To efficiently co-extract Ni and Cu from low-grade nickel-copper sulfide ore,chlorination roasting with NH;Cl followed by a water leaching process was investigated.The results show that 98.4%Ni and 98.5%Cu can be sync...To efficiently co-extract Ni and Cu from low-grade nickel-copper sulfide ore,chlorination roasting with NH;Cl followed by a water leaching process was investigated.The results show that 98.4%Ni and 98.5%Cu can be synchronously extracted when the ore particle size is 75-80μm,the roasting time is 2 h,the mass ratio of NH;Cl to ore is 1.6:1 and the roasting temperature is 550°C.The evolution behavior of various minerals was elucidated using X-ray diffraction(XRD)coupled with scanning electron microscopy(SEM).The kinetics of the chlorination process based on the differential thermal and thermogravimetric analysis(DTA-TG)data was analyzed by Kissinger method and Flynn-Wall-Ozawa(FWO)method.The chlorination process of low-grade nickel-copper sulfide ore mainly contains two stages:the decomposition of NH;Cl and the chlorination of ore.The maximum apparent activation energies(Ea)at two stages are determined to be 114.8 and 144.6 kJ/mol,respectively.The condensed product of exhaust gas is determined to be ammonium chloride,which can be recycled as the reactant again,making the process economic and clean.展开更多
Xiazhuang uranium ore field,located in the southern part of the Nanling Metallogenic Belt,is considered one of the largest granite-related U regions in South China.In this paper,we contribute new apatite fission track...Xiazhuang uranium ore field,located in the southern part of the Nanling Metallogenic Belt,is considered one of the largest granite-related U regions in South China.In this paper,we contribute new apatite fission track data and thermal history modeling to constrain the exhumation history and evaluate preservation potential of the Xiazhuang Uranium ore field.Nine Triassic outcrop granite samples collected from different locations of Xiazhuang Uranium ore field yield AFT ages ranging from 43 to 24 Ma with similar mean confined fission track lengths ranging from 11.8±2.0 to 12.9±1.9μm and Dpar values between 1.01 and 1.51μm.The robustness time-temperature reconstructions of samples from the hanging wall of Huangpi fault show that the Xiazhuang Uranium ore field experienced a time of monotonous and slow cooling starting from middle Paleocene to middle Miocene(~60-10 Ma),followed by relatively rapid exhumation in the late Miocene(~10-5 Ma)and nearly thermal stability in the Pliocene-Quaternary(~5-0 Ma).The amount of exhumation after U mineralization since the Middle Paleogene was estimated as~4.3±1.8 km according to the integrated thermal history model.Previous studies indicate that the ore-forming ages of U deposits in the Xiazhuang ore field are mainly before Middle Paleocene and the mineralization depths are more than 4.4±1.2 km.Therefore,the exhumation history since middle Paleocene plays important roles in the preservation of the Xiazhuang Uranium ore field.展开更多
Bulk geochemistry,Sr,Nd,and O-H isotope systematics are reported for the first time on banded iron formation(BIF)-hosted high-grade iron ore at the northwestern segment of Congo Craton(CC).Located in Mbalam iron ore d...Bulk geochemistry,Sr,Nd,and O-H isotope systematics are reported for the first time on banded iron formation(BIF)-hosted high-grade iron ore at the northwestern segment of Congo Craton(CC).Located in Mbalam iron ore district,Southern Cameroon,Metzimevin iron ore deposit is a hematite-magnetite BIF system,dominated by SiO_(2)+Fe_(2)O_(3)(97.1 to 99.84 wt%),with low concentrations of clastic elements e.g.,Al_(2)O_(3),TiO_(2),and HFSE,depicting a nearly pure chemical precipitate.The REE+Y signature of the iron deposit displays strong positive Eu anomaly,strong negative Ce anomaly,and chondritic to superchondritic Y/Ho ratios,suggestive of formation by mixed seawater-high temperature hydrothermal fluids in oxidising environment.The^(87)Sr/^(86)Sr ratios of the BIF are higher than the maximum^(87)Sr/^(86)Sr evolution curves for all Archean reservoirs(bulk silicate earth,Archean crust and Archean seawater),indicating involvement of continentally-derived components during BIF formation and alteration.TheƐ_(Nd)(t)(+2.26 to+3.77)and Nd model age indicate that chemical constituents for the BIF were derived from undifferentiated crustal source,between 3.002 and 2.88 Ga.The variable and diverse O and H isotope data(−1.9‰to 17.3‰and−57‰to 136‰respectively)indicate that the Metzimevin iron ore formed initially from magmatic plumes and later enriched by magmatic-metamorphic-modified meteoric fluids.Mass balance calculations indicate mineralisation by combined leaching and precipitation,with an average iron enrichment factor of>2.67 and SiO_(2)depletion factor of>0.99.This is associated with an overall volume reduction of 28.27%,reflecting net leaching and volume collapse of the BIF protholith.展开更多
The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron or...The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron ore powder and the mineralization mechanism of fluxed iron ore pellet in the roasting process were investigated through diffusion couple experiments.Scanning electron microscopy with energy dispersive spectroscopy was used to study the elements’diffusion and phase transformation during the roasting process.The results indicated that limestone decomposed into calcium oxide,and magnetite was oxidized to hematite at the early stage of preheating.With the increase in roasting temperature,the diffusion rate of Fe and Ca was obviously accelerated,while the diffusion rate of Si was relatively slow.The order of magnitude of interdiffusion coefficient of Fe_(2)O_(3)-CaO diffusion couple was 10^(−10) m^(2)·s^(−1) at a roasting temperature of 1200℃for 9 h.Ca_(2)Fe_(2)O_(5) was the initial product in the Fe_(2)O_(3)-CaO-SiO_(2) diffusion interface,and then Ca_(2)Fe_(2)O_(5) continued to react with Fe_(2)O_(3) to form CaFe_(2)O_(4).With the expansion of the diffusion region,the sillico-ferrite of calcium liquid phase was produced due to the melting of SiO_(2) into CaFe_(2)O_(4),which can strengthen the consolidation of fluxed pellets.Furthermore,andradite would be formed around a small part of quartz particles,which is also conducive to the consolidation of fluxed pellets.In addition,the principle diagram of limestone and quartz diffusion reaction in the process of fluxed pellet roasting was discussed.展开更多
In the framework of a mineral system approach,a combination of components is required to develop a mineral system.This includes the whole-lithosphere architecture,which controls the transport of ore-forming fluids,and...In the framework of a mineral system approach,a combination of components is required to develop a mineral system.This includes the whole-lithosphere architecture,which controls the transport of ore-forming fluids,and favorable tectonic and geodynamic processes,occurring at various spatial and temporal scales,that influence the genesis and evolution of ore-forming fluids(Huston et al.,2016;Groves et al.,2018;Davies et al.,2020).Knowledge of the deep structural framework can advance the understanding of the development of a mineral system and the emplacement of mineral deposits.Deep geophysical exploration carried out with this aim is increasingly important for targeting new ore deposits in unexplored and underexplored regions(Dentith et al.,2018;Dentith,2019).展开更多
Fluidized reduction roasting is an efficient metallurgical technique.However,its application to nickel laterite ore has rarely been reported.In this paper,the effects of reduction temperature,reduction time,CO concent...Fluidized reduction roasting is an efficient metallurgical technique.However,its application to nickel laterite ore has rarely been reported.In this paper,the effects of reduction temperature,reduction time,CO concentration,and material particle size on the roasting characteristics of ferronickel fluidization reduction were investigated.Combined with X-ray diffraction,scanning electron microscopy-energy dispersive spectrometry(SEM-EDS)characterization,the mineral phases and microscopic morphology of nickel laterite ore and its roasted ores were analyzed in depth.The results indicated that under the condition of a CO/CO_(2)ratio of 1:1,a reduction temperature of 800℃,and a reduction roasting time of 60 min,a nickel-iron concentrate with a nickel grade of 2.10%and an iron content of 45.96%was produced from a raw material with a nickel grade of 1.45%,achieving a remarkable nickel recovery rate of 46.26%.XRD and SEM-EDS analysis indicated that nickel in the concentrate mainly exists in the form of[Fe,Ni],while the unrecovered nickel in the tailings is primarily present in the form of[Fe,Ni]and Ni_(2)SiO_(4)in forsterite.This study established a theoretical foundation for further exploration of fluidized reduction roasting technology.展开更多
