Phytophthora nicotianae causes substantial economic losses in most countries where tobacco is produced.At present,the control of P.nicotianae mainly depends on chemical methods,with considerable environmental and heal...Phytophthora nicotianae causes substantial economic losses in most countries where tobacco is produced.At present,the control of P.nicotianae mainly depends on chemical methods,with considerable environmental and health issues.We investigated the effects of ethanol extracts from Scutellaria baicalensis Georgi(SBG)and Magnolia officinalis(MO).On mycelial growth,sporangium formation,and zoospore release of P.nicotianae.Both extracts inhibited the growth of P.nicotianae,with mycelial growth inhibition rates of 88.92%and 93.92%,respectively,at 40 mg/mL,and EC50 values of 5.39 and 5.74 mg/mL,respectively.The underlying mechanisms were the inhibition of sporangium formation,the reduction of zoospore number,and the destruction of the mycelium structure.At an SBG extract concentration of 16.17 mg/mL,the inhibition rates for sporangia and zoospores were 98.66%and 99.39%,respectively.At an MO extract concentration of 2.87 mg/mL,the production of sporangia and zoospores was completely inhibited.The hyphae treated with the two plant extracts showed different degrees of deformation and damage.Hyphae treated with SBG extract showed adhesion and local swelling,whereas treatment with MO extract resulted in broken hyphae.Mixture of the extracts resulted in a good synergistic effect.展开更多
以Web of Science核心数据库中2013—2022年中国烟草(Nicotiana tabacum L.)研究相关学术论文为研究对象,运用文献计量可视化软件CiteSpace对其进行作者、机构合作分析,关键词共现分析和文献共被引分析。结果表明,检索范围内2013—2022...以Web of Science核心数据库中2013—2022年中国烟草(Nicotiana tabacum L.)研究相关学术论文为研究对象,运用文献计量可视化软件CiteSpace对其进行作者、机构合作分析,关键词共现分析和文献共被引分析。结果表明,检索范围内2013—2022年中国关于烟草的研究论文共10391篇,发文量总体呈上升趋势,研究领域广泛。对原始数据除重后获得9891条文献信息。研究机构以中国科学院及中国农业科学院为主,研究学者以胡秋芬、胡德禹及其所在团队群体较为突出。中国烟草研究热点涉及烟草基因细胞、烟草生长发育、烟草制品等对人类的影响,涵盖了烟草基因研究、抗性研究和相关调查等方面。其中,关于烟草的各种调查研究的相关文献影响力最强。科研人员对中国烟草展开了多方面的研究,研究多关注与烟草相关的民生问题。展开更多
Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) is a bacterial pathogen of tomato and of the model plants Arabidopsis and Nicotiana benthamiana (N. benthamiana). Like numerous Gram-negative bacterial pathogens of ...Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) is a bacterial pathogen of tomato and of the model plants Arabidopsis and Nicotiana benthamiana (N. benthamiana). Like numerous Gram-negative bacterial pathogens of animals and plants, Pst DC3000 exploits the conserved type III secretion system (TTSS) to deliver multiple virulence effectors directly into the host cells. Type III effectors (T3Es) collectively participate in causing disease, by mechanisms that are not well clarity. Elucidating the virulence function of individual effector is fundamental for understanding bacterial infection of plants. Here, we focused on studying one of these effectors, HopAA1-1, and analyzed its potential function and subcellular localization in N. benthamiana. Using an Agrobacterium-mediated transient expression system, we found that HopAA1-1 can trigger domain-dependent cell death in N. benthamiana. The observation using confocal microscopy showed that the YFP-tagged HopAA1-1 localizes to diverse cellular components containing nucleus, cytoplasm and cell membrane, which was demonstrated through immunoblot analysis of membrane fractionation and nuclear separation. Enforced HopAA1-1 subcellular localization, by tagging with a nuclear localization sequence (NLS) or a nuclear export sequence (NES), shows that HopAA1-1-induced cell death in N. benthamiana is suppressed in the nucleus but enhanced in the cytoplasm. Our research is lay a foundation for revealed the molecular pathogenesis of Pseudomonas syringae pv. tomato.展开更多
