinc immersion was vital in obtaining excellent adhesion (81.2 N). The optimal coating was not peeled and shredded even after bending tests with angles higher than 90°and was not corroded visually after 500 h of neutral salt spray test at 35℃. The high corrosion resistance was attributed to the misaligning of these micro defects in the three different nickel alloy layers and the amorphous structure of the high P content in the outer layer. These findings guide the exploration of functional gradient coatings that meet the high application requirement of aluminum alloy parts in complicated and harsh aviation environments.展开更多
Aluminum particles 15-25 μm in size are widely used in fuel propellants and underwater propulsion systems in national defense research. However, these particles are covered with an aluminum oxide film, which has a hi...Aluminum particles 15-25 μm in size are widely used in fuel propellants and underwater propulsion systems in national defense research. However, these particles are covered with an aluminum oxide film, which has a high melting point, so ignition is difficult. To improve the ignitability of high-energy aluminum powder and to understand the reaction phenomenon as a function of particle size(15-25 μm, 74-105 μm, and 2.38 mm) and oxidizer(air, CO2, and argon), the natural oxide films are chemically removed. The particles are then coated with nickel using an electro-less method. The degree of nickel deposition is confirmed qualitatively and quantitatively through surface analysis using scanning electron microscopy/energy dispersive spectroscopy. To characterize the nickel coatings, elemental analysis is also conducted by using X-ray diffraction. Thermogravimetric analysis/differential scanning calorimetry (TGA/DSC) enable comparisons between the uncoated and coated aluminum, and the reaction process are investigated through fine structural analysis of the particle surfaces and cross sections. There are little difference in reactivity as a function of oxidant type. However, a strong exothermic reaction in the smaller nickel-coated aluminum particles near the melting point of aluminum accelerates the reaction of the smaller particles. Explanation of the reactivity of the nickel-coated aluminum depending on the particle sizes is attempted.展开更多
Mg Al-layered double hydroxides(LDH) coatings were fabricated by the in-situ hydrothermal treatment method on the AA5005 aluminum alloy.The characteristics of the coatings were investigated by XRD,FT-IR,SEM and EDS....Mg Al-layered double hydroxides(LDH) coatings were fabricated by the in-situ hydrothermal treatment method on the AA5005 aluminum alloy.The characteristics of the coatings were investigated by XRD,FT-IR,SEM and EDS.The effect of the p H value of the solution on the formation of the LDH coatings was studied.The optimum p H value of the solution was 10.0.The corrosion resistance of the LDH coatings was studied using potentiodynamic polarization tests and electrochemical impedance spectrum(EIS).The results demonstrate that the LDH coatings,characterized by platelets vertically to the substrate surface possess excellent corrosion resistance.The influence of the hydrothermal crystallization time on the corrosion resistance was evaluated.Prolonging the crystallization time can increase the corrosion resistance of the obtained LDH coatings.The anticorrosion mechanism of the LDH coatings was discussed.展开更多
AI coatings with different microstructures were prepared on the surface of Gd using the magnetron sputtering technique to improve its corrosion resistance. The corrosion behaviors for the pure Gd and Gd with Al coatin...AI coatings with different microstructures were prepared on the surface of Gd using the magnetron sputtering technique to improve its corrosion resistance. The corrosion behaviors for the pure Gd and Gd with Al coating in distilled water were studied using the mass loss and electrochemical performance. As a result, pure Gd without coating shows a certain amount of surface cracks under water flow conditions, whereas the polygonal Al coating decreases the path of the corrosive medium to body due to the existence of eroding pits structure. Compared with the polygonal structure Al coating and pure Gd, the lamellar structure of Al coating exhibits a higher electrochemical protection performance (e.g., a lower corrosion current and higher self-corrosion potential) and no occurrence of pitting corrosion. Due to an effective physical shield, the formation of the lamellar structure protected the inner Gd part from being corroded, and prolonged the duration of cathodic protection.展开更多
Plasma electrolytic oxidation (PEO) ceramic coatings were fabricated in a silicate-based electrolyte with the addition of potassium fluorozirconate (K2ZrF6) on 6063 aluminum alloy, and the effects of current density o...Plasma electrolytic oxidation (PEO) ceramic coatings were fabricated in a silicate-based electrolyte with the addition of potassium fluorozirconate (K2ZrF6) on 6063 aluminum alloy, and the effects of current density on microstructure and properties of the PEO coatings were studied. It was found that pore density of the coatings decreased with increasing the current density. The tribological and hardness tests suggested that the ceramic coating produced under the current density of 15 A/dm2showed the best mechanical property, which matched well with the phase analysis. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves proved that the coating obtained under 15 A/dm2 displayed the best anti-corrosion property, which was directly connected with morphologies of coatings.展开更多
In order to improve the property of traditional Ce-based conversion coatings, Ce-silane-ZrO2 composite coatings were successfully prepared on 1060 aluminum. The microstructure, chemical element composition and corrosi...In order to improve the property of traditional Ce-based conversion coatings, Ce-silane-ZrO2 composite coatings were successfully prepared on 1060 aluminum. The microstructure, chemical element composition and corrosion resistance of Ce-based conversion coatings and Ce-silane-ZrO2 composite coatings were investigated by SEM, AFM, XPS and EIS analyses. Stacking structure of the composite coating can be observed. The inner layer of the composite coatings mainly consists of oxide and hydroxide of Ce(Ⅲ), and the silane network is composed of the outer layer together with a small amount of Ce(Ⅳ) hydroxide. By adding silane and ZrO2 nanoparticles into Ce-based conversion coatings, the porosity and the micro cracks of the coatings decrease apparently accompanying with the improvement of the corrosion resistance.展开更多