Vanadium and its derivatives are used in various industries,including steel,metallurgy,pharmaceuticals,and aerospace engineering.Although China has massive reserves of stone coal resources,these resources have low gra...Vanadium and its derivatives are used in various industries,including steel,metallurgy,pharmaceuticals,and aerospace engineering.Although China has massive reserves of stone coal resources,these resources have low grades.Therefore,the effective extraction and recovery of metallic vanadium from stone coal is an important way to realize the efficient resource utilization of stone coal vanadium ore.Herein,Bacillus mucilaginosus was selected as the leaching strain.The vanadium leaching rate reached 35.5%after 20 d of bioleaching under optimal operating conditions.The cumulative vanadium leaching rate in the contact group reached 35.5%,which was higher than that in the noncontact group(9.3%).The metabolites of B.mucilaginosus,such as oxalic,tartaric,citric,and malic acids,dominated in bioleaching,accounting for 73.8%of the vanadium leaching rate.Interestingly,during leaching,the presence of stone coal stimulated the expression of carbonic anhydrase in bacterial cells,and enzyme activity increased by 1.335-1.905 U.Enzyme activity positively promoted the production of metabolite organic acids,and total organic acid content increased by 39.31 mg·L^(-1),resulting in a reduction of 2.51 in the pH of the leaching system with stone coal.This effect favored the leaching of vanadium from stone coal.Atomic force microscopy illustrated that bacterial leaching exacerbated corrosion on the surface of stone coal beyond 10 nm.Our study provides a clear and promising strategy for exploring the bioleaching mechanism from the perspective of microbial enzyme activity and metabolites.展开更多
The lime-depressed pyrite from Cu differential flotation tailings with acid mine drainage(AMD)as a natural activator was recovered.The effect of AMD on lime-depressed pyrite flotation was investigated by a series of l...The lime-depressed pyrite from Cu differential flotation tailings with acid mine drainage(AMD)as a natural activator was recovered.The effect of AMD on lime-depressed pyrite flotation was investigated by a series of laboratory flotation tests and surface analytical techniques.Flotation test results indicated that AMD could effectively activate the pyrite flotation with a sodium butyl xanthate(SBX)collector,and a high-quality sulfur concentrate was obtained.Pulp ion concentration analysis results indicated that AMD facilitated desorption of Ca~(2+)and adsorption of Cu~(2+)on the depressed-pyrite surface.Adsorption measurements and contact angle analysis results confirmed that adding AMD improved the adsorption amount of SBX collector on the pyrite surface and increased the contact angle by 31°.Results of Raman spectroscopy and X-ray photoelectron spectroscopy analysis indicated that AMD treatment promoted the formation of hydrophobic species(S~0 hydrophobic entity and copper sulfides)and the removal of hydrophilic calcium and iron species on the pyrite surface,which reinforced the adsorption of collector.The findings of the present research provide important theoretical basis and technical support for a cleaner production of copper sulfide ores.展开更多
The Tieshanlong ore field is an important part of the Nanling Range,which is famous worldwide for its W-Sn mineralization.Notably,the mineralization age of the Tieshanlong ore field is not well constrained,and our fie...The Tieshanlong ore field is an important part of the Nanling Range,which is famous worldwide for its W-Sn mineralization.Notably,the mineralization age of the Tieshanlong ore field is not well constrained,and our field investigation reveals that granitic emplacement occurred at different stages.However,previous studies have not distinguished these multiple stages of magmatism.The Tieshanlong granite complex is closely related to the Huangsha quartz vein-type W-Sn deposit and Tongling skarn-type Cu-W-Sn deposit in this field.Through field investigations and isotopic age analyses,this work studies the relationship between multistage magmatic activity and mineralization in the Tieshanlong ore field.LA-ICP-MS zircon U-Pb isotope analyses revealed that the first-and second-staged granites formed at 154.2±0.6 Ma(MSDW=1.4)and 151.2±0.4 Ma(MSDW=1.5),with zirconε_(Hf)(t)values ranging from-13.1 to-10.5 and from-14.7 to-11.1,respectively.These data suggest that the Tieshanlong granite complex was derived from the partial melting of ancient crustal material.LA-ICP-MS U-Pb dating of wolframite and cassiterite reveals that W-Sn mineralization occurred at 160-150 Ma,which agrees well with the U-Pb dating results of the second-staged granite within analytical errors.The magmatic activity in this ore field can be divided into three stages:175-154 Ma,154-150 Ma and 150-145 Ma.The quartz vein-and skarn-type W-Sn mineralization is closely related to second-staged fine-grained twomica granite,and formed earlier than skarn-type Cu-mineralization.This study establishes a metallogenic model for the Tieshanlong ore field,and this model has important practical significance for identifying concealed W-Sn(-Cu)deposits around other granitic complexes in the Nanling Range.展开更多
The disposal of filtered tailings in high dry stacks can induce particle breakage,changing the material's behaviour during the structure's lifetime.The grading changes influence material properties at the crit...The disposal of filtered tailings in high dry stacks can induce particle breakage,changing the material's behaviour during the structure's lifetime.The grading changes influence material properties at the critical state,and this is not mature for intermediate artificial soils(tailings)in a broad range of confining pressures.In this paper,it aims to describe the behaviour of iron ore tailings in a spectrum of confining pressures broader than the reported in previous studies.A series of consolidated drained(CD)triaxial tests was carried out with confining pressures ranging from 0.075 MPa to 120 MPa.These results show that the amount of breakage plays an essential role in the response of iron ore tailings.The existence of curved critical state line(CSL)in both specific volume(ν)-logarithm of mean effective stress(p′)and deviatoric stress(q)-mean effective stress(p′)planes,and different responses in the deviatoric stress-axial strain-volumetric strain curves were verified.An inverse S-shaped equation was proposed to represent the silty-sandy tailings'behaviour up to high pressures onν-lnp′plane.The proposed equation provides a basis for enhancing constitutive models and considers the evolution of the grading up to severe loading conditions.The adjustment considered three regions with different responses associated with particle breakage at different pressure levels.展开更多
The Ain El Bey abandoned mine, in North-West Tunisia, fits into the geodynamic context of the European and African plate boundary. Ore deposit corresponds to veins and breccia of multiphase Cu–Fe-rich mineralization ...The Ain El Bey abandoned mine, in North-West Tunisia, fits into the geodynamic context of the European and African plate boundary. Ore deposit corresponds to veins and breccia of multiphase Cu–Fe-rich mineralization related to various hydrothermal fluid circulations. Petromineralogical studies indicate a rich mineral paragenesis with a minimum of seven mineralization phases and, at least, six pyrite generations. As is also the case for galena and native silver, native gold is observed for the first time as inclusion in quartz which opens up, thus, new perspectives for prospecting and evaluating the potential for noble metals associated with the mineralization. Scanning Electron Microscope--Energy Dispersive Spectroscopy and Transmission electron microscopy analyses show, in addition, a large incorporation of trace elements, including Ag and Au, in mineral structures such as fahlores(tetrahedrite-tennantite) and chalcopyrite ones. The mineral/mineral associations, used as geothermometers, gave estimated temperatures for the mineralizing fluids varying from 254 to 330 ℃ for phase Ⅲ, from 254 to 350 ℃ for phase Ⅳ, and from 200 to 300 ℃ for phases Ⅴ and Ⅵ. The seventh and last identified mineralization phase, marked by a deposit of native gold, reflects a drop in the mineralizing fluid’s temperature(< 200 ℃) compatible with boiling conditions. Such results open up perspectives for the development of precious metal research and the revaluation of the Cu–Fe ore deposit at the Ain El Bey abandoned mine, as well as at the surrounding areas fitting in the geodynamic framework of the Africa-Europe plate boundary.展开更多