Coding sequences (CDS) are commonly used for transient gene expression, in yeast two-hybrid screening, to verify protein interactions and in prokaryotic gene expression studies. CDS are most commonly obtained using co...Coding sequences (CDS) are commonly used for transient gene expression, in yeast two-hybrid screening, to verify protein interactions and in prokaryotic gene expression studies. CDS are most commonly obtained using complementary DNA (cDNA) derived from messenger RNA (mRNA) extracted from plant tissues and generated by reverse transcription. However, some CDS are difficult to acquire through this process as they are expressed at extremely low levels or have specific spatial and/or temporal expression patterns in vivo. These challenges require the development of alternative CDS cloning technologies. In this study, we found that the genomic intron-containing gene coding sequences (gDNA) from Arabidopsis thaliana, Oryza sativa, Brassica napus, and Glycine max can be correctly transcribed and spliced into mRNA in Nicotiana benthamiana. In contrast, gDNAs from Triticum aestivum and Sorghum bicolor did not function correctly. In transient expression experiments, the target DNA sequence is driven by a constitutive promoter. Theoretically, a sufficient amount of mRNA can be extracted from the N. benthamiana leaves, making it conducive to the cloning of CDS target genes. Our data demonstrate that N. benthamiana can be used as an effective host for the cloning CDS of plant genes.展开更多
Nucleotide-binding site leucine-rich repeat receptors (NBS-LRR/NLRs) are crucial intracellular immune proteins in plants. Previous article reported a novel NLR protein SUT1 (SUPPRESSORS OF TOPP4-1, 1), which is involv...Nucleotide-binding site leucine-rich repeat receptors (NBS-LRR/NLRs) are crucial intracellular immune proteins in plants. Previous article reported a novel NLR protein SUT1 (SUPPRESSORS OF TOPP4-1, 1), which is involved in autoimmunity initiated by type one protein phosphatase 4 mutation (topp4-1) in Arabidopsis, however, its role in planta is still unclear. This study employed Nicotiana benthamiana, a model platform, to conduct an overall structural and functional analysis of SUT1 protein. The transient expression results revealed that SUT1 is a typical CNL (CC-NBS-LRR) receptor, both fluorescence data and biochemical results showed the protein is mainly anchored on the plasma membrane due to its N-terminal acylation site. Further truncation experiments announced that its CC (coiled-coil) domain possessed cell-death-inducing activity. The outcomes of point mutations analysis revealed that not only the CC domain, but also the full-length SUT1 protein, whose function and subcellular localization are influenced by highly conserved hydrophobic residues. These research outcomes provided favorable clues for elucidating the activation mechanism of SUT1.展开更多
基金funded by financial grants from the Education Department of Hunan Province(SCX1840 and CX20190515).
文摘Phytophthora nicotianae causes substantial economic losses in most countries where tobacco is produced.At present,the control of P.nicotianae mainly depends on chemical methods,with considerable environmental and health issues.We investigated the effects of ethanol extracts from Scutellaria baicalensis Georgi(SBG)and Magnolia officinalis(MO).On mycelial growth,sporangium formation,and zoospore release of P.nicotianae.Both extracts inhibited the growth of P.nicotianae,with mycelial growth inhibition rates of 88.92%and 93.92%,respectively,at 40 mg/mL,and EC50 values of 5.39 and 5.74 mg/mL,respectively.The underlying mechanisms were the inhibition of sporangium formation,the reduction of zoospore number,and the destruction of the mycelium structure.At an SBG extract concentration of 16.17 mg/mL,the inhibition rates for sporangia and zoospores were 98.66%and 99.39%,respectively.At an MO extract concentration of 2.87 mg/mL,the production of sporangia and zoospores was completely inhibited.The hyphae treated with the two plant extracts showed different degrees of deformation and damage.Hyphae treated with SBG extract showed adhesion and local swelling,whereas treatment with MO extract resulted in broken hyphae.Mixture of the extracts resulted in a good synergistic effect.