Aluminum doped zinc oxide (AZO), as an electrically conductive material, was applied to coating on the surface of olivine-type LiFePO4 synthesized by solid-state method. The charge-discharge test results show that t...Aluminum doped zinc oxide (AZO), as an electrically conductive material, was applied to coating on the surface of olivine-type LiFePO4 synthesized by solid-state method. The charge-discharge test results show that the rate performance and low-temperature performance of LiFePO4 are greatly improved by the surface treatment. Even at 20C rate, the discharge specific capacity of 100.9 mA.h/g was obtained by the AZO-coated LiFePO4 at room temperature. At -20 ℃, the discharge specific capacity at 0.2C for un-coated LiFePO4 and the coated one are 50.3 mA.h/g and 119.4 mA.h/g, respectively. It should be attributed to the electrically conductive AZO-coating which increases the electronic conductivity of LiFePO4. Furthermore, the surface-coating increases the tap-density of LiFePO4. The results indicate that the AZO-coated LiFePO4 is a good candidate of cathode material for applying in lithium power batteries.展开更多
We have systematically studied the microstructure and mechanical properties of Ni-5wt%Al and Ni-20wt%Al composite coat- ings fabricated on 6061-T6 aluminum alloy sheet by twin-wire arc spraying under different experim...We have systematically studied the microstructure and mechanical properties of Ni-5wt%Al and Ni-20wt%Al composite coat- ings fabricated on 6061-T6 aluminum alloy sheet by twin-wire arc spraying under different experimental conditions. The abrasive wear be- havior and interface diffusion behavior of the composite coatings were evaluated by dry/wet rubber wheel abrasive wear tests and heat treat- ment, respectively. Experimental results indicate that the composite coatings exhibit features of adhesive wear. Besides, the Vickers micro- hardness of NiA1 and Ni3AI intermetallic compounds is relatively larger than that of the substrate, which is beneficial for enhancing the wear resistance. With the increase of annealing temperature and time, the interface diffusion area between the Ni-Al coating and the substrate gradually expands with the formation of NiAl3 and Ni2Al3 phases, and is controlled by diffusion of aluminum atoms. The grain growth ex- ponent n of diffusion kinetics of the Ni-Al coating, calculated via a high-temperature diffusion model at 400, 480, and 550℃, is between 0.28 and 0.38. This satisfies the cubic law, which is consistent with the general theoretical relationship of high-temperature diffusion.展开更多
In order to prepare ornamental and anti-corrosive coating on aluminum alloys, preparation technology of black micro-arc ceramic coatings on Al alloys in silicate based electrolyte was studied. The influence of content...In order to prepare ornamental and anti-corrosive coating on aluminum alloys, preparation technology of black micro-arc ceramic coatings on Al alloys in silicate based electrolyte was studied. The influence of content of Na2WO4 and combination additive in solution on the performance of black ceramic coatings was studied; the anticorrosion performances of black ceramic coatings were evaluated through whole-immersion test and electrochemical method in 3.5% NaCl solution at different pH value; SEM and XRD were used to analyze the surface morphology and phase constitutes of the black ceramic coatings. Experimental results indicated that, without combination additives, with the increasing of Na2WO4 content in the electrolyte, ceramic coating became darker and thicker, but the color was not black; after adding combination additive, the coating turned to be black; the black ceramic coating was multi-hole form in surface. There was a small quantity of tungsten existing in the black ceramic coating beside α-Al2O3 phase and β-Al2O3 phase. And aluminum alloy with black ceramic coating exhibited excellent anti-corrosion property in acid, basic and neutral 3.5% NaCl solution.展开更多
Copper coating was deposited on the surface of aluminum borate whisker by an electroless plating method.This method was used to modify the interfacial property of squeeze-casting aluminum borate whisker reinforced 606...Copper coating was deposited on the surface of aluminum borate whisker by an electroless plating method.This method was used to modify the interfacial property of squeeze-casting aluminum borate whisker reinforced 6061Al matrix composite.Interface observation indicates that the spinel reaction(MgAl2O4) is hindered by the copper coating,and the difference in interfacial reaction degree affects the tensile property and aging behavior of the composite.For the composite with less spinel reaction(MgAl2O4),its peak-aging process are postponed due to less depletion of magnesium.On the fracture surface of copper-coated composite dimples and fractures of whiskers are more,but on the fracture surface of uncoated composite pull-out of whiskers are more than that on the coated one.In uncoated composite the fracture generally originates from the near-interface-region.展开更多
To solve the so called “white rust” and ’water bridge" problems of the aluminum fins for heat exchanger of automobile air conditioner, aimed at nationalizing the art of hydrophilic coating technology, the choi...To solve the so called “white rust” and ’water bridge" problems of the aluminum fins for heat exchanger of automobile air conditioner, aimed at nationalizing the art of hydrophilic coating technology, the choice of coating forming and curing materials was investigated. By measuring the water contact angle, SEM surface scanning and ingredients analysis of the coating, optimal parameters and composition are acquired. The coating forming mechanisms of the composition was also expatiated. The coating obtained has good hydrophilic and other properties.展开更多
