In this note we study character sheaves for graded Lie algebras arising from inner automorphisms of special linear groups and Vinberg’s type Ⅱ classical graded Lie algebras.
During the last decade, a great deal of activity has been devoted to the calculation of the HilbertPoincar′e series of unitary highest weight representations and related modules in algebraic geometry. However,uniform...During the last decade, a great deal of activity has been devoted to the calculation of the HilbertPoincar′e series of unitary highest weight representations and related modules in algebraic geometry. However,uniform formulas remain elusive—even for more basic invariants such as the Gelfand-Kirillov dimension or the Bernstein degree, and are usually limited to families of representations in a dual pair setting. We use earlier work by Joseph to provide an elementary and intrinsic proof of a uniform formula for the Gelfand-Kirillov dimension of an arbitrary unitary highest weight module in terms of its highest weight. The formula generalizes a result of Enright and Willenbring(in the dual pair setting) and is inspired by Wang's formula for the dimension of a minimal nilpotent orbit.展开更多
基金Supported by Australian Research Council(Grant No.DP150103525)。
文摘In this note we study character sheaves for graded Lie algebras arising from inner automorphisms of special linear groups and Vinberg’s type Ⅱ classical graded Lie algebras.
基金supported by National Natural Science Foundation of China(Grant No.11171324)the Hong Kong Research Grants Council under RGC Project(Grant No.60311)the Hong Kong University of Science and Technology under DAG S09/10.SC02.
文摘During the last decade, a great deal of activity has been devoted to the calculation of the HilbertPoincar′e series of unitary highest weight representations and related modules in algebraic geometry. However,uniform formulas remain elusive—even for more basic invariants such as the Gelfand-Kirillov dimension or the Bernstein degree, and are usually limited to families of representations in a dual pair setting. We use earlier work by Joseph to provide an elementary and intrinsic proof of a uniform formula for the Gelfand-Kirillov dimension of an arbitrary unitary highest weight module in terms of its highest weight. The formula generalizes a result of Enright and Willenbring(in the dual pair setting) and is inspired by Wang's formula for the dimension of a minimal nilpotent orbit.