The laser-induced fluorescence excitation spectrum of jet-cooled NiS molecule has been recorded in the energy range of 15500 17200 cm-1. Fifteen bands have been assigned as three transition progressions:[15.65]^3Ⅱ1...The laser-induced fluorescence excitation spectrum of jet-cooled NiS molecule has been recorded in the energy range of 15500 17200 cm-1. Fifteen bands have been assigned as three transition progressions:[15.65]^3Ⅱ1(v′=0-4)-X^3∑0^-(v″=0),[15.69]^3∑0^-(v′=0-4)-X^3∑0^-(v″=0),and [15.81]^3Ⅱ1(v′=0-4)-X^3∑0^-(v″=0).Spectroscopic constants for the three newly identified electronically excited states have been determined for the first time. In addition,the lifetimes for most observed vibronic bands have also been measured.展开更多
In 2023,the majority of the Earth witnessed its warmest boreal summer and autumn since 1850.Whether 2023 will indeed turn out to be the warmest year on record and what caused the astonishingly large margin of warming ...In 2023,the majority of the Earth witnessed its warmest boreal summer and autumn since 1850.Whether 2023 will indeed turn out to be the warmest year on record and what caused the astonishingly large margin of warming has become one of the hottest topics in the scientific community and is closely connected to the future development of human society.We analyzed the monthly varying global mean surface temperature(GMST)in 2023 and found that the globe,the land,and the oceans in 2023 all exhibit extraordinary warming,which is distinct from any previous year in recorded history.Based on the GMST statistical ensemble prediction model developed at the Institute of Atmospheric Physics,the GMST in 2023 is predicted to be 1.41℃±0.07℃,which will certainly surpass that in 2016 as the warmest year since 1850,and is approaching the 1.5℃ global warming threshold.Compared to 2022,the GMST in 2023 will increase by 0.24℃,with 88%of the increment contributed by the annual variability as mostly affected by El Niño.Moreover,the multidecadal variability related to the Atlantic Multidecadal Oscillation(AMO)in 2023 also provided an important warming background for sparking the GMST rise.As a result,the GMST in 2023 is projected to be 1.15℃±0.07℃,with only a 0.02℃ increment,if the effects of natural variability—including El Niño and the AMO—are eliminated and only the global warming trend is considered.展开更多
To explain the recent three-year La Niña event from 2020 to 2022,which has caused catastrophic weather events worldwide,Fasullo et al.(2023)demonstrated that the increase in biomass aerosol resulting from the 201...To explain the recent three-year La Niña event from 2020 to 2022,which has caused catastrophic weather events worldwide,Fasullo et al.(2023)demonstrated that the increase in biomass aerosol resulting from the 2019-20 Australian wildfire season could have triggered this multi-year La Niña.Here,we present compelling evidence from paleo-proxies,utilizing a substantial sample size of 26 volcanic eruptions in the Southern Hemisphere(SH),to support the hypothesis that ocean cooling in the SH can lead to a multi-year La Niña event.This research highlights the importance of focusing on the Southern Ocean,as current climate models struggle to accurately simulate the Pacific response driven by the Southern Ocean.展开更多
Benefited from its high process feasibility and controllable costs,binary-metal layered structured LiNi_(0.8)Mn_(0.2)O_(2)(NM)can effectively alleviate the cobalt supply crisis under the surge of global electric vehic...Benefited from its high process feasibility and controllable costs,binary-metal layered structured LiNi_(0.8)Mn_(0.2)O_(2)(NM)can effectively alleviate the cobalt supply crisis under the surge of global electric vehicles(EVs)sales,which is considered as the most promising nextgeneration cathode material for lithium-ion batteries(LIBs).However,the lack of deep understanding on the failure mechanism of NM has seriously hindered its application,especially under the harsh condition of high-voltage without sacrifices of reversible capacity.Herein,singlecrystal LiNi_(0.8)Mn_(0.2)O_(2) is selected and compared with traditional LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM),mainly focusing on the failure mechanism of Cofree cathode and illuminating the significant effect of Co element on the Li/Ni antisite