Effects of coating constituent, coating density, coating layer thickness and temperature on coating sorption capacity for polystyrene decomposition products have been studied systematically. It has been found that the...Effects of coating constituent, coating density, coating layer thickness and temperature on coating sorption capacity for polystyrene decomposition products have been studied systematically. It has been found that the effect of attapulgite clay on sorption capacity is the largest among coating constituents. The sorption capacity of the coating with 2% attapulgite clay is elevated by 81%. The relationship between casting porosity and coating sorption capacity has been studied. It has been pointed out that higher coating sorption capacity for polystyrene decomposition products is helpful to decrease the casting porosity. Results also show that the sorption capacity of self-developed HW-1 coating for polystyrene decomposition products is as good as that of Ashland coating from America.展开更多
The electrical resistivity of TiB2/C cathode composite coating at different temperatures was measured with the electrical conductivity test device; the effects of TiB2 content and kinds of carbonaceous fillers as well...The electrical resistivity of TiB2/C cathode composite coating at different temperatures was measured with the electrical conductivity test device; the effects of TiB2 content and kinds of carbonaceous fillers as well as their mean particle size on their electrical resistivities were investigated. The results show that electrical resistivity of the coating decreases with the increase of TiB2 content and the decrease of its mean particle size. When the mass fraction of TiB2 increases from 30% to 60%, the electrical resistivity of the coating at room temperature decreases from 31.2μΩ·m to 23.8μΩ·m. The electrical resistivity of the coating at 960℃ lowers from 76.1μΩ· m to 38.4μΩ·m with the decrease of TiB2 mean particle size from 12μm to 1μm. The kinds of carbonaceous fillers have great influence on the electrical resistivity of TiB2/C composite coating at 960℃, when the graphite, petroleum coke and anthracite are used as fillers, the electrical resistivities of the coating are 20.3μΩ·m, 53.7μΩ·m and 87.2μΩ·m, respectively. For the coating with petroleum coke filler, its electrical resistivity decreases with the increase of the mean particle size of petroleum coke filler. The electrical resistivity at 960℃ decreases from 56.2μΩ·m to 48.2μΩ·m with the mean particle size of petroleum coke increasing from 44μm to 1200μm. However, too big carbonaceous particle size has adverse influence on the abrasion resistance of coating. Its proper mean particle size is 420μm.展开更多
The surface modification of aluminum and its alloys using plasma technology is increasingly being investigated, Thick ceramic coatings with high hardness on aluminum alloys can be prepared successfully using a micro-p...The surface modification of aluminum and its alloys using plasma technology is increasingly being investigated, Thick ceramic coatings with high hardness on aluminum alloys can be prepared successfully using a micro-plasma oxidation (MPO) technique. In this work, the composition, microstructure and elemental distribution of ceramic coatings formed by MPO on LY 12 almnlnum alloy and its hardness are investigated using XRD, EPMA and microhardness instruments. The results show that the ceramic coatings consist of mullite,γ-Al2O3 and a lot of amorphous matter. The content of silicon in the coatings increases from interface to the coatings, however, the content of aluminum decreases along this direction. The maximum hardness of ceramic coatings is up to 9.2 GPa.展开更多
Soldering of LD31 aluminum alloys using Sn-Pb solder paste after electric brush plating Ni and Cu coatings was investigated. The technology of electric brush plating Ni and Cu was studied and plating solution was deve...Soldering of LD31 aluminum alloys using Sn-Pb solder paste after electric brush plating Ni and Cu coatings was investigated. The technology of electric brush plating Ni and Cu was studied and plating solution was developed. The microstructure of the coatings, soldered joint and fracture face were analyzed using optic microscopy, SEM and EDX. The shear strength of soldered joint could reach as high as 26.83MPa. The results showed that reliable soldered joint could be obtained at 230℃, the adhesion of coatings and LD31 aluminum alloy substrate was high enough to bear the thermal process in the soldering.展开更多
Cobalt-free,nickel-rich LiNi_(1-x)Al_(x)O_(2)(x≤0.1)is an attractive cathode material because of high energy density and low cost but suffers from severe structural degradation and poor rate performance.In this study...Cobalt-free,nickel-rich LiNi_(1-x)Al_(x)O_(2)(x≤0.1)is an attractive cathode material because of high energy density and low cost but suffers from severe structural degradation and poor rate performance.In this study,we propose a molten salt-assisted synthesis in combination with a Li-refeeding induced aluminum segregation strategy to prepare Li_(5)AlO_(4)-coated single-crystalline slightly Li-rich Li_(1.04)Ni_(0.92)Al_(0.04)O_(2).The symbiotic formation of Li_(5)AlO_(4)from reaction between molten lithium hydroxide and doped aluminum in the bulk ensures a high lattice matching between the Ni-rich oxide and the homogenous conductive Li_(5)AlO_(4)that permits high Li^(+)conductivity.Benefiting from mitigated undesirable side reactions and phase evolution,the Li_(5)AlO_(4)-coated single-crystalline Li_(1.04)Ni_(0.92)Al_(0.04)O_(2)delivers a high specific capacity of220.2 mA h g^(-1)at 0.1 C and considerable rate capability(182.5 mA h g^(-1)at 10 C).Besides,superior capacity retention of 90.8%is obtained at 1/3 C after 100 cycles in a 498.1 mA h pouch full cell.Furthermore,the particulate morphology of Li_(1.04)Ni_(0.92)Al_(0.04)O_(2)remains intact after cycling at a cutoff voltage of 4.3 V,whereas slightly Li-deficient Li_(0.98)Ni_(0.97)Al_(0.05)O_(2)features intragranular cracks and irreversible lattice distortion.The results highlight the value of molten salt-assisted synthesis and Li-refeeding induced elemental segregation strategy to upgrade Ni-based layered oxide cathode materials for advanced Li-ion batteries.展开更多