X-ray fluorescence(XRF)sensor-based ore sorting enables efficient beneficiation of heterogeneous ores,while intraparticle heterogeneity can cause significant grade detection errors,leading to misclassifications and hi...X-ray fluorescence(XRF)sensor-based ore sorting enables efficient beneficiation of heterogeneous ores,while intraparticle heterogeneity can cause significant grade detection errors,leading to misclassifications and hindering widespread technology adoption.Accurate classification models are crucial to determine if actual grade exceeds the sorting threshold using localized XRF signals.Previous studies mainly used linear regression(LR)algorithms including simple linear regression(SLR),multivariable linear regression(MLR),and multivariable linear regression with interaction(MLRI)but often fell short attaining satisfactory results.This study employed the particle swarm optimization support vector machine(PSO-SVM)algorithm for sorting porphyritic copper ore pebble.Lab-scale results showed PSO-SVM out-performed LR and raw data(RD)models and the significant interaction effects among input features was observed.Despite poor input data quality,PSO-SVM demonstrated exceptional capabilities.Lab-scale sorting achieved 93.0%accuracy,0.24%grade increase,84.94%recovery rate,57.02%discard rate,and a remarkable 39.62 yuan/t net smelter return(NSR)increase compared to no sorting.These improvements were achieved by the PSO-SVM model with optimized input combinations and highest data quality(T=10,T is XRF testing times).The unsuitability of LR methods for XRF sensor-based sorting of investigated sample is illustrated.Input element selection and mineral association analysis elucidate element importance and influence mechanisms.展开更多
Iron ore processing for steel production is crucial to the development and economy of Mongolia. Regardless of having abundant natural resources and raw materials, Mongolia almost doesn’t produce final products. So fa...Iron ore processing for steel production is crucial to the development and economy of Mongolia. Regardless of having abundant natural resources and raw materials, Mongolia almost doesn’t produce final products. So far, most mining and mineral beneficiation plants export raw materials only subjected to beneficiation process. Out of more than 200 deposits in Mongolia, 91 deposits had been explored with different methods and stages, and estimated the resource of 33 reserves. Without processing the iron ore, it is impossible to use it for steelmaking due to its high sulfur and phosphorus impurities. Therefore, to study the processing of iron ore deposits in Mongolia, we did a preliminary investigation of iron ore deposits and took samples from the Tamir Gol deposit with high silica and phosphorus content that is difficult to process. Then, conducted mineral analysis and determined the grain structure and beneficiation characteristics of Tamir Gol iron deposit. .展开更多
The study was conducted to determine the applicability of gravity separation method on the Ashashire gold ore deposit Benishangul gumuz region, western Ethiopia. The Ashashire composite was produced to provide suffici...The study was conducted to determine the applicability of gravity separation method on the Ashashire gold ore deposit Benishangul gumuz region, western Ethiopia. The Ashashire composite was produced to provide sufficient mass for this study and experiment, including sample preparation, mineralogical analysis of gold and associated elements, gravity concentration, and data interpretation and analysis. During the study, a grind optimization was conducted on the composites sample with varying grind size to evaluate the effect of grind size on gold recovery. The ore was moderately ground to the standard grind size of 80%, passing 106 µm, 75 µm, 53 µm and this nominal size was selected for the preliminary assessment for concentration optimization for this deposit. The gravity testing comprised three-stage concentration using Knelson concentrator. High recovery of gold from the gravity concentrates was achieved from the second gravity concentration. Based on the laboratory experimental result analysis, a grind size of P80 75 µm is selected as optimal size for the Ashashire gold deposit. Increasing the grind size from P80 of 75 µm to 106 µm decreases the recovery rate from 75% to 54%, or decreasing the grind size from P80 of 75 µm to 53 µm decreases the gold recovery rate to 37%. The native gold grain in the ores is mostly associated with quartz and fine gold is closely associated with pyrite. According to analysis of the fire assay, chemical, and mineralogical data, only gold and telluride is commercially valuable elements in the ores. Predominantly gold was occurred in the native form of Au-Te. The sample subjected to gravity separation assayed about 2.6 g/t Au.展开更多
Lithium production in China mainly depends on hard rock lithium ores,which has a defect in resources,environment,and economy compared with extracting lithium from brine.This paper focuses on the research progress of e...Lithium production in China mainly depends on hard rock lithium ores,which has a defect in resources,environment,and economy compared with extracting lithium from brine.This paper focuses on the research progress of extracting lithium from spodumene,lepidolite,petalite,and zinnwaldite by acid,alkali,salt roasting,and chlorination methods,and analyzes the resource intensity,environmental impact,and production cost of industrial lithium extraction from spodumene and lepidolite.It is found that the sulfuric acid method has a high lithium recovery rate,but with a complicated process and high energy consumption;alkali and chlorination methods can directly react with lithium ores,reducing energy consumption,but need to optimize reaction conditions and safety of equipment and operation;the salt roasting method has large material flux and high energy consumption,so require adjustment of sulfate ratio to increase the lithium yield and reduce production cost.Compared with extracting lithium from brine,extracting lithium from ores,calcination,roasting,purity,and other processes consume more resources and energy;and its environmental impact mainly comes from the pollutants discharged by fossil energy,9.3-60.4 times that of lithium extracted from brine.The processing cost of lithium extraction from lepidolite by sulfate roasting method is higher than that from spodumene by sulfuric acid due to the consumption of high-value sulfate.However,the production costs of both are mainly affected by the price of lithium ores,which is less competitive than that of extracting lithium from brine.Thus,the process of extracting lithium from ores should develop appropriate technology,shorten the process flow,save resources and energy,and increase the recovery rate of related elements to reduce environmental impact and improve the added value of by-products and the economy of the process.展开更多
Surfactants were proposed to be added into magnesium sulfate solution to improve the leaching process of weathered crust elution-deposited rare earth ores(WREOs).Effects of surfactants and their concentration on the s...Surfactants were proposed to be added into magnesium sulfate solution to improve the leaching process of weathered crust elution-deposited rare earth ores(WREOs).Effects of surfactants and their concentration on the seepage of leaching solutions and the leaching efficiency of rare earth(RE)and aluminum(Al)were investigated,and the leaching kinetics,the mass transfer process,the adhesion work and the adhesion work reduction factor were analyzed to reveal its strengthening leaching mechanism.The results show that cetyltrimethylammonium bromide(CTAB)has a better strengthening effect on the leaching process than dodecyl trimethyl ammonium bromide(DTAB),sodium dodecyl sulfate(SDS),sodium oleate and oleic acid.In the presence of 0.04%CTAB in 0.2 mol/L solution,the permeability coefficient of WREOs increases from 0.945×10^(-5)to 1.640×10^(-5)cm·s^(-1),and the leaching efficiency of RE increases from 80%to 90%,confirming the promotion of surfactants on the leaching process of WREOs.Kinetic analysis shows that the leaching process conforms to the inner diffusion control model,and the leaching kinetics equations of RE and Al related to CTAB content are obtained.Mass transfer discussion shows a smaller height equivalent to theoretical plate(HETP)of RE and Al at CTAB content of 0.04%,suggesting the higher mass transfer efficiency here.According to the interfacial properties of leaching solutions,the calculated adhesion work and the adhesion work reduction factor further demonstrate the strengthening leaching effect of CTAB on the leaching process of WREOs.展开更多