文摘以Web of Science核心数据库中2013—2022年中国烟草(Nicotiana tabacum L.)研究相关学术论文为研究对象,运用文献计量可视化软件CiteSpace对其进行作者、机构合作分析,关键词共现分析和文献共被引分析。结果表明,检索范围内2013—2022年中国关于烟草的研究论文共10391篇,发文量总体呈上升趋势,研究领域广泛。对原始数据除重后获得9891条文献信息。研究机构以中国科学院及中国农业科学院为主,研究学者以胡秋芬、胡德禹及其所在团队群体较为突出。中国烟草研究热点涉及烟草基因细胞、烟草生长发育、烟草制品等对人类的影响,涵盖了烟草基因研究、抗性研究和相关调查等方面。其中,关于烟草的各种调查研究的相关文献影响力最强。科研人员对中国烟草展开了多方面的研究,研究多关注与烟草相关的民生问题。
文摘Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) is a bacterial pathogen of tomato and of the model plants Arabidopsis and Nicotiana benthamiana (N. benthamiana). Like numerous Gram-negative bacterial pathogens of animals and plants, Pst DC3000 exploits the conserved type III secretion system (TTSS) to deliver multiple virulence effectors directly into the host cells. Type III effectors (T3Es) collectively participate in causing disease, by mechanisms that are not well clarity. Elucidating the virulence function of individual effector is fundamental for understanding bacterial infection of plants. Here, we focused on studying one of these effectors, HopAA1-1, and analyzed its potential function and subcellular localization in N. benthamiana. Using an Agrobacterium-mediated transient expression system, we found that HopAA1-1 can trigger domain-dependent cell death in N. benthamiana. The observation using confocal microscopy showed that the YFP-tagged HopAA1-1 localizes to diverse cellular components containing nucleus, cytoplasm and cell membrane, which was demonstrated through immunoblot analysis of membrane fractionation and nuclear separation. Enforced HopAA1-1 subcellular localization, by tagging with a nuclear localization sequence (NLS) or a nuclear export sequence (NES), shows that HopAA1-1-induced cell death in N. benthamiana is suppressed in the nucleus but enhanced in the cytoplasm. Our research is lay a foundation for revealed the molecular pathogenesis of Pseudomonas syringae pv. tomato.
文摘Coding sequences (CDS) are commonly used for transient gene expression, in yeast two-hybrid screening, to verify protein interactions and in prokaryotic gene expression studies. CDS are most commonly obtained using complementary DNA (cDNA) derived from messenger RNA (mRNA) extracted from plant tissues and generated by reverse transcription. However, some CDS are difficult to acquire through this process as they are expressed at extremely low levels or have specific spatial and/or temporal expression patterns in vivo. These challenges require the development of alternative CDS cloning technologies. In this study, we found that the genomic intron-containing gene coding sequences (gDNA) from Arabidopsis thaliana, Oryza sativa, Brassica napus, and Glycine max can be correctly transcribed and spliced into mRNA in Nicotiana benthamiana. In contrast, gDNAs from Triticum aestivum and Sorghum bicolor did not function correctly. In transient expression experiments, the target DNA sequence is driven by a constitutive promoter. Theoretically, a sufficient amount of mRNA can be extracted from the N. benthamiana leaves, making it conducive to the cloning of CDS target genes. Our data demonstrate that N. benthamiana can be used as an effective host for the cloning CDS of plant genes.
文摘Nucleotide-binding site leucine-rich repeat receptors (NBS-LRR/NLRs) are crucial intracellular immune proteins in plants. Previous article reported a novel NLR protein SUT1 (SUPPRESSORS OF TOPP4-1, 1), which is involved in autoimmunity initiated by type one protein phosphatase 4 mutation (topp4-1) in Arabidopsis, however, its role in planta is still unclear. This study employed Nicotiana benthamiana, a model platform, to conduct an overall structural and functional analysis of SUT1 protein. The transient expression results revealed that SUT1 is a typical CNL (CC-NBS-LRR) receptor, both fluorescence data and biochemical results showed the protein is mainly anchored on the plasma membrane due to its N-terminal acylation site. Further truncation experiments announced that its CC (coiled-coil) domain possessed cell-death-inducing activity. The outcomes of point mutations analysis revealed that not only the CC domain, but also the full-length SUT1 protein, whose function and subcellular localization are influenced by highly conserved hydrophobic residues. These research outcomes provided favorable clues for elucidating the activation mechanism of SUT1.