In this paper,a Ni coating was deposited on the surface of the A356 aluminum alloy by high velocity oxygen fuel spraying to improve the performance of the AZ91D magnesium/A356 aluminum bimetal prepared by a compound c...In this paper,a Ni coating was deposited on the surface of the A356 aluminum alloy by high velocity oxygen fuel spraying to improve the performance of the AZ91D magnesium/A356 aluminum bimetal prepared by a compound casting.The effects of the Ni coating as well as its thickness on microstructure and mechanical properties of the AZ91D/A356 bimetal were systematically researched for the first time.Results demonstrated that the Ni coating and its thickness had a significant effect on the interfacial phase compositions and mechanical properties of the AZ91D/A356 bimetal.The 10μm’s Ni coating cannot prevent the generation of the Al-Mg intermetallic compounds(IMCs)at the interface zone of the AZ91D/A356 bimetal,while the Ni coating with the thickness of 45μm and 190μm can avoid the formation of the Al-Mg IMCs.When the Ni coating was 45μm,the Ni coating disappeared and transformed into Mg-Mg_(2)Ni eutectic structures+Ni_(2)Mg_(3)Al particles at the interface zone.With a thickness of 190μm’s Ni coating,part of the Ni coating remained and the interface layer was composed of the Mg-Mg_(2)Ni eutectic structures+Ni_(2)Mg_(3)Al particles,Mg_(2)Ni layer,Ni solid solution(SS)layer,Al_(3)Ni_(2) layer,Al_(3)Ni layer and sporadic Al_(3)Ni+Al-Al_(3)Ni eutectic structures from AZ91D side to A356 side in sequence.The interface layer consisting of the Mg-Ni and Al-Ni IMCs obtained with the Ni coating had an obvious lower hardness than the Al-Mg IMCs.The shear strength of the AZ91D/A356 bimetal with a Ni coating of 45μm thickness enhanced 41.4%in comparison with that of the bimetal without Ni coating,and the fracture of the bimetal with 45μm’s Ni coating occurred between the Mg matrix and the interface layer with a mixture of brittle fracture and ductile fracture.展开更多
The coating microstructure of hot-dip aluminum (HDA) of deformed low-carbon steel containing RE was analyzed by metallography microscopy, TEM and XRD, and the forming mechanism was also discussed. The results show tha...The coating microstructure of hot-dip aluminum (HDA) of deformed low-carbon steel containing RE was analyzed by metallography microscopy, TEM and XRD, and the forming mechanism was also discussed. The results show that, the Fe_2Al_5 phase, on whose subcrystal boundaries, Al particles with the size of 7~30 μm existing on parallel linear are, grows a strong orientation. And the spread activation energy of Al is 155.22 kJ·mol -1. In addition, the effects of deformation on coating microstructure of hot-dip aluminum and the function of RE were preliminarily analyzed.展开更多
The effects of alloying elements on zincate treatment and adhesion of electroless Ni-P coating onto various aluminum alloy substrates were examined.Surface morphology of zinc deposits in the 1st zincate treatment and ...The effects of alloying elements on zincate treatment and adhesion of electroless Ni-P coating onto various aluminum alloy substrates were examined.Surface morphology of zinc deposits in the 1st zincate treatment and its adhesion were changed depending on the alloying element.The zinc deposits in the 2nd zincate treatment became thinly uniform,and the adhesion between aluminum alloy substrate and Ni-P coating was improved irrespective of the alloying element.XPS analysis revealed the existence of zinc on the surface of each aluminum alloy substrate after the pickling in 5% nitric acid.This zinc on the surface should be an important factor influencing the morphology of zinc deposit at the 2nd zincate treatment and its adhesion.展开更多
The High Velocity Arc Spraying (HVAS) technology was used to prepare Fe-Al composite coatings by the adding of different elements into cored wires to obtain different Fe-Al coatings. The added compounds do great eff...The High Velocity Arc Spraying (HVAS) technology was used to prepare Fe-Al composite coatings by the adding of different elements into cored wires to obtain different Fe-Al coatings. The added compounds do great effect on the properties of the composite coatings. The microstructures and abrasive wear performances of the coatings were assessed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and THT07-135 high temperature wear equipment. It was found that the adding of Cr3C2 can greatly increase the room temperature wear behavior, and Fe-Al/WC coatings have adapting periods at the beginning of wear experiment. With the rise of temperature, the wear resistance of Fe-AI/Cr3C2 coatings becomes bad from room temperature to 250℃, and then stable from 250℃ to 550℃; the wear resistance of Fe-Al/WC becomes well with the rise of temperature. The adding of Cr and Ni can also improve wear performances of Fe-Al composite coatings.展开更多
基金financially supported by the National Natural Science Foundation of China (No.52271073)。
文摘A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were used to characterize the different Ni–P coatings’ morphologies, phase structures, elemental compositions, and corrosion protection. The gradient coating showed good adhesion and high corrosion and wear resistance, enabling the application of aluminum alloy in harsh environments. The results showed that the double zinc immersion was vital in obtaining excellent adhesion (81.2 N). The optimal coating was not peeled and shredded even after bending tests with angles higher than 90°and was not corroded visually after 500 h of neutral salt spray test at 35℃. The high corrosion resistance was attributed to the misaligning of these micro defects in the three different nickel alloy layers and the amorphous structure of the high P content in the outer layer. These findings guide the exploration of functional gradient coatings that meet the high application requirement of aluminum alloy parts in complicated and harsh aviation environments.