The Dongnan Cu–Mo deposit,located in the southeast of the Zijinshan ore field(the largest porphyry–epithermal system in Southeast China),represents the complex magmatic and metallogenesis events in the region.The pe...The Dongnan Cu–Mo deposit,located in the southeast of the Zijinshan ore field(the largest porphyry–epithermal system in Southeast China),represents the complex magmatic and metallogenesis events in the region.The petrogenesis and metallogenesis of granitoids from the deposit are not determined,especially the interactions between ore-bearing(granodiorite porphyry)and barren samples(granodiorite and diorite).In the paper,the whole rock geochemical features shared a similar affinity to the middle-lower content and revealed that they derived from partial melting of the Cathaysian basement with the contribution of mantle materials,even represented that they generated in the plate subduction;LA-ICP-MS zircon U–Pb ages show that these granodiorites,granodioritic porphyry and diorite,were generated during 114–103 Ma.The ore-bearing samples mostly presented ε_(Hf)(t)of negative values(peak value is-4 to-3)with old two-stage Hf model ages(t_(DM)^(2))(peak value is 1.10–1.15 Ga),while the barren sample showed slightly negative ε_(Hf)(t)(peak value is-1 to 0)values with young t_(DM)^(2)(peak value is 1.00–1.05 Ga).The value of zircon Ce^(4+)/Ce^(3+)ratio mostly higher than 450 was first verified for the ore-bearing samples in the Dongnan Cu–Mo deposit,and the values of ore-bearing were found to be higher than those from the barren,which suggests that the ore-bearing formed in more oxidized parental magma with higher oxygen fugacity.Based on the geochemical characteristic of the element and isotope,we concluded that the Early Cretaceous multiphases magmatic activities,low melting temperature and low pressure of pluton,and high oxygen fugacity of zircon,were the favorable conditions for metallogenesis of Dongnan Cu–Mo deposit.展开更多
Sensor-based ore sorting is a technology used to classify high-grade mineralized rocks from low-grade waste rocks to reduce operation costs.Many ore-sorting algorithms using color images have been proposed in the past...Sensor-based ore sorting is a technology used to classify high-grade mineralized rocks from low-grade waste rocks to reduce operation costs.Many ore-sorting algorithms using color images have been proposed in the past,but only some validate their results using mineral grades or optimize the algorithms to classify rocks in real-time.This paper presents an ore-sorting algorithm based on image processing and machine learning that is able to classify rocks from a gold and silver mine based on their grade.The algorithm is composed of four main stages:(1)image segmentation and partition,(2)color and texture feature extraction,(3)sub-image classification using neural networks,and(4)a voting system to determine the overall class of the rock.The algorithm was trained using images of rocks that a geologist manually classified according to their mineral content and then was validated using a different set of rocks analyzed in a laboratory to determine their gold and silver grades.The proposed method achieved a Matthews correlation coefficient of 0.961 points,higher than other classification algorithms based on support vector machines and convolutional neural networks,and a processing time under 44 ms,promising for real-time ore sorting applications.展开更多
The disposal of mining tailings has increasingly focused on the use of dry stacks.These structures offer more security since they use filtered and compacted material.Because of the construction method and the heights ...The disposal of mining tailings has increasingly focused on the use of dry stacks.These structures offer more security since they use filtered and compacted material.Because of the construction method and the heights achieved,the material that compounds the structure can be subjected to different stress paths along the failure plane.The theoretical framework considered in the design of these structures generally is the critical state soil mechanics(CSSM).However,the data in the literature concerning the uniqueness of critical state line(CSL)is still controversial as the soil is subjected to different stress paths.With respect to tailings,this question is even more restricted.This paper studies two tailings with different gradings due to the beneficial processes over extension and compression paths.A series of drained and undrained triaxial tests was conducted over a range of initial densities and stress levels.In the q-p'plane,different critical stress ratio(M)values were obtained for compression and extension stress paths.However,the critical state friction angle is very similar with a slightly higher critical state friction angle for extension tests.Curved stress path dependent CSLs were obtained in the n-lnp0 plane with the extension tests below the CSL defined in compression.Regarding the fines content,the studied tailings presented very similar M and critical state friction angle values.However,the fines content af-fects the volumetric behavior of the studied tailings and the CSLs on the n-lnp0 plane shift downwards with the increasing fines content for compression and extension tests.In relation to dilatancy analysis,the fines content did not present an evident influence on the dilatancy of the materials.However,different values of mean stress ratio N were obtained between compression and extension tests and can corroborate the existence of non-unique CSLs for these materials.展开更多
To realize the comprehensive utilization of ludwigite ore,an integrated and efficient route for the boron and iron separation was proposed in this work,which via soda-ash roasting under CO–CO_(2)–N_(2) atmosphere fo...To realize the comprehensive utilization of ludwigite ore,an integrated and efficient route for the boron and iron separation was proposed in this work,which via soda-ash roasting under CO–CO_(2)–N_(2) atmosphere followed by grind-leaching,magnetic separation,and CO_(2) carbonation.The effects of roasting temperature,roasting time,CO/(CO+CO_(2))composition,and Na_(2)CO_(3) dosage on the boron and iron separation indices were primarily investigated.Under the optimized conditions of the roasting temperature of 850℃,roasting time of 60 min,soda ash dosage of 20 wt%,and CO/(CO+CO_(2)) of 10 vol%,92%of boron was leached during wet grinding,and 88.6%of iron was recovered during the magnetic separation and magnetic concentrate with a total iron content of 61.51 wt%.Raman spectra and^(11)B NMR results indicated that boron exists asB(OH)_(4)^(-) in the leachate,from which high-purity borax pentahydrate could be prepared by CO_(2) carbonation.展开更多
基金the National Natural Science Foundation of China(No.52074069)the Natural Science Foundation of Hebei Province(No.E2020501022)+1 种基金the National Basic Research Program of China(No.2014CB643405)the Fundamental Research Funds for the Central Universities,China(No.N2223027)。
文摘To efficiently co-extract Ni and Cu from low-grade nickel-copper sulfide ore,chlorination roasting with NH;Cl followed by a water leaching process was investigated.The results show that 98.4%Ni and 98.5%Cu can be synchronously extracted when the ore particle size is 75-80μm,the roasting time is 2 h,the mass ratio of NH;Cl to ore is 1.6:1 and the roasting temperature is 550°C.The evolution behavior of various minerals was elucidated using X-ray diffraction(XRD)coupled with scanning electron microscopy(SEM).The kinetics of the chlorination process based on the differential thermal and thermogravimetric analysis(DTA-TG)data was analyzed by Kissinger method and Flynn-Wall-Ozawa(FWO)method.The chlorination process of low-grade nickel-copper sulfide ore mainly contains two stages:the decomposition of NH;Cl and the chlorination of ore.The maximum apparent activation energies(Ea)at two stages are determined to be 114.8 and 144.6 kJ/mol,respectively.The condensed product of exhaust gas is determined to be ammonium chloride,which can be recycled as the reactant again,making the process economic and clean.