defect and dynamic characteristic.Specifically,the presence of high Li/Ni antisite defect in NM cathode easily results in the extremely dramatic H2/H3 phase transition,which exacerbates the distortion of the lattice,mechanical strain changes and exhibits poor electrochemical performance,especially under the high cutoff voltage.Furthermore,the reaction kinetic of NM is impaired due to the absence of Co element,especially at the single-crystal architecture.Whereas,the negative influence of Li/Ni antisite defect is controllable at low current densities,owing to the attenuated polarization.Notably,Co-free NM can exhibit better safety performance than that of NCM cathode.These findings are beneficial for understanding the fundamental reaction mechanism of single-crystal Ni-rich Co-free cathode materials,providing new insights and great encouragements to design and develop the next generation of LIBs with low-cost and high-safety performances.展开更多
MgH_(2),albeit with slow desorption kinetics,has been extensively studied as one of the most ideal solid hydrogen storage materials.Adding such catalyst as Ni can improve the desorption kinetics of MgH_(2),whereas the...MgH_(2),albeit with slow desorption kinetics,has been extensively studied as one of the most ideal solid hydrogen storage materials.Adding such catalyst as Ni can improve the desorption kinetics of MgH_(2),whereas the catalytic role has been attributed to different substances such as Ni,Mg_(2)Ni,Mg_(2)NiH0.3,and Mg_(2)NiH4.In the present study,Ni nanoparticles(Ni-NPs)supported on mesoporous carbon(Ni@C)have been synthesized to improve the hydrogen desorption kinetics of MgH_(2).The utilization of Ni@C largely decreases the dehydrogenation activation energy from 176.9 to 79.3 kJ mol−1 and the peak temperature of dehydrogenation from 375.5 to 235℃.The mechanism of Ni catalyst is well examined by advanced aberration-corrected environmental transmission electron microscopy and/or x-ray diffraction.During the first dehydrogenation,detailed microstructural studies reveal that the decomposition of MgH_(2)is initially triggered by the Ni-NPs,which is the rate-limiting step.Subsequently,the generated Mg reacts rapidly with Ni-NPs to form Mg_(2)Ni,which further promotes the dehydrogenation of residual MgH_(2).In the following dehydrogenation cycle,Mg_(2)NiH4 can rapidly decompose into Mg_(2)Ni,which continuously promotes the decomposition of MgH_(2).Our study not only elucidates the mechanism of Ni catalyst but also helps design and assemble catalysts with improved dehydriding kinetics of MgH_(2).展开更多
Multistage heat treatment involving quenching(Q),lamellarizing(L),and tempering(T)is applied to marine 10Ni5CrMoV steel.The microstructure and mechanical properties were studied by multiscale characterizations,and the...Multistage heat treatment involving quenching(Q),lamellarizing(L),and tempering(T)is applied to marine 10Ni5CrMoV steel.The microstructure and mechanical properties were studied by multiscale characterizations,and the kinetics of reverse austenite transformation,strain hardening behavior,and toughening mechanism were further investigated.The lamellarized specimens possess low yield strength but high toughness,especially cryogenic toughness.Lamellarization leads to the development of film-like reversed austenite at the martensite block and lath boundaries,refining the martensite structure and lowering the equivalent grain size.Kinetic analysis of austenite reversion based on the JMAK model shows that the isothermal transformation is dominated by the growth of reversed austenite,and the maximum transformation of reversed austenite is reached at the peak temperature(750℃).The strain hardening behavior based on the modified Crussard-Jaoul analysis indicates that the reversed austenite obtained from lamellarization reduces the proportion of martensite,significantly hindering crack propagation via martensitic transformation during the deformation.As a consequence,the QLT specimens exhibit high machinability and low yield strength.Compared with the QT specimen,the ductile-brittle transition temperature of the QLT specimens decreases from-116 to-130℃due to the low equivalent grain size and reversed austenite,which increases the cleavage force required for crack propagation and absorbs the energy of external load,respectively.This work provides an idea to improve the cryogenic toughness of marine 10Ni5CrMoV steel and lays a theoretical foundation for its industrial application and comprehensive performance improvement.展开更多