基金Supported by Defense Acquisition Program Administration and Agency for Defense Development(Grant Nos.UD110095CD,UD130038GD)
文摘Aluminum particles 15-25 μm in size are widely used in fuel propellants and underwater propulsion systems in national defense research. However, these particles are covered with an aluminum oxide film, which has a high melting point, so ignition is difficult. To improve the ignitability of high-energy aluminum powder and to understand the reaction phenomenon as a function of particle size(15-25 μm, 74-105 μm, and 2.38 mm) and oxidizer(air, CO2, and argon), the natural oxide films are chemically removed. The particles are then coated with nickel using an electro-less method. The degree of nickel deposition is confirmed qualitatively and quantitatively through surface analysis using scanning electron microscopy/energy dispersive spectroscopy. To characterize the nickel coatings, elemental analysis is also conducted by using X-ray diffraction. Thermogravimetric analysis/differential scanning calorimetry (TGA/DSC) enable comparisons between the uncoated and coated aluminum, and the reaction process are investigated through fine structural analysis of the particle surfaces and cross sections. There are little difference in reactivity as a function of oxidant type. However, a strong exothermic reaction in the smaller nickel-coated aluminum particles near the melting point of aluminum accelerates the reaction of the smaller particles. Explanation of the reactivity of the nickel-coated aluminum depending on the particle sizes is attempted.
基金Project(20133718120003)supported by the Doctoral Program Foundation of State Education Ministry,ChinaProject(BS2013CL009)supported by the Scientific Research Foundation of Shandong for Outstanding Young Scientist,China+1 种基金Projects(13-1-4-217-jch,13-1-4-188-jch)supported by the Applied Basic Research Foundation of Qingdao,ChinaProject(2014TDJH104)supported by the SDUST Research Fund,China
文摘Mg Al-layered double hydroxides(LDH) coatings were fabricated by the in-situ hydrothermal treatment method on the AA5005 aluminum alloy.The characteristics of the coatings were investigated by XRD,FT-IR,SEM and EDS.The effect of the p H value of the solution on the formation of the LDH coatings was studied.The optimum p H value of the solution was 10.0.The corrosion resistance of the LDH coatings was studied using potentiodynamic polarization tests and electrochemical impedance spectrum(EIS).The results demonstrate that the LDH coatings,characterized by platelets vertically to the substrate surface possess excellent corrosion resistance.The influence of the hydrothermal crystallization time on the corrosion resistance was evaluated.Prolonging the crystallization time can increase the corrosion resistance of the obtained LDH coatings.The anticorrosion mechanism of the LDH coatings was discussed.
基金Project(BK2012463)supported by the Natural Science Foundation of Jiangsu Province of ChinaProject(51245010)supported by Special Funds of the National Natural Science Foundation of China+1 种基金Project(11047143)supported by the National Natural Science Foundation of ChinaProjects(12KF069,12KF036)supported by Opening Found of Laboratory of Nanjing University of Information Science and Technology,China
文摘AI coatings with different microstructures were prepared on the surface of Gd using the magnetron sputtering technique to improve its corrosion resistance. The corrosion behaviors for the pure Gd and Gd with Al coating in distilled water were studied using the mass loss and electrochemical performance. As a result, pure Gd without coating shows a certain amount of surface cracks under water flow conditions, whereas the polygonal Al coating decreases the path of the corrosive medium to body due to the existence of eroding pits structure. Compared with the polygonal structure Al coating and pure Gd, the lamellar structure of Al coating exhibits a higher electrochemical protection performance (e.g., a lower corrosion current and higher self-corrosion potential) and no occurrence of pitting corrosion. Due to an effective physical shield, the formation of the lamellar structure protected the inner Gd part from being corroded, and prolonged the duration of cathodic protection.