基金the Foundation of State Key Laboratory of Nuclear Resources and Environment(Grant Nos.NRE2021-01,2022NRE34)the National Natural Science Foundation of China(Grant No.42162013)+1 种基金the Third Xinjiang Scientific Expedition Program(Grant No.2022xjkk1301)the Fund of National Key Laboratory of Science and Technology on Remote Sensing Information and imagery Analysis,Beijing Research Institute of Uranium Geology(Grant No.6142A01210405).
文摘Xiazhuang uranium ore field,located in the southern part of the Nanling Metallogenic Belt,is considered one of the largest granite-related U regions in South China.In this paper,we contribute new apatite fission track data and thermal history modeling to constrain the exhumation history and evaluate preservation potential of the Xiazhuang Uranium ore field.Nine Triassic outcrop granite samples collected from different locations of Xiazhuang Uranium ore field yield AFT ages ranging from 43 to 24 Ma with similar mean confined fission track lengths ranging from 11.8±2.0 to 12.9±1.9μm and Dpar values between 1.01 and 1.51μm.The robustness time-temperature reconstructions of samples from the hanging wall of Huangpi fault show that the Xiazhuang Uranium ore field experienced a time of monotonous and slow cooling starting from middle Paleocene to middle Miocene(~60-10 Ma),followed by relatively rapid exhumation in the late Miocene(~10-5 Ma)and nearly thermal stability in the Pliocene-Quaternary(~5-0 Ma).The amount of exhumation after U mineralization since the Middle Paleogene was estimated as~4.3±1.8 km according to the integrated thermal history model.Previous studies indicate that the ore-forming ages of U deposits in the Xiazhuang ore field are mainly before Middle Paleocene and the mineralization depths are more than 4.4±1.2 km.Therefore,the exhumation history since middle Paleocene plays important roles in the preservation of the Xiazhuang Uranium ore field.
文摘Bulk geochemistry,Sr,Nd,and O-H isotope systematics are reported for the first time on banded iron formation(BIF)-hosted high-grade iron ore at the northwestern segment of Congo Craton(CC).Located in Mbalam iron ore district,Southern Cameroon,Metzimevin iron ore deposit is a hematite-magnetite BIF system,dominated by SiO_(2)+Fe_(2)O_(3)(97.1 to 99.84 wt%),with low concentrations of clastic elements e.g.,Al_(2)O_(3),TiO_(2),and HFSE,depicting a nearly pure chemical precipitate.The REE+Y signature of the iron deposit displays strong positive Eu anomaly,strong negative Ce anomaly,and chondritic to superchondritic Y/Ho ratios,suggestive of formation by mixed seawater-high temperature hydrothermal fluids in oxidising environment.The^(87)Sr/^(86)Sr ratios of the BIF are higher than the maximum^(87)Sr/^(86)Sr evolution curves for all Archean reservoirs(bulk silicate earth,Archean crust and Archean seawater),indicating involvement of continentally-derived components during BIF formation and alteration.TheƐ_(Nd)(t)(+2.26 to+3.77)and Nd model age indicate that chemical constituents for the BIF were derived from undifferentiated crustal source,between 3.002 and 2.88 Ga.The variable and diverse O and H isotope data(−1.9‰to 17.3‰and−57‰to 136‰respectively)indicate that the Metzimevin iron ore formed initially from magmatic plumes and later enriched by magmatic-metamorphic-modified meteoric fluids.Mass balance calculations indicate mineralisation by combined leaching and precipitation,with an average iron enrichment factor of>2.67 and SiO_(2)depletion factor of>0.99.This is associated with an overall volume reduction of 28.27%,reflecting net leaching and volume collapse of the BIF protholith.
基金support of Shanxi Province Major Science and Technology Projects,China (No.20191101002).
文摘The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron ore powder and the mineralization mechanism of fluxed iron ore pellet in the roasting process were investigated through diffusion couple experiments.Scanning electron microscopy with energy dispersive spectroscopy was used to study the elements’diffusion and phase transformation during the roasting process.The results indicated that limestone decomposed into calcium oxide,and magnetite was oxidized to hematite at the early stage of preheating.With the increase in roasting temperature,the diffusion rate of Fe and Ca was obviously accelerated,while the diffusion rate of Si was relatively slow.The order of magnitude of interdiffusion coefficient of Fe_(2)O_(3)-CaO diffusion couple was 10^(−10) m^(2)·s^(−1) at a roasting temperature of 1200℃for 9 h.Ca_(2)Fe_(2)O_(5) was the initial product in the Fe_(2)O_(3)-CaO-SiO_(2) diffusion interface,and then Ca_(2)Fe_(2)O_(5) continued to react with Fe_(2)O_(3) to form CaFe_(2)O_(4).With the expansion of the diffusion region,the sillico-ferrite of calcium liquid phase was produced due to the melting of SiO_(2) into CaFe_(2)O_(4),which can strengthen the consolidation of fluxed pellets.Furthermore,andradite would be formed around a small part of quartz particles,which is also conducive to the consolidation of fluxed pellets.In addition,the principle diagram of limestone and quartz diffusion reaction in the process of fluxed pellet roasting was discussed.
文摘In the framework of a mineral system approach,a combination of components is required to develop a mineral system.This includes the whole-lithosphere architecture,which controls the transport of ore-forming fluids,and favorable tectonic and geodynamic processes,occurring at various spatial and temporal scales,that influence the genesis and evolution of ore-forming fluids(Huston et al.,2016;Groves et al.,2018;Davies et al.,2020).Knowledge of the deep structural framework can advance the understanding of the development of a mineral system and the emplacement of mineral deposits.Deep geophysical exploration carried out with this aim is increasingly important for targeting new ore deposits in unexplored and underexplored regions(Dentith et al.,2018;Dentith,2019).
