期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
Nicotine alpha 4 beta 2 receptor-mediated free calcium in an animal model of facial nucleus injury 被引量:1
1
作者 Dawei Sun Wenhai Sun +6 位作者 Yanqing Wang Fugao Zhu Rui Zhou Yanjun Wang Banghua Liu Xiuming Wan Huamin Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第19期1500-1504,共5页
Previous studies have demonstrated that the cholinergic system, via nicotinic receptors, regulates intracellular free calcium levels in the facial nucleus under normal physiological conditions. However, the regulation... Previous studies have demonstrated that the cholinergic system, via nicotinic receptors, regulates intracellular free calcium levels in the facial nucleus under normal physiological conditions. However, the regulation of nicotinic receptors on free calcium levels following facial nerve injury remains unclear. In the present study, an animal model of facial nerve injury was established, and changes in nicotinic receptor expression following facial nerve injury in rats were detected using reverse transcription polymerase chain reaction. Nicotinic receptor-mediated changes of free calcium levels following facial nucleus injury were determined by laser confocal microscopy. Results showed no significant difference in nicotinic receptor expression between the normal group and the affected facial nerve nucleus. The nicotinic receptor a4132 subtype increased free calcium levels following facial nerve injury by promoting calcium transmembrane influx, and L-type voltage-gated calcium channel-mediated influx of calcium ions played an important role in promoting calcium transmembrane influx. The nicotinic receptor-mediated increase of free calcium levels following facial nerve injury provides an important mechanism for the repair of facial nerve injury. 展开更多
关键词 facial nerve injury nicotinic receptor CHOLINE CALCIUM peripheral nerve injury
下载PDF
Cloning and Sequence of Nicotinic Acetylcholine Receptor α Subunit from Chilo suppressalis 被引量:6
2
作者 韩招久 韩召军 《Zoological Research》 CAS CSCD 北大核心 2002年第1期7-13,共7页
Nicotinic acetylcholine receptors (nAChRs) play a significant role in excitatory synaptic transmission in insects and are the target for chloronicotinyl and nereistoxin insecticides.In recent years,Chilo suppressalis,... Nicotinic acetylcholine receptors (nAChRs) play a significant role in excitatory synaptic transmission in insects and are the target for chloronicotinyl and nereistoxin insecticides.In recent years,Chilo suppressalis,an economically important pest of rice,developed high resistance against monosultap,a nereistoxin insecticide acting on nAChR.In order to reveal the hypothesized target insensitive mechanism,studies on the molecular property of nAChR from Chilo suppressalis are required.In this study,the full length cDNA of nAChR α subunit from this pest was cloned by RT-PCR.Sequence analysis shows that it is a novel nAChR α subunit,which was named as Cs α 1(Genbank accession No.AF418987).It contains 1?997?bp nucleotides and involves an open reading frame (ORF) encoding a mature protein of 509 amino acids excluding a signal peptide of 24 amino acids.The deduced amino acid sequence was 52%-94% identical to the reported insect nAChR genes. 展开更多
关键词 Chilo suppressalis Gene cloning Nicotinic acetylcholine receptor α subunit
下载PDF
Inhibitory effects of synthetic cannabinoid WIN55,212-2 on nicotine-activated currents in rat trigeminal ganglion neurons
3
作者 Yongli LU Changjin Liu Hongwei Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第8期610-616,共7页
Cannabinoid and nicotinic acetylcholine receptors are strongly associated with algesia. Previous studies in our laboratory have reported inhibitory effects of synthetic cannabinoid WIN55, 212-2 on nicotine-activated c... Cannabinoid and nicotinic acetylcholine receptors are strongly associated with algesia. Previous studies in our laboratory have reported inhibitory effects of synthetic cannabinoid WIN55, 212-2 on nicotine-activated currents (Inic), but the underlying mechanisms remain poorly understood. The present study used whole-cell patch clamp techniques to investigate the modulatory effects of synthetic cannabinoid WIN55, 212-2 on Inic in cultured rat trigeminal ganglion neurons. The results revealed several major findings: WIN55, 212-2 inhibited Inic in rat trigeminal ganglion neurons. In addition, when WIN55, 212-2 (3 μmol/L) was applied simultaneously with nicotine (100 μmol/L), the inhibition of WIN55, 212-2 on Inic was reversible, concentration-dependent and voltage-independent This effect was not mediated by CB1, CB2 or VR1 receptors; neither the selective CB1 receptor antagonist AM281, CB2 receptor antagonist AM630 nor VR1 receptor antagonist capsazepine reduced the inhibitory effect of WIN55, 