Developing a cost-effective and environmentally friendly process for the production of valuable chemicals from abundant herbal biomass receives great attentions in recent years.Herein,taking advantage of the“lignin f...Developing a cost-effective and environmentally friendly process for the production of valuable chemicals from abundant herbal biomass receives great attentions in recent years.Herein,taking advantage of the“lignin first”strategy,corn straw is converted to valuable chemicals including lignin monomers,furfural and 5-methoxymethylfurfural via a two steps process.The key of this research lies in the development of a green and low-cost catalytic process utilizing magnetic Raney Ni catalyst and high boiling point ethylene glycol.The utilization of neat ethylene glycol as the sole slovent under atmospheric conditions obviates the need for additional additives,thereby facilitating the entire process to be conducted in glass flasks and rendering it highly convenient for scaling up.In the initial step,depolymerization of corn straw lignin resulted in a monomer yield of 18.1 wt%.Subsequently,in a dimethyl carbonate system,the carbohydrate component underwent complete conversion in a one-pot process,yielding furfural and 5-methoxymethylfurfural as the primary products with an impressive yield of 47.7%.展开更多
The interdiffusion coefficients in Al_(0.2)CoCrFeNi,CoCrCu_(0.2)FeNi,and CoCrFeMn_(0.2)Ni high-entropy alloys were efficiently determined by combining diffusion couple experiments and high-throughput determination of ...The interdiffusion coefficients in Al_(0.2)CoCrFeNi,CoCrCu_(0.2)FeNi,and CoCrFeMn_(0.2)Ni high-entropy alloys were efficiently determined by combining diffusion couple experiments and high-throughput determination of interdiffusion coefficients(HitDIC)software at 1273−1373 K.The results show that the addition of Al,Cu,and Mn to CoCrFeNi high-entropy alloys promotes the diffusion of Co,Cr,and Fe atoms.The comparison of tracer diffusion coefficients indicates that there is no sluggish diffusion in tracer diffusion on the thermodynamic temperature scale for the present Al_(0.2)CoCrFeNi,CoCrCu_(0.2)FeNi,and CoCrFeMn_(0.2)Ni high-entropy alloys.The linear relationship between diffusion entropy and activation energy reveals that the diffusion process of atoms is unaffected by an increase in the number of components as long as the crystal structure remains unchanged.展开更多
Laser-induced fluorescence excitation spectra of jet-cooled NiS molecules were recorded in the energy range of 12200-13550 cm^-1. Four vibronic bands with rotational structure have been observed and assigned to the [1...Laser-induced fluorescence excitation spectra of jet-cooled NiS molecules were recorded in the energy range of 12200-13550 cm^-1. Four vibronic bands with rotational structure have been observed and assigned to the [12.4]^3∑-0-X^3∑0 transition progression. The relevant rotational constants, significant isotopic shifts, and (equilibrium) molecular parameters have been determined. In addition, the lifetimes of the observed bands have also been measured.展开更多
The formation of periodic layered structure in Ni3Si/Zn diffusion couples with Zn in vapor or liquid state was investigated by SEM-EDS, FESEM and XRD. The results show that the diffusion path in solid-liquid reaction ...The formation of periodic layered structure in Ni3Si/Zn diffusion couples with Zn in vapor or liquid state was investigated by SEM-EDS, FESEM and XRD. The results show that the diffusion path in solid-liquid reaction is Ni3Si/(T+γ)/γ/…T/γ/Ni4Zn12Si3/γ/…Ni4Zn12Si3/γ/Ni4Zn12Si3/δ…/Ni4Zn12Si3/δ/liquid-Zn, and the diffusion path in solid-vapor reaction is Ni3Si/θ/(T+γ)/γ/…/T/γ/…T/γ/vapor-Zn. With increasing Zn diffusion flux, the diffusion reaction path moves toward the Zn-rich direction, and the distance from the Ni3Si substrate to the periodic layer pair nearest to the interface decreases. In the initial stage of both reactions,γphase nucleates and grows within T matrix phase at first, and then conjuncts together to form a band to reduce the surface energy. Based on the experimental results and diffusion kinetics analysis, the microstructure differences were compared and the formation mechanism of the periodic layered structure in Ni3Si/Zn system was discussed.展开更多
