期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Niobium Tungsten Oxide in a Green Water‑in‑Salt Electrolyte Enables Ultra‑Stable Aqueous Lithium‑Ion Capacitors 被引量:5
1
作者 Shengyang Dong Yi Wang +2 位作者 Chenglong Chen Laifa Shen Xiaogang Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第12期106-116,共11页
Aqueous hybrid supercapacitors are attracting increasing attention due to their potential low cost,high safety and eco-friendliness.However,the narrow operating potential window of aqueous electrolyte and the lack of ... Aqueous hybrid supercapacitors are attracting increasing attention due to their potential low cost,high safety and eco-friendliness.However,the narrow operating potential window of aqueous electrolyte and the lack of suitable negative electrode materials seriously hinder its future applications.Here,we explore high concentrated lithium acetate with high ionic conductivity of 65.5 mS cm−1 as a green“water-in-salt”electrolyte,providing wide voltage window up to 2.8 V.It facilitates the reversible function of niobium tungsten oxide,Nb18W16O93,that otherwise only operations in organic electrolytes previously.The Nb18W16O93 with lithium-ion intercalation pseudocapacitive behavior exhibits excellent rate performance,high areal capacity,and ultra-long cycling stability.An aqueous lithium-ion hybrid capacitor is developed by using Nb18W16O93 as negative electrode combined with graphene as positive electrode in lithium acetate-based“water-in-salt”electrolyte,delivering a high energy density of 41.9 W kg−1,high power density of 20,000 W kg−1 and unexceptionable stability of 50,000 cycles. 展开更多
关键词 Aqueous hybrid capacitors Water-in-salt electrolyte niobium tungsten oxide Ultra-stability High power density
下载PDF
Lithium-ion diffusion path of tetragonal tungsten bronze(TTB)phase Nb_(18)W_(16)O_(93)
2
作者 Chao SHEN Sai-nan JIANG +2 位作者 Cui-min DING Wei-shun XUE Ke-yu XIE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第11期3679-3686,共8页
By taking tetragonal tungsten bronze(TTB)phase Nb_(18)W_(16)O_(93)as an example,an improved solid-state sintering method at lower temperature of 1000℃for 36 h was proposed via applying nanoscale raw materials.XRD,SEM... By taking tetragonal tungsten bronze(TTB)phase Nb_(18)W_(16)O_(93)as an example,an improved solid-state sintering method at lower temperature of 1000℃for 36 h was proposed via applying nanoscale raw materials.XRD,SEM and XPS confirm that the expected sample was produced.GITT results show that the lithium-ion diffusion coefficient of Nb_(18)W_(16)O_(93)(10−12 cm^(2)/s)is higher than that of the conventional titanium-based anode,ensuring a relatively superior electrochemical performance.The lithium-ion diffusion mechanism was thoroughly revealed by using density functional theory simulation.There are three diffusion paths in TTB phase,among which the interlayer diffusion with the smallest diffusion barrier(0.46 eV)has more advantages than other typical anodes(such as graphite,0.56 eV).The relatively smaller lithium-ion diffusion barrier makes TTB phase Nb_(18)W_(16)O_(93)become a potential highspecific-power anode material. 展开更多
关键词 lithium-ion battery niobium tungsten oxide tetragonal tungsten bronze(TTB)phase lithium-ion diffusion mechanism diffusion path
下载PDF
New Superionic Memory Devices Can Provide Clues to the Human Memory Structure and to Consciousness
3
作者 Hans Hermann Otto 《Journal of Applied Mathematics and Physics》 2023年第2期377-376,共10页
Since the work of Penrose and Hameroff the possibility is discussed that the location of human memory and consciousness could be connected with tubulin microtubules. If one would use superionic nano-materials rolled u... Since the work of Penrose and Hameroff the possibility is discussed that the location of human memory and consciousness could be connected with tubulin microtubules. If one would use superionic nano-materials rolled up to microtubules with an electrolyte inside the formed channels mediating fast ionic exchange of protons respectively lithium ions, it seems to be possible to write into such materials whole image arrays (pictures) under the action of the complex electromagnetic spectrum that composes these images. The same material and architecture may be recommended for super-computers. Especially microtubules with a protofilament number of 13 are the most important to note. We connected such microtubules before with Fibonacci nets composed of 13 sub-cells that were helically rolled up to deliver suitable channels. Our recent Fibonacci analysis of Wadsley-Roth shear phases such as niobium tungsten oxide , exhibiting channels for ultra-fast lithium-ion diffusion, suggests to use these materials, besides super-battery main application, in form of nanorods or microtubules as effectively working superionic memory devices for computers that work ultra-fast with the complex effectiveness of human brains. Finally, we pose the question, whether dark matter, ever connected with ultrafast movement of ordinary matter, may be responsible for synchronization between interactions of human brains and consciousness. 展开更多
关键词 Memory Device niobium tungsten Oxide Crystallographic Shear Lithium Intercalation Superionicity Super Battery Fibonacci Nets Fibonacci Stoichiometry Tubulin Microtubules
下载PDF
Fibonacci Stoichiometry and Superb Performance of Nb16W5O55 and Related Super-Battery Materials
4
作者 Hans Hermann Otto 《Journal of Applied Mathematics and Physics》 2022年第6期1936-1950,共15页
In this contribution, two important crystallographic concepts for the formation of a series of block structures associated with channeling have been compared: chemical twinning and crystallographic shear. Twin planes ... In this contribution, two important crystallographic concepts for the formation of a series of block structures associated with channeling have been compared: chemical twinning and crystallographic shear. Twin planes respectively shear planes besides formed channels serve as a sink for charge carriers or, when the oxidation state of metal ions can be reduced, as a reservoir for intercalated lithium. In this way, Wadsley-Roth shear phases such as niobium tungsten oxide exhibit channels for ultra-fast lithium-ion diffusion. They are in focus as anode material for super-batteries, superb in terms of energy respectively power density, charging time, cycle life and safety. It should be noted that the transition metal to oxygen ratio TM/O = 21/55 of the title compound is a Fibonacci number quotient. Also, the crystal lattice can be traced back to Fibonacci geometry. When replacing only 0.0213 tungsten atoms in the formula with less expensive titanium, a TM/O ratio of 0.381966 =&#981;<sup>2</sup> can be adapted besides an average valence electron concentration of 2&#8901;&#981;<sup>-2</sup>, where represents the most irrational number of the golden mean. The additional disorder caused by even such small titanium replacement and accompanied oxygen vacancies could fasten up the already high lithium diffusion further. Ultrasonic treatment may be applied besides thermal cycling to prepare phase-pure of the highest electrochemical performance. A replacement of oxygen by some fluorine atoms is an obvious synthesis possibility, but the higher binding energy expected between lithium and fluorine in contrast to oxygen may rather hinder than promote lithium diffusion. 展开更多
关键词 Super Battery niobium tungsten Oxide Crystallographic Shear Chemical Twinning Fibonacci Stoichiometry Ti Substitution
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部