基金Project(51371039)supported by the National Natural Science Foundation of China
文摘Plasma electrolytic oxidation (PEO) ceramic coatings were fabricated in a silicate-based electrolyte with the addition of potassium fluorozirconate (K2ZrF6) on 6063 aluminum alloy, and the effects of current density on microstructure and properties of the PEO coatings were studied. It was found that pore density of the coatings decreased with increasing the current density. The tribological and hardness tests suggested that the ceramic coating produced under the current density of 15 A/dm2showed the best mechanical property, which matched well with the phase analysis. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves proved that the coating obtained under 15 A/dm2 displayed the best anti-corrosion property, which was directly connected with morphologies of coatings.
基金Project(51172217)supported by the National Natural Science Foundation of ChinaProject(2010GGX10310)supported by Shandong Science and Technology Program,China+1 种基金Project(10-3-4-1-jch)supported by Science and Technology Program on Basic Research Project of Qingdao,ChinaProject(4500-841313001)supported by Fundamental Research Funds for the Central Universities,China
文摘In order to improve the property of traditional Ce-based conversion coatings, Ce-silane-ZrO2 composite coatings were successfully prepared on 1060 aluminum. The microstructure, chemical element composition and corrosion resistance of Ce-based conversion coatings and Ce-silane-ZrO2 composite coatings were investigated by SEM, AFM, XPS and EIS analyses. Stacking structure of the composite coating can be observed. The inner layer of the composite coatings mainly consists of oxide and hydroxide of Ce(Ⅲ), and the silane network is composed of the outer layer together with a small amount of Ce(Ⅳ) hydroxide. By adding silane and ZrO2 nanoparticles into Ce-based conversion coatings, the porosity and the micro cracks of the coatings decrease apparently accompanying with the improvement of the corrosion resistance.
文摘Aluminum doped zinc oxide (AZO), as an electrically conductive material, was applied to coating on the surface of olivine-type LiFePO4 synthesized by solid-state method. The charge-discharge test results show that the rate performance and low-temperature performance of LiFePO4 are greatly improved by the surface treatment. Even at 20C rate, the discharge specific capacity of 100.9 mA.h/g was obtained by the AZO-coated LiFePO4 at room temperature. At -20 ℃, the discharge specific capacity at 0.2C for un-coated LiFePO4 and the coated one are 50.3 mA.h/g and 119.4 mA.h/g, respectively. It should be attributed to the electrically conductive AZO-coating which increases the electronic conductivity of LiFePO4. Furthermore, the surface-coating increases the tap-density of LiFePO4. The results indicate that the AZO-coated LiFePO4 is a good candidate of cathode material for applying in lithium power batteries.
基金financially supported by the International Cooperation Project of the Ministry of Science and Technology of China(ICPMSTPRC,No.2008DFR50070)
文摘We have systematically studied the microstructure and mechanical properties of Ni-5wt%Al and Ni-20wt%Al composite coat- ings fabricated on 6061-T6 aluminum alloy sheet by twin-wire arc spraying under different experimental conditions. The abrasive wear be- havior and interface diffusion behavior of the composite coatings were evaluated by dry/wet rubber wheel abrasive wear tests and heat treat- ment, respectively. Experimental results indicate that the composite coatings exhibit features of adhesive wear. Besides, the Vickers micro- hardness of NiA1 and Ni3AI intermetallic compounds is relatively larger than that of the substrate, which is beneficial for enhancing the wear resistance. With the increase of annealing temperature and time, the interface diffusion area between the Ni-Al coating and the substrate gradually expands with the formation of NiAl3 and Ni2Al3 phases, and is controlled by diffusion of aluminum atoms. The grain growth ex- ponent n of diffusion kinetics of the Ni-Al coating, calculated via a high-temperature diffusion model at 400, 480, and 550℃, is between 0.28 and 0.38. This satisfies the cubic law, which is consistent with the general theoretical relationship of high-temperature diffusion.
基金This work was financially supported bythe Doctoral Foundation ofYanshan University(B41)theScience and Technology Foundation ofYanshan University(YDJJ0169).
文摘In order to prepare ornamental and anti-corrosive coating on aluminum alloys, preparation technology of black micro-arc ceramic coatings on Al alloys in silicate based electrolyte was studied. The influence of content of Na2WO4 and combination additive in solution on the performance of black ceramic coatings was studied; the anticorrosion performances of black ceramic coatings were evaluated through whole-immersion test and electrochemical method in 3.5% NaCl solution at different pH value; SEM and XRD were used to analyze the surface morphology and phase constitutes of the black ceramic coatings. Experimental results indicated that, without combination additives, with the increasing of Na2WO4 content in the electrolyte, ceramic coating became darker and thicker, but the color was not black; after adding combination additive, the coating turned to be black; the black ceramic coating was multi-hole form in surface. There was a small quantity of tungsten existing in the black ceramic coating beside α-Al2O3 phase and β-Al2O3 phase. And aluminum alloy with black ceramic coating exhibited excellent anti-corrosion property in acid, basic and neutral 3.5% NaCl solution.
文摘Copper coating was deposited on the surface of aluminum borate whisker by an electroless plating method.This method was used to modify the interfacial property of squeeze-casting aluminum borate whisker reinforced 6061Al matrix composite.Interface observation indicates that the spinel reaction(MgAl2O4) is hindered by the copper coating,and the difference in interfacial reaction degree affects the tensile property and aging behavior of the composite.For the composite with less spinel reaction(MgAl2O4),its peak-aging process are postponed due to less depletion of magnesium.On the fracture surface of copper-coated composite dimples and fractures of whiskers are more,but on the fracture surface of uncoated composite pull-out of whiskers are more than that on the coated one.In uncoated composite the fracture generally originates from the near-interface-region.