212-2. Further, the inhibition of nicotinic responses by WIN55, 212-2 was not sensitive to the membrane permeable cyclic adenosine monophosphate (cAMP) analog 8-Br-cAMP. The G-protein inhibitor GDP-I3-S (1 mmol/L) did not block the inhibitory effects of WIN55, 212-2 on/n^c, excluding the involvement of G-protein mediation. The results suggested that WIN55, 212-2 inhibits/n^o directly via the neuronal nicotinic acetylcholine receptor, and that this inhibition is non-competitive. WIN55, 212-2 did not act as an open channel blocker of the neuronal nicotinic acetylcholine receptor, and did not affect the desensitization of Into. The results suggest that nicotine receptors may be physically plugged from outside the membrane by drugs containing WIN55, 212-2. 展开更多
关键词 nicotine receptor CANNABINOID whole-cell patch clamp trigeminal ganglion neurons
下载PDF
Therapeutic potential of α7 nicotinic receptor agonists to regulate neuroinflammation in neurodegenerative diseases 被引量:3
4
作者 Laura Foucault-Fruchard Daniel Antier 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第9期1418-1421,共4页
Neurodegenerative diseases, such as Alzheimer's, Parkinson's and Huntington's diseases, are all character- ized by a component of innate immunity called neuroinflammation. Neuronal loss and neuroinflammation are tw... Neurodegenerative diseases, such as Alzheimer's, Parkinson's and Huntington's diseases, are all character- ized by a component of innate immunity called neuroinflammation. Neuronal loss and neuroinflammation are two phenomena closely linked. Hence, the neuroinflammation is a relevant target for the management of the neurodegenerative diseases given that, to date, there is no treatment to stop neuronal loss. Several studies have investigated the potential effects of activators of alpha 7 nicotinic acetylcholine receptors in animal models of neurodegenerative diseases. These receptors are widely distributed in the central nervous system. After activation, they seem to mediate the cholinergic anti-inflammatory pathway in the brain. This anti-inflammatory pathway, first described in periphery, regulates activation of microglial cells considered as the resident macrophage population of the central nervous system. In this article, we shortly review the agonists of the alpha 7 nicotinic acetylcholine receptors that have been evaluated in vivo and we focused on the selective positive allosteric modulators of these receptors. These compounds represent a key element to enhance receptor activity only in the presence of the endogenous agonist. 展开更多
关键词 α7 nicotinic receptors cholinergic anti-inflammatory pathway Alzheimer's disease Huntington's disease Parkinson's disease NEUROINFLAMMATION NEURODEGENERATION positive allosteric modulators
下载PDF
Alpha-7 nicotinic acetylcholine receptor agonist treatment in a rat model of Huntington's disease and involvement of heme oxygenase-1 被引量:3
5
作者 Laura Foucault-Fruchard Claire Tronel +4 位作者 Sylvie Bodard Zuhal Gulhan Julie Busson Sylvie Chalon Daniel Antier 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第4期737-741,共5页
Neuroinflammation is a common element involved in the pathophysiology of neurodegenerative diseases.We recently reported that repeated alpha-7 nicotinic acetylcholine receptor(α7 n ACh R) activations by a potent ag... Neuroinflammation is a common element involved in the pathophysiology of neurodegenerative diseases.We recently reported that repeated alpha-7 nicotinic acetylcholine receptor(α7 n ACh R) activations by a potent agonist such as PHA 543613 in quinolinic acid-injured rats exhibited protective effects on neurons.To further investigate the underlying mechanism,we established rat models of early-stage Huntington's disease by injection of quinolinic acid into the right striatum and then intraperitoneally injected 12 mg/kg PHA 543613 or sterile water,twice a day during 4 days.Western blot assay results showed that the expression of heme oxygenase-1(HO-1),the key component of the cholinergic anti-inflammatory pathway,in the right striatum of rat models of Huntington's disease subjected to intraperitoneal injection of PHA 543613 for 4 days was significantly increased compared to the control rats receiving intraperitoneal injection of sterile water,and that the increase in HO-1 expression was independent of change in α7 n ACh R expression.These findings suggest that HO-1 expression is unrelated to α7 n ACh R density and the increase in HO-1 expression likely contributes to α7 n ACh R activation-related neuroprotective effect in early-stage Huntington's disease. 展开更多
关键词 alpha 7 nicotinic receptor PHA 543613 quinolinic acid cholinergic anti-inflammatory pathway NEUROINFLAMMATION neurodegenerative disease
下载PDF