Modification of nickel sulfide cocatalysts is considered to be a promising approach for efficient enhancement of the photocatalytic hydrogen production performance of g-C3N4.Providing more NiS cocatalyst to function a...Modification of nickel sulfide cocatalysts is considered to be a promising approach for efficient enhancement of the photocatalytic hydrogen production performance of g-C3N4.Providing more NiS cocatalyst to function as active sites of g-C3N4 is still highly desirable.To realize this goal,in this work,a facile sulfur-mediated photodeposition approach was developed.Specifically,photogenerated electrons excited by visible light reduce the S molecules absorbed on g-C3N4 surface to S^2‒,and subsequently NiS cocatalyst is formed in situ on the g-C3N4 surface by a combination of Ni2+and S2‒due to their small solubility product constant(Ksp=3.2×10^‒19).This approach has several advantages.The NiS cocatalyst is clearly in situ deposited on the photogenerated electron transfer sites of g-C3N4,and thus provides more active sites for H2 production.In addition,this method utilizes solar energy with mild reaction conditions at room temperature.Consequently,the synthesized NiS/g-C3N4 photocatalyst achieves excellent hydrogen generation performance with the performance of the optimal sample(244μmol h^‒1 g^‒1)close to that of 1 wt%Pt/g-C3N4(316μmol h^‒1 g^‒1,a well-known excellent photocatalyst).More importantly,the present sulfur-mediated photodeposition route is versatile and facile and can be used to deposit various metal sulfides such as CoSx,CuSx and AgSx on the g-C3N4 surface,and all the resulting metal sulfide-modified g-C3N4 photocatalysts exhibit improved H2-production performance.Our study offers a novel insight for the synthesis of high-efficiency photocatalysts.展开更多
It is well-known that grain refiners can tailor the microstructure and enhance the mechanical properties of titanium alloys fabricated by additive manufacturing(AM). However, the intrinsic mechanisms of Ni addition on...It is well-known that grain refiners can tailor the microstructure and enhance the mechanical properties of titanium alloys fabricated by additive manufacturing(AM). However, the intrinsic mechanisms of Ni addition on AM-built Ti–6Al–4V alloy is not well established. This limits its industrial applications. This work systematically investigated the influence of Ni additive on Ti–6Al–4V alloy fabricated by laser aided additive manufacturing(LAAM). The results showed that Ni addition yields three key effects on the microstructural evolution of LAAM-built Ti–6Al–4V alloy.(a) Ni additive remarkably refines the prior-β grains, which is due to the widened solidification range. As the Ni addition increased from 0 to 2.5 wt. %, the major-axis length and aspect ratio of the prior-β grains reduced from over 1500 μm and 7 to 97.7 μm and1.46, respectively.(b) Ni additive can discernibly induce the formation of globular α phase,which is attributed to the enhanced concentration gradient between the β and α phases. This is the driving force of globularization according to the termination mass transfer theory. The aspect ratio of the α laths decreased from 4.14 to 2.79 as the Ni addition increased from 0 to2.5 wt. %.(c) Ni as a well-known β-stabilizer and it can remarkably increase the volume fraction of β phase. Room-temperature tensile results demonstrated an increase in mechanical strength and an almost linearly decreasing elongation with increasing Ni addition. A modified mathematical model was used to quantitatively analyze the strengthening mechanism. It was evident from the results that the α lath phase and the solid solutes contribute the most to the overall yield strength of the LAAM-built Ti–6Al–4V–x Ni alloys in this work. Furthermore, the decrease in elongation with increasing Ni addition is due to the deterioration in deformability of the β phase caused by a large amount of solid-solution Ni atoms. These findings can accelerate the development of additively manufactured titanium alloys.展开更多
