Negative electrodes of the Ni-metal hydride battery were made from hydrogen storage alloy Mm0.9Ti0. 1Ni3. 9Mn0.4Co0.4Al0.3 mod fied by coating with Ni or mixing with Co powder. The cell volume expansion of hexagonal s...Negative electrodes of the Ni-metal hydride battery were made from hydrogen storage alloy Mm0.9Ti0. 1Ni3. 9Mn0.4Co0.4Al0.3 mod fied by coating with Ni or mixing with Co powder. The cell volume expansion of hexagonal structure was about 12 % after coating with 11 % Ni on the alloy Surface,When this alloy was mixed with Co powder. the discharge capacity and the utilization efficiency of the hydrogen storage alloy increased. When the alloy was coated with 11 wt-% Ni and also mixed with 10 wt-% Co powder. the capacity decay for a small sealed cylindrical cell (AA size. 1 Ah) was only about 4 % after 200 cycles展开更多
The electrochemical characteristics and crystal structure of metal hydride electrode of AB_(3.5)-type alloy was studied. The electrochemical properties of the metal hydride electrode were investigated at room temperat...The electrochemical characteristics and crystal structure of metal hydride electrode of AB_(3.5)-type alloy was studied. The electrochemical properties of the metal hydride electrode were investigated at room temperature and -30 ℃. The partial substitution of Ni by Al element causes an expansion of the lattice cell and increases the specific capacity and rate discharge ability of the alloy.展开更多
We reported the effects of annealing temperatures on microstructure and electrochemical properties of perovskite-type oxide LaFeO3 prepared by stearic acid combustion method. X-Ray diffraction(XRD) patterns show tha...We reported the effects of annealing temperatures on microstructure and electrochemical properties of perovskite-type oxide LaFeO3 prepared by stearic acid combustion method. X-Ray diffraction(XRD) patterns show that the annealed LaFeO3 powder has orthorhombic structure. Scanning electron microscopy(SEM) and transmission electron microscopy(TEM) images show the presence of homogeneously dispersed, less aggregated, and small crystals(30--40 nm) at annealing temperatures of 500 and 600 ℃. However, as the annealing temperature was increased to 700 and 800 ℃, the crystals began to combine with each other and grew into further larger crystals(90--100 nm). The electrochemical performance of the annealed oxides was measured at 60 ℃ using chronopotentiometry, potentiodynamic polarization, and cyclic voltammetry. As the annealing temperature increased, the discharge capacity and anti-corrosion ability of the oxide electrode first increased and then decreased, reaching the optimum values at 600 ℃, with a maximum discharge capacity of 563 mA-h/g. The better electrochemical performance of LaFeO3 annealed at 600℃ could be ascribed to their smaller and more homogeneous crysals.展开更多
In order to investigate the effect of substituting La with Pr on structural and hydrogen storage properties of La-Mg-Ni system (AB3.5-type) hydrogen storage alloys, a series of La0.65-xPrxNd0.12Mg0.23Ni3.4Al0.1(x=0...In order to investigate the effect of substituting La with Pr on structural and hydrogen storage properties of La-Mg-Ni system (AB3.5-type) hydrogen storage alloys, a series of La0.65-xPrxNd0.12Mg0.23Ni3.4Al0.1(x=0, 0.10, 0.15, 0.2) hydrogen storage alloys were prepared. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) analyses revealed that two alloys (x=0.0 and 0.10) were composed of (La,Mg)2(Ni,Al)7 phase, La(Ni,A1)5 phase and (La,Mg)Ni2 phase, while other alloys (x=0.15 and 0.20) consisted of (La,Mg)2(Ni,A1)7 phase, La(Ni,A1)5 phase, (La,Mg)Ni2 phase and (La,Mg)(Ni,A1)3 phase. All alloys showed, however, only one pressure plateau in P-C isotherms. The Pr/La ratio in alloy composition influenced hydrogen storage capacity and kinetics properties. Electrochemical studies showed that the discharge capacity decreased from 360 mAh/g (x=-0.00) to 335 mAh/g (x=-0.20) as x increased. But the high-rate dischargeability (HRD) of alloy electrodes increased from 26% (x=0.00) to 56% (x=-0.20) at a discharge current density of Id=1800 mA/g. Anode polarization measurements were done to further understand the electrochemical kinetics properties after Pr substitution.展开更多