Possible implications of dysregulated nicotinic acetylcholine receptor diffusion and nanocluster formation in myasthenia gravis 被引量:4
6
作者 Francisco J.Barrantes 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第2期242-246,共5页
Myasthenia gravis is a rare and invalidating disease affecting the neuromuscular junction of voluntary muscles.The classical form of this autoimmune disease is characterized by the presence of antibodies against the m... Myasthenia gravis is a rare and invalidating disease affecting the neuromuscular junction of voluntary muscles.The classical form of this autoimmune disease is characterized by the presence of antibodies against the most abundant protein in the neuromuscular junction,the nicotinic acetylcholine receptor.Other variants of the disease involve autoimmune attack of non-receptor scaffolding proteins or enzymes essential for building or maintaining the integrity of this peripheral synapse.This review summarizes the participation of the above proteins in building the neuromuscular junction and the destruction of this cholinergic synapse by autoimmune aggression in myasthenia gravis.The review also covers the application of a powerful biophysical technique,superresolution optical microscopy,to image the nicotinic receptor in live cells and follow its motional dynamics.The hypothesis is entertained that anomalous nanocluster formation by antibody crosslinking may lead to accelerated endocytic internalization and elevated turnover of the receptor,as observed in myasthenia gravis. 展开更多
关键词 AGRIN autoimmune diseases muscle end-plate muscle specific kinase MUSK myasthenia gravis NANOSCOPY neuromuscular junction nicotinic acetylcholine receptor RAPSYN superresolution microscopy
下载PDF
Identification of α7 nicotinic acetylcholine receptor on hippocampal astrocytes cultured in vitro and its role on inflammatory mediator secretion 被引量:3
7
作者 Yan Wang Ning Zhu +2 位作者 Kewan Wang Zhongyi Zhang Yong Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第22期1709-1714,共6页
The present study found expressions of a7 nicotinic acetylcholine receptor on hippocampal slices and hippocampal astrocytes using double immunofluorescence stainings. Expression of glial fibdllary acidic protein in th... The present study found expressions of a7 nicotinic acetylcholine receptor on hippocampal slices and hippocampal astrocytes using double immunofluorescence stainings. Expression of glial fibdllary acidic protein in the cultured hippocampal slices and hippocampal astrocytes significantly increased, and levels of macrophage inflammatory protein la, RANTES, interleukin-1β, intedeukin-6, and tumor necrosis factor-α increased in the supernatant of cultured astrocytes following exposure to 200 nM amyloid 13 protein 1-42. Preconditioning of 10 μM nicotine, a nicotinic acetylcholine receptor agonist, could attenuate the influence of amyloid β protein 1-42 in inflammatory mediator secretion of cultured astrocytes. Experimental findings indicated that α7 nicotinic acetylcholine receptor was expressed on the surface of hippocampal astrocytes, and activated a7 nicotinic acetylcholine receptor was shown to inhibit inflammation induced by amyloid β protein 1-42. 展开更多
关键词 α7 nicotinic acetylcholine receptor ASTROCYTES inflammation CYTOKINES chemotactic factor amyloidβ protein HIPPOCAMPUS neural regeneration
下载PDF
Targeting α7 nicotinic acetylcholine receptors: a future potential for neuroprotection from traumatic brain injury 被引量:3
8
作者 Samuel S.Shin C.Edward Dixon 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第10期1552-1554,共3页
Traumatic brain injury (TBI) poses a significant socioeconomic burden in the world. The long lasting consequences in cognitive impairments are often underreported and its mechanisms are unclear. In this perspective,... Traumatic brain injury (TBI) poses a significant socioeconomic burden in the world. The long lasting consequences in cognitive impairments are often underreported and its mechanisms are unclear. In this perspective, cholinergic dysfunction and thera-peutic strategy targeting this will be reviewed. Novel agents that can target specific subtype of acetylcholine receptors have been developed over the recent years and are at various stages of development, which include AR-R 17779, GTS-21, SSR- 180711A, AR-R17779, and PNU-282987. A detailed review on this topic has been previously published (Shin and Dixon, 2015). 展开更多
关键词 TBI nicotinic acetylcholine receptors TARGETING a future potential for neuroprotection from traumatic brain injury ACH
下载PDF
Neuroprotective and anti-inflammatory effects of a therapy combining agonists of nicotinic α7 and σ1 receptors in a rat model of Parkinson’s disease 被引量:3
9
作者 Steven Vetel Laura Foucault-Fruchard +6 位作者 Claire Tronel Frédéric Buron Jackie Vergote Sylvie Bodard Sylvain Routier Sophie Sérrière Sylvie Chalon 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第6期1099-1104,共6页