基金Project(XDA 29020100)supported by the Strategic Priority Research Program of the Chinese Academy of SciencesProject(2022YFE0206600)supported by National Key R&D Program of China。
文摘Fluidized reduction roasting is an efficient metallurgical technique.However,its application to nickel laterite ore has rarely been reported.In this paper,the effects of reduction temperature,reduction time,CO concentration,and material particle size on the roasting characteristics of ferronickel fluidization reduction were investigated.Combined with X-ray diffraction,scanning electron microscopy-energy dispersive spectrometry(SEM-EDS)characterization,the mineral phases and microscopic morphology of nickel laterite ore and its roasted ores were analyzed in depth.The results indicated that under the condition of a CO/CO_(2)ratio of 1:1,a reduction temperature of 800℃,and a reduction roasting time of 60 min,a nickel-iron concentrate with a nickel grade of 2.10%and an iron content of 45.96%was produced from a raw material with a nickel grade of 1.45%,achieving a remarkable nickel recovery rate of 46.26%.XRD and SEM-EDS analysis indicated that nickel in the concentrate mainly exists in the form of[Fe,Ni],while the unrecovered nickel in the tailings is primarily present in the form of[Fe,Ni]and Ni_(2)SiO_(4)in forsterite.This study established a theoretical foundation for further exploration of fluidized reduction roasting technology.
基金This work was financially supported by the National Natural Science Foundation of China(No.51874018)the Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMM-KJSKL-2022-07).
文摘Vanadium and its derivatives are used in various industries,including steel,metallurgy,pharmaceuticals,and aerospace engineering.Although China has massive reserves of stone coal resources,these resources have low grades.Therefore,the effective extraction and recovery of metallic vanadium from stone coal is an important way to realize the efficient resource utilization of stone coal vanadium ore.Herein,Bacillus mucilaginosus was selected as the leaching strain.The vanadium leaching rate reached 35.5%after 20 d of bioleaching under optimal operating conditions.The cumulative vanadium leaching rate in the contact group reached 35.5%,which was higher than that in the noncontact group(9.3%).The metabolites of B.mucilaginosus,such as oxalic,tartaric,citric,and malic acids,dominated in bioleaching,accounting for 73.8%of the vanadium leaching rate.Interestingly,during leaching,the presence of stone coal stimulated the expression of carbonic anhydrase in bacterial cells,and enzyme activity increased by 1.335-1.905 U.Enzyme activity positively promoted the production of metabolite organic acids,and total organic acid content increased by 39.31 mg·L^(-1),resulting in a reduction of 2.51 in the pH of the leaching system with stone coal.This effect favored the leaching of vanadium from stone coal.Atomic force microscopy illustrated that bacterial leaching exacerbated corrosion on the surface of stone coal beyond 10 nm.Our study provides a clear and promising strategy for exploring the bioleaching mechanism from the perspective of microbial enzyme activity and metabolites.
基金financially supported from the National Natural Science Foundation of China(No.52164021)the Natural Science Foundation of Yunnan Province,China(No.2019FB078)。
文摘The lime-depressed pyrite from Cu differential flotation tailings with acid mine drainage(AMD)as a natural activator was recovered.The effect of AMD on lime-depressed pyrite flotation was investigated by a series of laboratory flotation tests and surface analytical techniques.Flotation test results indicated that AMD could effectively activate the pyrite flotation with a sodium butyl xanthate(SBX)collector,and a high-quality sulfur concentrate was obtained.Pulp ion concentration analysis results indicated that AMD facilitated desorption of Ca~(2+)and adsorption of Cu~(2+)on the depressed-pyrite surface.Adsorption measurements and contact angle analysis results confirmed that adding AMD improved the adsorption amount of SBX collector on the pyrite surface and increased the contact angle by 31°.Results of Raman spectroscopy and X-ray photoelectron spectroscopy analysis indicated that AMD treatment promoted the formation of hydrophobic species(S~0 hydrophobic entity and copper sulfides)and the removal of hydrophilic calcium and iron species on the pyrite surface,which reinforced the adsorption of collector.The findings of the present research provide important theoretical basis and technical support for a cleaner production of copper sulfide ores.
基金supported by the Young Science and Technology Leader Training Plan Project of Jiangxi Bureau of Geology(Grant No.2024JXDZKJRC01)the Key Laboratory of Ionic Rare Earth Resources and Environment,Ministry of Natural Resources of the People's Republic of China(Grant No.2022IRERE101)+1 种基金the National Key R&D Program of China(Grant No.2020YFA0406400)the Jiangxi Geological Survey Project(Grant Nos.20210041 and 20242001)。
文摘The Tieshanlong ore field is an important part of the Nanling Range,which is famous worldwide for its W-Sn mineralization.Notably,the mineralization age of the Tieshanlong ore field is not well constrained,and our field investigation reveals that granitic emplacement occurred at different stages.However,previous studies have not distinguished these multiple stages of magmatism.The Tieshanlong granite complex is closely related to the Huangsha quartz vein-type W-Sn deposit and Tongling skarn-type Cu-W-Sn deposit in this field.Through field investigations and isotopic age analyses,this work studies the relationship between multistage magmatic activity and mineralization in the Tieshanlong ore field.LA-ICP-MS zircon U-Pb isotope analyses revealed that the first-and second-staged granites formed at 154.2±0.6 Ma(MSDW=1.4)and 151.2±0.4 Ma(MSDW=1.5),with zirconε_(Hf)(t)values ranging from-13.1 to-10.5 and from-14.7 to-11.1,respectively.These data suggest that the Tieshanlong granite complex was derived from the partial melting of ancient crustal material.LA-ICP-MS U-Pb dating of wolframite and cassiterite reveals that W-Sn mineralization occurred at 160-150 Ma,which agrees well with the U-Pb dating results of the second-staged granite within analytical errors.The magmatic activity in this ore field can be divided into three stages:175-154 Ma,154-150 Ma and 150-145 Ma.The quartz vein-and skarn-type W-Sn mineralization is closely related to second-staged fine-grained twomica granite,and formed earlier than skarn-type Cu-mineralization.This study establishes a metallogenic model for the Tieshanlong ore field,and this model has important practical significance for identifying concealed W-Sn(-Cu)deposits around other granitic complexes in the Nanling Range.
文摘The disposal of filtered tailings in high dry stacks can induce particle breakage,changing the material's behaviour during the structure's lifetime.The grading changes influence material properties at the critical state,and this is not mature for intermediate artificial soils(tailings)in a broad range of confining pressures.In this paper,it aims to describe the behaviour of iron ore tailings in a spectrum of confining pressures broader than the reported in previous studies.A series of consolidated drained(CD)triaxial tests was carried out with confining pressures ranging from 0.075 MPa to 120 MPa.These results show that the amount of breakage plays an essential role in the response of iron ore tailings.The existence of curved critical state line(CSL)in both specific volume(ν)-logarithm of mean effective stress(p′)and deviatoric stress(q)-mean effective stress(p′)planes,and different responses in the deviatoric stress-axial strain-volumetric strain curves were verified.An inverse S-shaped equation was proposed to represent the silty-sandy tailings'behaviour up to high pressures onν-lnp′plane.The proposed equation provides a basis for enhancing constitutive models and considers the evolution of the grading up to severe loading conditions.The adjustment considered three regions with different responses associated with particle breakage at different pressure levels.