文摘Negative electrodes of the Ni-metal hydride battery were made from hydrogen storage alloy Mm0.9Ti0. 1Ni3. 9Mn0.4Co0.4Al0.3 mod fied by coating with Ni or mixing with Co powder. The cell volume expansion of hexagonal structure was about 12 % after coating with 11 % Ni on the alloy Surface,When this alloy was mixed with Co powder. the discharge capacity and the utilization efficiency of the hydrogen storage alloy increased. When the alloy was coated with 11 wt-% Ni and also mixed with 10 wt-% Co powder. the capacity decay for a small sealed cylindrical cell (AA size. 1 Ah) was only about 4 % after 200 cycles
文摘The electrochemical characteristics and crystal structure of metal hydride electrode of AB_(3.5)-type alloy was studied. The electrochemical properties of the metal hydride electrode were investigated at room temperature and -30 ℃. The partial substitution of Ni by Al element causes an expansion of the lattice cell and increases the specific capacity and rate discharge ability of the alloy.
基金Supported by the National Natural Science Foundation of China(Nos. 51771164, 51571173 and 51701175).
文摘We reported the effects of annealing temperatures on microstructure and electrochemical properties of perovskite-type oxide LaFeO3 prepared by stearic acid combustion method. X-Ray diffraction(XRD) patterns show that the annealed LaFeO3 powder has orthorhombic structure. Scanning electron microscopy(SEM) and transmission electron microscopy(TEM) images show the presence of homogeneously dispersed, less aggregated, and small crystals(30--40 nm) at annealing temperatures of 500 and 600 ℃. However, as the annealing temperature was increased to 700 and 800 ℃, the crystals began to combine with each other and grew into further larger crystals(90--100 nm). The electrochemical performance of the annealed oxides was measured at 60 ℃ using chronopotentiometry, potentiodynamic polarization, and cyclic voltammetry. As the annealing temperature increased, the discharge capacity and anti-corrosion ability of the oxide electrode first increased and then decreased, reaching the optimum values at 600 ℃, with a maximum discharge capacity of 563 mA-h/g. The better electrochemical performance of LaFeO3 annealed at 600℃ could be ascribed to their smaller and more homogeneous crysals.
基金supported by the Key Projects in International Science and Technology Cooperation from Ministry of Science and Technology of the PRC (2006DFB52550, 2007DFA51020)the National Natural Science Foundation of China (20363001)
文摘In order to investigate the effect of substituting La with Pr on structural and hydrogen storage properties of La-Mg-Ni system (AB3.5-type) hydrogen storage alloys, a series of La0.65-xPrxNd0.12Mg0.23Ni3.4Al0.1(x=0, 0.10, 0.15, 0.2) hydrogen storage alloys were prepared. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) analyses revealed that two alloys (x=0.0 and 0.10) were composed of (La,Mg)2(Ni,Al)7 phase, La(Ni,A1)5 phase and (La,Mg)Ni2 phase, while other alloys (x=0.15 and 0.20) consisted of (La,Mg)2(Ni,A1)7 phase, La(Ni,A1)5 phase, (La,Mg)Ni2 phase and (La,Mg)(Ni,A1)3 phase. All alloys showed, however, only one pressure plateau in P-C isotherms. The Pr/La ratio in alloy composition influenced hydrogen storage capacity and kinetics properties. Electrochemical studies showed that the discharge capacity decreased from 360 mAh/g (x=-0.00) to 335 mAh/g (x=-0.20) as x increased. But the high-rate dischargeability (HRD) of alloy electrodes increased from 26% (x=0.00) to 56% (x=-0.20) at a discharge current density of Id=1800 mA/g. Anode polarization measurements were done to further understand the electrochemical kinetics properties after Pr substitution.