To date there is no treatment able to stop or slow down the loss of dopaminergic neurons that characterizes Parkinson’s disease.It was recently observed in a rodent model of Alzheimer’s disease that the interaction ... To date there is no treatment able to stop or slow down the loss of dopaminergic neurons that characterizes Parkinson’s disease.It was recently observed in a rodent model of Alzheimer’s disease that the interaction between the α7 subtype of nicotinic acetylcholine receptor(α7-nAChR)and sigma-1 receptor(σ1-R)could exert neuroprotective effects through the modulation of neuroinflammation which is one of the key components of the pathophysiology of Parkinson’s disease.In this context,the aim of the present study was to assess the effects of the concomitant administration of N-(3R)-1-azabicyclo[2.2.2]oct-3-yl-furo[2,3-c]pyridine-5-carboxamide(PHA)543613 as an α7-nAChR agonist and 2-(4-morpholinethyl)1-phenylcyclohexanecarboxylate(PRE)-084 as aσ1-R agonist in a well-characterized 6-hydroxydopamine rat model of Parkinson’s disease.The animals received either vehicle separately or the dual therapy PHA/PRE once a day until day 14 postlesion.Although no effect was noticed in the amphetamine-induced rotation test,our data has shown that the PHA/PRE treatment induced partial protection of the dopaminergic neurons(15-20%),assessed by the dopamine transporter density in the striatum and immunoreactive tyrosine hydroxylase in the substantia nigra.Furthermore,this dual therapy reduced the degree of glial activation consecutive to the 6-hydroxydopamine lesion,i.e,the 18 kDa translocation protein density and glial fibrillary acidic protein staining in the striatum,and the CD11b and glial fibrillary acidic protein staining in the substantia nigra.Hence,this study reports for the first time that concomitant activation of α7-nAChR andσ1-R can provide a partial recovery of the nigro-striatal dopaminergic neurons through the modulation of microglial activation.The study was approved by the Regional Ethics Committee(CEEA Val de Loire n°19)validated this protocol(Authorization N°00434.02)on May 15,2014. 展开更多
关键词 6-HYDROXYDOPAMINE astrocytes microglial activation neurodegeneration neuroinflammation nicotinicα7 receptor Parkinson’s disease PHA 543613 PRE-084 sigma-1 receptor
下载PDF
Activities of nicotinic acetylcholine receptors modulate neurotransmission and synaptic architecture 被引量:1
10
作者 Akira Oda Hidekazu Tanaka 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第24期2128-2131,共4页
The cholinergic system is involved in a broad spectrum of brain function, and its failure has been implicated in Alzheimer's disease. Acetylcholine transduces signals through muscarinic and nicotinic acetylcholine re... The cholinergic system is involved in a broad spectrum of brain function, and its failure has been implicated in Alzheimer's disease. Acetylcholine transduces signals through muscarinic and nicotinic acetylcholine receptors, both of which influence synaptic plasticity and cognition. However, the mechanisms that relate the rapid gating of nicotinic acetylcholine receptors to persistent changes in brain function have remained elusive. Recent evidence indicates that nicotinic acetylcholine receptors activities affect synaptic morphology and density, which result in persistent rearrangements of neural connectivity. Further investigations of the relationships between nicotinic acetylcholine receptors and rearrangements of neural circuitry in the central nervous system may help understand the pathogenesis of Alzheimer's disease. 展开更多
关键词 cholinergic system nicotinic acetylcholine receptors (nAChRs) Alzheimer's disease (AD) synaptic transmission synaptic plasticity synaptic morphology dendritic spine remodeling COGNITION
下载PDF
Receptor variability-driven evolution of snake toxins 被引量:1
11
作者 Xian-Hong Ji Shang-Fei Zhang +1 位作者 Bin Gao Shun-Yi Zhu 《Zoological Research》 SCIE CAS CSCD 2018年第6期431-436,共6页
Three-finger toxins (TFTs) are well-recognized non- enzymatic venom proteins found in snakes. However, although TFTs exhibit accelerated evolution, the drivers of this evolution remain poorly understood. The structu... Three-finger toxins (TFTs) are well-recognized non- enzymatic venom proteins found in snakes. However, although TFTs exhibit accelerated evolution, the drivers of this evolution remain poorly understood. The structural complexes between long-chain α-neurotoxins, a subfamily of TFTs, and their nicotinic acetylcholine receptor targets have been determined in previous research, providing an opportunity to address such questions. In the current study, we observed several previously identified positively selected sites (PSSs) and the highly variable C-terminal loop of these toxins at the toxin/receptor interface. Of interest, analysis of the molecular adaptation of the toxin-recognition regions in the corresponding receptors provided no statistical evidence for positive selection. However, these regions accumulated abundant amino acid variations in the receptors from the prey of snakes, suggesting that accelerated substitution of TFTs could be a consequence of adaptation to these variations. To the best of our knowledge, this atypical evolution, initially discovered in scorpions, is reported in snake toxins for the first time and may be applicable for the evolution of toxins from other venomous animals. 展开更多