基金funded by the “Laboratoire de Recherche Ressources, Matériaux et Ecosystémes”, University of Carthage 7021 Zarzouna, Bizerte, Tunisia
文摘The Ain El Bey abandoned mine, in North-West Tunisia, fits into the geodynamic context of the European and African plate boundary. Ore deposit corresponds to veins and breccia of multiphase Cu–Fe-rich mineralization related to various hydrothermal fluid circulations. Petromineralogical studies indicate a rich mineral paragenesis with a minimum of seven mineralization phases and, at least, six pyrite generations. As is also the case for galena and native silver, native gold is observed for the first time as inclusion in quartz which opens up, thus, new perspectives for prospecting and evaluating the potential for noble metals associated with the mineralization. Scanning Electron Microscope--Energy Dispersive Spectroscopy and Transmission electron microscopy analyses show, in addition, a large incorporation of trace elements, including Ag and Au, in mineral structures such as fahlores(tetrahedrite-tennantite) and chalcopyrite ones. The mineral/mineral associations, used as geothermometers, gave estimated temperatures for the mineralizing fluids varying from 254 to 330 ℃ for phase Ⅲ, from 254 to 350 ℃ for phase Ⅳ, and from 200 to 300 ℃ for phases Ⅴ and Ⅵ. The seventh and last identified mineralization phase, marked by a deposit of native gold, reflects a drop in the mineralizing fluid’s temperature(< 200 ℃) compatible with boiling conditions. Such results open up perspectives for the development of precious metal research and the revaluation of the Cu–Fe ore deposit at the Ain El Bey abandoned mine, as well as at the surrounding areas fitting in the geodynamic framework of the Africa-Europe plate boundary.
基金supported by State Key Laboratory of Mineral Processing (No.BGRIMM-KJSKL-2022-16)China Postdoctoral Science Foundation (No.2021M700387)+1 种基金National Natural Science Foundation of China (No.G2021105015L)Ministry of Science and Technology of the People’s Republic of China (No.2022YFC2904502)。
文摘X-ray fluorescence(XRF)sensor-based ore sorting enables efficient beneficiation of heterogeneous ores,while intraparticle heterogeneity can cause significant grade detection errors,leading to misclassifications and hindering widespread technology adoption.Accurate classification models are crucial to determine if actual grade exceeds the sorting threshold using localized XRF signals.Previous studies mainly used linear regression(LR)algorithms including simple linear regression(SLR),multivariable linear regression(MLR),and multivariable linear regression with interaction(MLRI)but often fell short attaining satisfactory results.This study employed the particle swarm optimization support vector machine(PSO-SVM)algorithm for sorting porphyritic copper ore pebble.Lab-scale results showed PSO-SVM out-performed LR and raw data(RD)models and the significant interaction effects among input features was observed.Despite poor input data quality,PSO-SVM demonstrated exceptional capabilities.Lab-scale sorting achieved 93.0%accuracy,0.24%grade increase,84.94%recovery rate,57.02%discard rate,and a remarkable 39.62 yuan/t net smelter return(NSR)increase compared to no sorting.These improvements were achieved by the PSO-SVM model with optimized input combinations and highest data quality(T=10,T is XRF testing times).The unsuitability of LR methods for XRF sensor-based sorting of investigated sample is illustrated.Input element selection and mineral association analysis elucidate element importance and influence mechanisms.
文摘Iron ore processing for steel production is crucial to the development and economy of Mongolia. Regardless of having abundant natural resources and raw materials, Mongolia almost doesn’t produce final products. So far, most mining and mineral beneficiation plants export raw materials only subjected to beneficiation process. Out of more than 200 deposits in Mongolia, 91 deposits had been explored with different methods and stages, and estimated the resource of 33 reserves. Without processing the iron ore, it is impossible to use it for steelmaking due to its high sulfur and phosphorus impurities. Therefore, to study the processing of iron ore deposits in Mongolia, we did a preliminary investigation of iron ore deposits and took samples from the Tamir Gol deposit with high silica and phosphorus content that is difficult to process. Then, conducted mineral analysis and determined the grain structure and beneficiation characteristics of Tamir Gol iron deposit. .
文摘The study was conducted to determine the applicability of gravity separation method on the Ashashire gold ore deposit Benishangul gumuz region, western Ethiopia. The Ashashire composite was produced to provide sufficient mass for this study and experiment, including sample preparation, mineralogical analysis of gold and associated elements, gravity concentration, and data interpretation and analysis. During the study, a grind optimization was conducted on the composites sample with varying grind size to evaluate the effect of grind size on gold recovery. The ore was moderately ground to the standard grind size of 80%, passing 106 µm, 75 µm, 53 µm and this nominal size was selected for the preliminary assessment for concentration optimization for this deposit. The gravity testing comprised three-stage concentration using Knelson concentrator. High recovery of gold from the gravity concentrates was achieved from the second gravity concentration. Based on the laboratory experimental result analysis, a grind size of P80 75 µm is selected as optimal size for the Ashashire gold deposit. Increasing the grind size from P80 of 75 µm to 106 µm decreases the recovery rate from 75% to 54%, or decreasing the grind size from P80 of 75 µm to 53 µm decreases the gold recovery rate to 37%. The native gold grain in the ores is mostly associated with quartz and fine gold is closely associated with pyrite. According to analysis of the fire assay, chemical, and mineralogical data, only gold and telluride is commercially valuable elements in the ores. Predominantly gold was occurred in the native form of Au-Te. The sample subjected to gravity separation assayed about 2.6 g/t Au.
基金financially supported by the National Natural Science Foundation of China(71991484,41971265,72088101,and 71991480)the National Key R&D program of China(2021YFC2901801)。
文摘Lithium production in China mainly depends on hard rock lithium ores,which has a defect in resources,environment,and economy compared with extracting lithium from brine.This paper focuses on the research progress of extracting lithium from spodumene,lepidolite,petalite,and zinnwaldite by acid,alkali,salt roasting,and chlorination methods,and analyzes the resource intensity,environmental impact,and production cost of industrial lithium extraction from spodumene and lepidolite.It is found that the sulfuric acid method has a high lithium recovery rate,but with a complicated process and high energy consumption;alkali and chlorination methods can directly react with lithium ores,reducing energy consumption,but need to optimize reaction conditions and safety of equipment and operation;the salt roasting method has large material flux and high energy consumption,so require adjustment of sulfate ratio to increase the lithium yield and reduce production cost.Compared with extracting lithium from brine,extracting lithium from ores,calcination,roasting,purity,and other processes consume more resources and energy;and its environmental impact mainly comes from the pollutants discharged by fossil energy,9.3-60.4 times that of lithium extracted from brine.The processing cost of lithium extraction from lepidolite by sulfate roasting method is higher than that from spodumene by sulfuric acid due to the consumption of high-value sulfate.However,the production costs of both are mainly affected by the price of lithium ores,which is less competitive than that of extracting lithium from brine.Thus,the process of extracting lithium from ores should develop appropriate technology,shorten the process flow,save resources and energy,and increase the recovery rate of related elements to reduce environmental impact and improve the added value of by-products and the economy of the process.