文摘To solve the so called “white rust” and ’water bridge" problems of the aluminum fins for heat exchanger of automobile air conditioner, aimed at nationalizing the art of hydrophilic coating technology, the choice of coating forming and curing materials was investigated. By measuring the water contact angle, SEM surface scanning and ingredients analysis of the coating, optimal parameters and composition are acquired. The coating forming mechanisms of the composition was also expatiated. The coating obtained has good hydrophilic and other properties.
文摘Effects of coating constituent, coating density, coating layer thickness and temperature on coating sorption capacity for polystyrene decomposition products have been studied systematically. It has been found that the effect of attapulgite clay on sorption capacity is the largest among coating constituents. The sorption capacity of the coating with 2% attapulgite clay is elevated by 81%. The relationship between casting porosity and coating sorption capacity has been studied. It has been pointed out that higher coating sorption capacity for polystyrene decomposition products is helpful to decrease the casting porosity. Results also show that the sorption capacity of self-developed HW-1 coating for polystyrene decomposition products is as good as that of Ashland coating from America.
基金Project(2005CB623703) supported by the State Key Fundamental Research and Development Programof China project(5JJ30103) supported by the Natural Science Foundation of Hunan Province
文摘The electrical resistivity of TiB2/C cathode composite coating at different temperatures was measured with the electrical conductivity test device; the effects of TiB2 content and kinds of carbonaceous fillers as well as their mean particle size on their electrical resistivities were investigated. The results show that electrical resistivity of the coating decreases with the increase of TiB2 content and the decrease of its mean particle size. When the mass fraction of TiB2 increases from 30% to 60%, the electrical resistivity of the coating at room temperature decreases from 31.2μΩ·m to 23.8μΩ·m. The electrical resistivity of the coating at 960℃ lowers from 76.1μΩ· m to 38.4μΩ·m with the decrease of TiB2 mean particle size from 12μm to 1μm. The kinds of carbonaceous fillers have great influence on the electrical resistivity of TiB2/C composite coating at 960℃, when the graphite, petroleum coke and anthracite are used as fillers, the electrical resistivities of the coating are 20.3μΩ·m, 53.7μΩ·m and 87.2μΩ·m, respectively. For the coating with petroleum coke filler, its electrical resistivity decreases with the increase of the mean particle size of petroleum coke filler. The electrical resistivity at 960℃ decreases from 56.2μΩ·m to 48.2μΩ·m with the mean particle size of petroleum coke increasing from 44μm to 1200μm. However, too big carbonaceous particle size has adverse influence on the abrasion resistance of coating. Its proper mean particle size is 420μm.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 50171026) the Multidiscipline Scientific Research Foundations of HarbinInstitute of Technology (HIT.MD. 2001. 23).
文摘The surface modification of aluminum and its alloys using plasma technology is increasingly being investigated, Thick ceramic coatings with high hardness on aluminum alloys can be prepared successfully using a micro-plasma oxidation (MPO) technique. In this work, the composition, microstructure and elemental distribution of ceramic coatings formed by MPO on LY 12 almnlnum alloy and its hardness are investigated using XRD, EPMA and microhardness instruments. The results show that the ceramic coatings consist of mullite,γ-Al2O3 and a lot of amorphous matter. The content of silicon in the coatings increases from interface to the coatings, however, the content of aluminum decreases along this direction. The maximum hardness of ceramic coatings is up to 9.2 GPa.
文摘Soldering of LD31 aluminum alloys using Sn-Pb solder paste after electric brush plating Ni and Cu coatings was investigated. The technology of electric brush plating Ni and Cu was studied and plating solution was developed. The microstructure of the coatings, soldered joint and fracture face were analyzed using optic microscopy, SEM and EDX. The shear strength of soldered joint could reach as high as 26.83MPa. The results showed that reliable soldered joint could be obtained at 230℃, the adhesion of coatings and LD31 aluminum alloy substrate was high enough to bear the thermal process in the soldering.
基金supported by the China National Funds for Distinguished Young Scientists(21925503)the National Natural Science Foundation of China(21835004)the Jilin Scientific and Technological Development Program(20220301018GX)。
文摘Cobalt-free,nickel-rich LiNi_(1-x)Al_(x)O_(2)(x≤0.1)is an attractive cathode material because of high energy density and low cost but suffers from severe structural degradation and poor rate performance.In this study,we propose a molten salt-assisted synthesis in combination with a Li-refeeding induced aluminum segregation strategy to prepare Li_(5)AlO_(4)-coated single-crystalline slightly Li-rich Li_(1.04)Ni_(0.92)Al_(0.04)O_(2).The symbiotic formation of Li_(5)AlO_(4)from reaction between molten lithium hydroxide and doped aluminum in the bulk ensures a high lattice matching between the Ni-rich oxide and the homogenous conductive Li_(5)AlO_(4)that permits high Li^(+)conductivity.Benefiting from mitigated undesirable side reactions and phase evolution,the Li_(5)AlO_(4)-coated single-crystalline Li_(1.04)Ni_(0.92)Al_(0.04)O_(2)delivers a high specific capacity of220.2 mA h g^(-1)at 0.1 C and considerable rate capability(182.5 mA h g^(-1)at 10 C).Besides,superior capacity retention of 90.8%is obtained at 1/3 C after 100 cycles in a 498.1 mA h pouch full cell.Furthermore,the particulate morphology of Li_(1.04)Ni_(0.92)Al_(0.04)O_(2)remains intact after cycling at a cutoff voltage of 4.3 V,whereas slightly Li-deficient Li_(0.98)Ni_(0.97)Al_(0.05)O_(2)features intragranular cracks and irreversible lattice distortion.The results highlight the value of molten salt-assisted synthesis and Li-refeeding induced elemental segregation strategy to upgrade Ni-based layered oxide cathode materials for advanced Li-ion batteries.