关键词 Three-finger toxins Nicotinic acetylcholine receptor DRIVER
下载PDF
Computational Determination of the Binding Mode of α-Conotoxin to Nicotinic Acetylcholine Receptor
12
作者 TABASSUM Nargis YU Rilei JIANG Tao 《Journal of Ocean University of China》 SCIE CAS 2016年第6期1027-1033,共7页
Abstract Conotoxins belong to the large families of disulfide-rich peptide toxins from cone snail venom, and can act on a broad spectrum of ion channels and receptors. They are classified into different subtypes based... Abstract Conotoxins belong to the large families of disulfide-rich peptide toxins from cone snail venom, and can act on a broad spectrum of ion channels and receptors. They are classified into different subtypes based on their targets. The a-conotoxins selectively inhibit the current of the nicotinic acetylcholine receptors. Because of their unique selectivity towards distinct nAChR subtypes, a-conotoxins become valuable tools in nAChR study. In addition to the X-ray structures of a-conotoxins in complex with acetyleholine-binding protein, a homolog of the nAChR ligand-binding domain, the high-resolution crystal structures of the extracellular domain of the al and a9 subunits are also obtained. Such structures not only revealed the details of the configuration of nAChR, but also provided higher sequence identity templates for modeling the binding modes of a-conotoxins to nAChR. This mini-review summarizes recent modeling studies for the determination of the binding modes of a-conotoxins to nAChR. As there are not crystal structures of the nAChR in complex with conotoxins, computational modeling in combination of mutagenesis data is expected to reveal the molecular recognition mechanisms that govern the interactions between a-conotoxins and nAChR at molecular level. An accurate determination of the binding modes of a-conotoxins on AChRs allows rational design of a-conotoxin analogues with improved potency or selectivity to nAChRs. 展开更多
关键词 Nicotinic acetylcholine receptor a-conotoxin acetylcholine binding protein DOCKING homology modeling moleculardynamics simulation mutational energy
下载PDF
Nicotinic Acetylcholine Receptor Gene Family of the Pea Aphid,Acyrthosiphon pisum
13
作者 LIU Yi-peng LIN Ke-jian +2 位作者 LIU Yang GUI Fu-rong WANG Gui-rong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第11期2083-2091,共9页
The nicotinic acetylcholine receptors (nAchRs) are cholinergic receptors that form ligand-gated ion channels by ifve subunits in insect and vertebrate nervous systems. The insect nAChR is the molecular target of a c... The nicotinic acetylcholine receptors (nAchRs) are cholinergic receptors that form ligand-gated ion channels by ifve subunits in insect and vertebrate nervous systems. The insect nAChR is the molecular target of a class of insecticides, neonicotinoids. Here, we identiifed and cloned 11 candidate nAChR subunit genes in Acyrthosiphon pisum using genome-based bioinformatics combined modern molecular techniques. Most A. pisum nAChRs including α1, α2, α3, α4, α6, α8, and β1 show highly sequence identities with the counterparts of other insects examined. Expression proifles analysis showed that all subunit genes were expressed in adult head. At least two subunits have alternative splicing that obviously increase A. pisum nicotinic receptor diversity. This study will be invaluable for exploring the molecular mechanisms of neonicotinoid-like insecticides in sucking pests, and for ultimately establishing the screening platform of novel insecticides. 展开更多
关键词 Acyrthosiphon pisum nicotinic acetylcholine receptor alternative splicing expression profile
下载PDF
Nanoscale interactions between the nicotinic acetylcholine receptor and cholesterol
14
作者 FRANCISCO J.BARRANTES 《BIOCELL》 SCIE 2021年第6期1479-1484,共6页