基金Financial supports for this work from National Natural Science Foundation of China(Nos.22078252 and 52274266)the Graduate Education Innovation Foundation of Wuhan Institute of Technology(No.CX2021463)the Young Top-notch Talent Cultivation Program of Hubei Province are greatly appreciated.
文摘Surfactants were proposed to be added into magnesium sulfate solution to improve the leaching process of weathered crust elution-deposited rare earth ores(WREOs).Effects of surfactants and their concentration on the seepage of leaching solutions and the leaching efficiency of rare earth(RE)and aluminum(Al)were investigated,and the leaching kinetics,the mass transfer process,the adhesion work and the adhesion work reduction factor were analyzed to reveal its strengthening leaching mechanism.The results show that cetyltrimethylammonium bromide(CTAB)has a better strengthening effect on the leaching process than dodecyl trimethyl ammonium bromide(DTAB),sodium dodecyl sulfate(SDS),sodium oleate and oleic acid.In the presence of 0.04%CTAB in 0.2 mol/L solution,the permeability coefficient of WREOs increases from 0.945×10^(-5)to 1.640×10^(-5)cm·s^(-1),and the leaching efficiency of RE increases from 80%to 90%,confirming the promotion of surfactants on the leaching process of WREOs.Kinetic analysis shows that the leaching process conforms to the inner diffusion control model,and the leaching kinetics equations of RE and Al related to CTAB content are obtained.Mass transfer discussion shows a smaller height equivalent to theoretical plate(HETP)of RE and Al at CTAB content of 0.04%,suggesting the higher mass transfer efficiency here.According to the interfacial properties of leaching solutions,the calculated adhesion work and the adhesion work reduction factor further demonstrate the strengthening leaching effect of CTAB on the leaching process of WREOs.
基金provided by the Opening Foundation of State Key Laboratory of Continental Dynamics(Grant No.21LCD08),Northwest University,China.
文摘The Dongnan Cu–Mo deposit,located in the southeast of the Zijinshan ore field(the largest porphyry–epithermal system in Southeast China),represents the complex magmatic and metallogenesis events in the region.The petrogenesis and metallogenesis of granitoids from the deposit are not determined,especially the interactions between ore-bearing(granodiorite porphyry)and barren samples(granodiorite and diorite).In the paper,the whole rock geochemical features shared a similar affinity to the middle-lower content and revealed that they derived from partial melting of the Cathaysian basement with the contribution of mantle materials,even represented that they generated in the plate subduction;LA-ICP-MS zircon U–Pb ages show that these granodiorites,granodioritic porphyry and diorite,were generated during 114–103 Ma.The ore-bearing samples mostly presented ε_(Hf)(t)of negative values(peak value is-4 to-3)with old two-stage Hf model ages(t_(DM)^(2))(peak value is 1.10–1.15 Ga),while the barren sample showed slightly negative ε_(Hf)(t)(peak value is-1 to 0)values with young t_(DM)^(2)(peak value is 1.00–1.05 Ga).The value of zircon Ce^(4+)/Ce^(3+)ratio mostly higher than 450 was first verified for the ore-bearing samples in the Dongnan Cu–Mo deposit,and the values of ore-bearing were found to be higher than those from the barren,which suggests that the ore-bearing formed in more oxidized parental magma with higher oxygen fugacity.Based on the geochemical characteristic of the element and isotope,we concluded that the Early Cretaceous multiphases magmatic activities,low melting temperature and low pressure of pluton,and high oxygen fugacity of zircon,were the favorable conditions for metallogenesis of Dongnan Cu–Mo deposit.
文摘Sensor-based ore sorting is a technology used to classify high-grade mineralized rocks from low-grade waste rocks to reduce operation costs.Many ore-sorting algorithms using color images have been proposed in the past,but only some validate their results using mineral grades or optimize the algorithms to classify rocks in real-time.This paper presents an ore-sorting algorithm based on image processing and machine learning that is able to classify rocks from a gold and silver mine based on their grade.The algorithm is composed of four main stages:(1)image segmentation and partition,(2)color and texture feature extraction,(3)sub-image classification using neural networks,and(4)a voting system to determine the overall class of the rock.The algorithm was trained using images of rocks that a geologist manually classified according to their mineral content and then was validated using a different set of rocks analyzed in a laboratory to determine their gold and silver grades.The proposed method achieved a Matthews correlation coefficient of 0.961 points,higher than other classification algorithms based on support vector machines and convolutional neural networks,and a processing time under 44 ms,promising for real-time ore sorting applications.
基金wish to express their appreciation to Vale S.A.and Brazilian Research Council(CNPq)for the support to the research group.
文摘The disposal of mining tailings has increasingly focused on the use of dry stacks.These structures offer more security since they use filtered and compacted material.Because of the construction method and the heights achieved,the material that compounds the structure can be subjected to different stress paths along the failure plane.The theoretical framework considered in the design of these structures generally is the critical state soil mechanics(CSSM).However,the data in the literature concerning the uniqueness of critical state line(CSL)is still controversial as the soil is subjected to different stress paths.With respect to tailings,this question is even more restricted.This paper studies two tailings with different gradings due to the beneficial processes over extension and compression paths.A series of drained and undrained triaxial tests was conducted over a range of initial densities and stress levels.In the q-p'plane,different critical stress ratio(M)values were obtained for compression and extension stress paths.However,the critical state friction angle is very similar with a slightly higher critical state friction angle for extension tests.Curved stress path dependent CSLs were obtained in the n-lnp0 plane with the extension tests below the CSL defined in compression.Regarding the fines content,the studied tailings presented very similar M and critical state friction angle values.However,the fines content af-fects the volumetric behavior of the studied tailings and the CSLs on the n-lnp0 plane shift downwards with the increasing fines content for compression and extension tests.In relation to dilatancy analysis,the fines content did not present an evident influence on the dilatancy of the materials.However,different values of mean stress ratio N were obtained between compression and extension tests and can corroborate the existence of non-unique CSLs for these materials.
基金financially supported by the National Key Research and Development Program of China(No.2020YFC1909803)the Basic Science Center Project for the National Natural Science Foundation of China(No.72088101)the Graduate Research and Innovative Project of Central South University(No.506021739)。
文摘To realize the comprehensive utilization of ludwigite ore,an integrated and efficient route for the boron and iron separation was proposed in this work,which via soda-ash roasting under CO–CO_(2)–N_(2) atmosphere followed by grind-leaching,magnetic separation,and CO_(2) carbonation.The effects of roasting temperature,roasting time,CO/(CO+CO_(2))composition,and Na_(2)CO_(3) dosage on the boron and iron separation indices were primarily investigated.Under the optimized conditions of the roasting temperature of 850℃,roasting time of 60 min,soda ash dosage of 20 wt%,and CO/(CO+CO_(2)) of 10 vol%,92%of boron was leached during wet grinding,and 88.6%of iron was recovered during the magnetic separation and magnetic concentrate with a total iron content of 61.51 wt%.Raman spectra and^(11)B NMR results indicated that boron exists asB(OH)_(4)^(-) in the leachate,from which high-purity borax pentahydrate could be prepared by CO_(2) carbonation.