基金supports provided by the National Natural Science Foundation of China (No. 52075198)the National Key Research and Development Program of China (Nos. 2020YFB2008300 and 2020YFB2008304)+1 种基金the State Key Laboratory of High Performance Complex Manufacturing in CSU (No. Kfkt2019-01)the Analytical and Testing Center, HUST.
文摘In this paper,a Ni coating was deposited on the surface of the A356 aluminum alloy by high velocity oxygen fuel spraying to improve the performance of the AZ91D magnesium/A356 aluminum bimetal prepared by a compound casting.The effects of the Ni coating as well as its thickness on microstructure and mechanical properties of the AZ91D/A356 bimetal were systematically researched for the first time.Results demonstrated that the Ni coating and its thickness had a significant effect on the interfacial phase compositions and mechanical properties of the AZ91D/A356 bimetal.The 10μm’s Ni coating cannot prevent the generation of the Al-Mg intermetallic compounds(IMCs)at the interface zone of the AZ91D/A356 bimetal,while the Ni coating with the thickness of 45μm and 190μm can avoid the formation of the Al-Mg IMCs.When the Ni coating was 45μm,the Ni coating disappeared and transformed into Mg-Mg_(2)Ni eutectic structures+Ni_(2)Mg_(3)Al particles at the interface zone.With a thickness of 190μm’s Ni coating,part of the Ni coating remained and the interface layer was composed of the Mg-Mg_(2)Ni eutectic structures+Ni_(2)Mg_(3)Al particles,Mg_(2)Ni layer,Ni solid solution(SS)layer,Al_(3)Ni_(2) layer,Al_(3)Ni layer and sporadic Al_(3)Ni+Al-Al_(3)Ni eutectic structures from AZ91D side to A356 side in sequence.The interface layer consisting of the Mg-Ni and Al-Ni IMCs obtained with the Ni coating had an obvious lower hardness than the Al-Mg IMCs.The shear strength of the AZ91D/A356 bimetal with a Ni coating of 45μm thickness enhanced 41.4%in comparison with that of the bimetal without Ni coating,and the fracture of the bimetal with 45μm’s Ni coating occurred between the Mg matrix and the interface layer with a mixture of brittle fracture and ductile fracture.
文摘The coating microstructure of hot-dip aluminum (HDA) of deformed low-carbon steel containing RE was analyzed by metallography microscopy, TEM and XRD, and the forming mechanism was also discussed. The results show that, the Fe_2Al_5 phase, on whose subcrystal boundaries, Al particles with the size of 7~30 μm existing on parallel linear are, grows a strong orientation. And the spread activation energy of Al is 155.22 kJ·mol -1. In addition, the effects of deformation on coating microstructure of hot-dip aluminum and the function of RE were preliminarily analyzed.
文摘The effects of alloying elements on zincate treatment and adhesion of electroless Ni-P coating onto various aluminum alloy substrates were examined.Surface morphology of zinc deposits in the 1st zincate treatment and its adhesion were changed depending on the alloying element.The zinc deposits in the 2nd zincate treatment became thinly uniform,and the adhesion between aluminum alloy substrate and Ni-P coating was improved irrespective of the alloying element.XPS analysis revealed the existence of zinc on the surface of each aluminum alloy substrate after the pickling in 5% nitric acid.This zinc on the surface should be an important factor influencing the morphology of zinc deposit at the 2nd zincate treatment and its adhesion.
基金This work was financially supported by the National Natural Science Foundation of China (No.50235030, 50005024)
文摘The High Velocity Arc Spraying (HVAS) technology was used to prepare Fe-Al composite coatings by the adding of different elements into cored wires to obtain different Fe-Al coatings. The added compounds do great effect on the properties of the composite coatings. The microstructures and abrasive wear performances of the coatings were assessed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and THT07-135 high temperature wear equipment. It was found that the adding of Cr3C2 can greatly increase the room temperature wear behavior, and Fe-Al/WC coatings have adapting periods at the beginning of wear experiment. With the rise of temperature, the wear resistance of Fe-AI/Cr3C2 coatings becomes bad from room temperature to 250℃, and then stable from 250℃ to 550℃; the wear resistance of Fe-Al/WC becomes well with the rise of temperature. The adding of Cr and Ni can also improve wear performances of Fe-Al composite coatings.