Cholesterol is a major lipid in biological membranes.It not only plays a structural role but also modulates a wide range of functional properties of neurotransmitter and hormone receptors and ion channels.The membrane... Cholesterol is a major lipid in biological membranes.It not only plays a structural role but also modulates a wide range of functional properties of neurotransmitter and hormone receptors and ion channels.The membraneembedded segments of the paradigm neurotransmitter receptor for acetylcholine(nAChR)contain linear sequences of amino acids with the capacity to recognize cholesterol.These cholesterol consensus domains have been designated as“CARC”and its mirror sequence“CRAC”.CARC preferentially occurs in the exoplasmic-facing membrane leaflet,and CRAC,in the cytoplasmic-facing hemilayer.Both motifs are highly conserved among ion-channel and neurotransmitter receptor proteins in vertebrate nervous systems,where they recognize cholesterol,and in prokaryotic homologues in bacteria,where they recognize hopanoids.This phylogenetically conserved trait is an indication that the hopanoids in some bacteria and cholesterol in eukaryotes subserve analogous functions,probably contributing to the stability of membrane-embedded protein domains.Structural studies from our laboratory using superresolution optical microscopy(“nanoscopy”)have disclosed other interrelated functional and structural properties exerted by cholesterol on the nAChR.The neutral lipid content at the cell surface influences both the macromolecular organization of the receptor and its translational mobility(diffusion)in the plane of the membrane. 展开更多
关键词 CHOLESTEROL Pentameric ligand-gated ion channel Nicotinic acetylcholine receptor Membrane proteins Evolution NANOSCOPY Cholesterol-recognition domains
下载PDF
Nicotinic receptors modulate antitumor therapy response in triple negative breast cancer cells
15
作者 Alejandro Español Yamila Sanchez +2 位作者 Agustina Salem Jaqueline Obregon Maria Elena Sales 《World Journal of Clinical Oncology》 CAS 2022年第6期505-519,共15页
BACKGROUND Triple negative breast cancer is more aggressive than other breast cancer subtypes and constitutes a public health problem worldwide since it has high morbidity and mortality due to the lack of defined ther... BACKGROUND Triple negative breast cancer is more aggressive than other breast cancer subtypes and constitutes a public health problem worldwide since it has high morbidity and mortality due to the lack of defined therapeutic targets.Resistance to chemotherapy complicates the course of patients’treatment.Several authors have highlighted the participation of nicotinic acetylcholine receptors(nAChR)in the modulation of conventional chemotherapy treatment in cancers of the airways.However,in breast cancer,less is known about the effect of nAChR activation by nicotine on chemotherapy treatment in smoking patients.AIM To investigate the effect of nicotine on paclitaxel treatment and the signaling pathways involved in human breast MDA-MB-231 tumor cells.METHODS Cells were treated with paclitaxel alone or in combination with nicotine,administered for one or three 48-h cycles.The effect of the addition of nicotine(at a concentration similar to that found in passive smokers’blood)on the treatment with paclitaxel(at a therapeutic concentration)was determined using the 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.The signaling mediators involved in this effect were determined using selective inhibitors.We also investigated nAChR expression,and ATP“binding cassette”G2 drug transporter(ABCG2)expression and its modulation by the different treatments with Western blot.The effect of the treatments on apoptosis induction was determined by flow cytometry using annexin-V and 7AAD markers.RESULTS Our results confirmed that treatment with paclitaxel reduced MDA-MB-231 cell viability in a concentration-dependent manner and that the presence of nicotine reversed the cytotoxic effect induced by paclitaxel by involving the expression of functionalα7 andα9 nAChRs in these cells.The action of nicotine on paclitaxel treatment was linked to modulation of the protein kinase C,mitogen-activated protein kinase,extracellular signal-regulated kinase,and NF-κB signaling pathways,and to an up-regulation of ABCG2 protein expression.We also detected that nicotine significantly reduced the increase in cell apoptosis induced by paclitaxel treatment.Moreover,the presence of nicotine reduced the efficacy of paclitaxel treatment administered in three cycles to MDA-MB-231 tumor cells.CONCLUSION Our findings point to nAChRs as responsible for the decrease in the chemotherapeutic effect of paclitaxel in triple negative tumors.Thus,nAChRs should be considered as targets in smoking patients. 展开更多
关键词 Breast cancer PACLITAXEL Nicotinic acetylcholine receptors Drug therapy Signal transduction Drug transporter
下载PDF
Neuroactive alkaloids that modulate the neuronal nicotinic receptor and provide neuroprotection in an Alzheimer's disease model:the case of Teline monspessulana
16
作者 Jorge Fuentealba Francisco Saez-Orellana 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第21期1880-1881,共2页
Despite the advances in combinatorial or synthetic chemis- try and bioinformatics, recent literature has demonstrated the relevance of nature and biomass as a source of new molecules to treat different pathologies, i.... Despite the advances in combinatorial or synthetic chemis- try and bioinformatics, recent literature has demonstrated the relevance of nature and biomass as a source of new molecules to treat different pathologies, i.e., bioactive com- pounds obtained from Ecteinascidia turbinate to treat some types of cancer or rapamycin from Streptomyces hygroscop- icus to prevent organ rejection after transplant. This trend will continue simply due to the fact that Mother Nature has been synthesizing molecules for millions of years. In our lab- oratory, we have characterized several compounds obtained from natural sources and that possess important neuronal effects, 展开更多
关键词 Neuroactive alkaloids that modulate the neuronal nicotinic receptor and provide neuroprotection in an Alzheimer’s disease model CASE
下载PDF
Homology Model and Ligand Binding Interactions of the Extracellular Domain of the Human α4β2 Nicotinic Acetylcholine Receptor
17
作者 Shu Mao Hui Wen Ng +5 位作者 Michael Orr Heng Luo Hao Ye Weigong Ge Weida Tong Huixiao Hong 《Journal of Biomedical Science and Engineering》 2016年第1期41-100,共60页
Addiction to nicotine, and possibly other tobacco constituents, is a major factor that contributes to the difficulties smokers face when attempting to quit smoking. Amongst the various subtypes of nicotinic acetylchol... Addiction to nicotine, and possibly other tobacco constituents, is a major factor that contributes to the difficulties smokers face when attempting to quit smoking. Amongst the various subtypes of nicotinic acetylcholine receptors (nAChRs), the α4β2 subtype plays an important role in mediating the addiction process. The characterization of human α4β2-ligand binding interactions provides a molecular framework for understanding ligand-receptor interactions, rendering insights into mechanisms of nicotine addiction and may furnish a tool for efficiently identifying ligands that can bind the nicotine receptor. Therefore, we constructed a homology model of human α4β2 nAChR and performed molecular docking and molecular dynamics (MD) simulations to elucidate the potential human α4β2-ligand binding modes for eleven compounds known to bind to this receptor. Residues V96, L97 and F151 of the α4 subunit and L111, F119 and F121 of the β2 subunit were found to be involved in hydrophobic interactions while residues S153 and W154 of the α4 subunit were involved in the formation of hydrogen bonds between the receptor and respective ligands. The homology model and its eleven ligand-bound structures will be used to develop a virtual screening program for identifying tobacco constituents that are potentially addictive. 展开更多
关键词 Nicotinic Acetylcholine receptors Homology Model Ligand-receptor Interactions
下载PDF
L-theanine inhibits nicotine-induced dependence via regulation of the nicotine acetylcholine receptor-dopamine reward pathway 被引量:6
18
作者 DI XiaoJing YAN JingQi +2 位作者 ZHAO Yan CHANG YanZhong ZHAO BaoLu 《Science China(Life Sciences)》 SCIE CAS 2012年第12期1064-1074,共11页
In this study, the inhibitory effect of L-theanine, an amino acid derivative of tea, on the rewarding effects of nicotine and its underlying mechanisms of action were studied. We found that L-theanine inhibited the re... In this study, the inhibitory effect of L-theanine, an amino acid derivative of tea, on the rewarding effects of nicotine and its underlying mechanisms of action were studied. We found that L-theanine inhibited the rewarding effects of nicotine in a con- ditioned place preference (CPP) model of the mouse and reduced the excitatory status induced by nicotine in SH-SY5Y cells to the same extent as the nicotine receptor inhibitor dihydro-beta-erythroidine (DHI3E). Further studies using high performance liquid chromatography, western blotting and immunofluorescence staining analyses showed that L-theanine significantly in- hibited nicotine-induced tyrosine hydroxylase (TH) expression and dopamine production in the midbrain of mice. L-theanine treatment also reduced the upregulation of the ~4,132 and c^7 nicotine acetylcholine receptor (nAChR) subunits induced by nico- tine in mouse brain regions that related to the dopamine reward pathway, thus decreasing the number of cells that could react to nicotine. In addition, L-theanine treatment inhibited nicotine-induced c-Fos expression in the reward circuit related areas of the mouse brain. Knockdown of c-Fos by siRNA inhibited the excitatory status of cells but not the upregulation of TH induced by nicotine in SH-SY5Y cells. Overall, the present study showed that L-theanine reduced the nicotine-induced reward effects via inhibition of the nAChR-dopamine reward pathway. These results may offer new therapeutic strategies for treatment of to- bacco addiction. 展开更多
关键词 nicotine addiction L-THEANINE nicotine acetylcholine receptor (nAChR) DOPAMINE conditioned place preference (CPP)
原文传递
Beauty of the beast: anticholinergic tropane alkaloids in therapeutics 被引量:2
19
作者 Kyu Hwan Shim Min Ju Kang +1 位作者 Niti Sharma Seong Soo A.An 《Natural Products and Bioprospecting》 2022年第1期515-529,共15页
Tropane alkaloids(TAs)are among the most valued chemical compounds known since pre-historic times.Poisonous plants from Solanaceae family(Hyoscyamus niger,Datura,Atropa belladonna,Scopolia lurida,Mandragora officinaru... Tropane alkaloids(TAs)are among the most valued chemical compounds known since pre-historic times.Poisonous plants from Solanaceae family(Hyoscyamus niger,Datura,Atropa belladonna,Scopolia lurida,Mandragora officinarum,Duboisia)and Erythroxylaceae(Erythroxylum coca)are rich sources of tropane alkaloids.These compounds possess the anticholinergic properties as they could block the neurotransmitter acetylcholine action in the central and peripheral nervous system by binding at either muscarinic and/or nicotinic receptors.Hence,they are of great clinical impor-tance and are used as antiemetics,anesthetics,antispasmodics,bronchodilator and mydriatics.They also serve as the lead compounds to generate more effective drugs.Due to the important pharmacological action they are listed in the WHO list of essential medicines and are available in market with FDA approval.However,being anticholinergic in action,TA medication are under the suspicion of causing dementia and cognitive decline like other medications with anticholinergic action,interestingly which is incorrect.There are published reviews on chemistry,biosynthesis,phar-macology,safety concerns,biotechnological aspects of TAs but the detailed information on anticholinergic mecha-nism of action,clinical pharmacology,FDA approval and anticholinergic burden is lacking.Hence the present review tries to fill this lacuna by critically summarizing and discussing the above mentioned aspects. 展开更多
关键词 Tropane alkaloids Poisonous plants Anticholinergic action Muscarinic and nicotinic receptors THERAPEUTICS Anticholinergic burden
下载PDF
Vagus nerve stimulation is a potential treatment for ischemic stroke 被引量:2
20
作者 Yi-Lin Liu San-Rong Wang +2 位作者 Jing-Xi Ma Le-Hua Yu Gong-Wei Jia 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第4期825-831,共7页
Microglia are the brain’s primary innate immune cells,and they are activated and affect pro-inflammatory phenotype or regulatory phenotype after ischemic stroke.Vagus nerve stimulation was shown to activate microglia... Microglia are the brain’s primary innate immune cells,and they are activated and affect pro-inflammatory phenotype or regulatory phenotype after ischemic stroke.Vagus nerve stimulation was shown to activate microglial phenotypic changes and exhibit neuroprotective effects in ischemia/reperfusion injury.In this study,we established rat models of ischemic stroke by occlusion of the middle cerebral artery and performed vagus nerve stimulation 30 minutes after modeling.We found that vagus nerve stimulation caused a shift from a pro-inflammatory phenotype to a regulatory phenotype in microglia in the ischemic penumbra.Vagus nerve stimulation decreased the levels of pro-inflammatory phenotype markers inducible nitric oxide synthase and tumor necrosis factorαand increased the expression of regulatory phenotype markers arginase 1 and transforming growth factorβthrough activatingα7 nicotinic acetylcholine receptor expression.Additionally,α7 nicotinic acetylcholine receptor blockade reduced the inhibition of Toll-like receptor 4/nuclear factor kappa-B pathwayassociated proteins,including Toll-like receptor 4,myeloid differentiation factor 88,I kappa B alpha,and phosphorylated-I kappa B alpha,and also weakened the neuroprotective effects of vagus nerve stimulation in ischemic stroke.Vagus nerve stimulation inhibited Toll-like receptor 4/nuclear factor kappa-B expression through activatingα7 nicotinic acetylcholine receptor and regulated microglial polarization after ischemic stroke,thereby playing a role in the treatment of ischemic stroke.Findings from this study confirm the mechanism underlying vagus nerve stimulation against ischemic stroke. 展开更多
关键词 cerebral ischemia MICROGLIA neuroprotection nuclear factor kappa-B pro-inflammatory phenotype regulatory phenotype REPERFUSION Toll-like receptor 4 vagus nerve stimulation α7 nicotinic acetylcholine receptor
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部