Photocatalytic solar energy conversion to hydrogen is sustainable and attractive for addressing the global energy and environmental issue. Herein, a novel photocatalytic system (NiS/Ni3S4 cocatalysts modified mesoporo...Photocatalytic solar energy conversion to hydrogen is sustainable and attractive for addressing the global energy and environmental issue. Herein, a novel photocatalytic system (NiS/Ni3S4 cocatalysts modified mesoporous TiO2) with superior photocatalytic hydrogen evolution capability through the synergistic impact of NiS/Ni3S4 (NiSx) cocatalyst and efficient hole scavenger has been demonstrated. The photocatalytic hydrogen evolution of TiO2-NiSx hybrids with the different content of NiSx and upon different organic hole scavengers was both investigated. The hybrid of TiO2 decorated with 3%(mole ratio of Ni^2+) NiSx cocatalyst in methanol solution showed the optimal photocatalytic hydrogen evolution rate of 981.59 μmol h^-1 g^-1 which was about 20 times higher than that of bare mesoporous TiO2. Our results suggested that the boosted hydrogen production performance is attributed to both the improved photoinduced electrons migration between NiS and Ni3S4 in cocatalyst and the high hole captured efficiency by hole scavengers of methanol.展开更多
The kinetics of extractive separation of La(Ⅲ) and Ni(Ⅱ) from nitrate medium in the presence of lactic acid (HLac) using di-2-ethylhexyl phosphoric acid (DEHPA) diluted in petrofin was investigated using a cell with...The kinetics of extractive separation of La(Ⅲ) and Ni(Ⅱ) from nitrate medium in the presence of lactic acid (HLac) using di-2-ethylhexyl phosphoric acid (DEHPA) diluted in petrofin was investigated using a cell with constant interfacial area and continuous stirring. The effects of stirring speed, interfacial area, pH, HLac concentration, extractant concentration, concentrations of metal ions and temperature on the extraction rate were examined. Results suggested that the extraction regime is diffusion-controlled. The reaction which occurred at the interface was found to be the rate-determining step. The extraction rates of both metal ions are found to be independent of pH. The extraction rates of La(Ⅲ) and Ni(Ⅱ) are first-order dependent with respect to lactic acid and metal ions (La(Ⅲ) and Ni(Ⅱ)) concentrations. The extraction rate of La(Ⅲ) is first-order dependent on DEHPA concentration and for Ni(Ⅱ), it varies to the power of 1.5. The separation of La(Ⅲ) and Ni(Ⅱ) from nitrate solution is possible at low interfacial area and low stirring speed.展开更多
The development of highly active and stable reversible oxygen electrocatalysts is crucial for improving the efficiency of metal‐air battery devices.Herein,an efficient liquid exfoliation strategy was designed for pro...The development of highly active and stable reversible oxygen electrocatalysts is crucial for improving the efficiency of metal‐air battery devices.Herein,an efficient liquid exfoliation strategy was designed for producing silk‐like FeS2/NiS2 hybrid nanocrystals with enhanced reversible oxygen catalytic performance that displayed excellent properties for Zn‐air batteries.Because of the unique silk‐like morphology and interface nanocrystal structure,they can catalyze the oxygen evolution reaction(OER)efficiently with a low overpotential of 233 mV at j=10 mA cm?2.This is an improvement from the recently reported catalysts in 1.0 M KOH.Meanwhile,the oxygen reduction reaction(ORR)activity of the silk‐like FeS2/NiS2 hybrid nanocrystals showed an onset potential of 911 mV and a half‐wave potential of 640 mV.In addition,the reversible oxygen electrode activity of the silk‐like FeS2/NiS2 hybrid nanocrystals was calculated to be 0.823 V,based on the potential of the OER and ORR.Further,the homemade rechargeable Zn‐air batteries using FeS2/NiS2 hybrid nanocrystals as the air‐cathode displayed a high open‐circuit voltage of 1.25 V for more than 17 h and an excellent rechargeable performance for 25 h.The solid Zn‐air batteries exhibited an excellent rechargeable performance for 15 h.This study provided a new method for designing interface nanocrystals with a unique morphology for efficient multifunctional electrocatalysts in electrochemical reactions and renewable energy devices.展开更多
The NiS/CQDs nanocomposite (CQDs represents carbon quantum dots), with a mass ratio of NiS/CQDs to be 1.19:1 based on the ICP result, was obtained via a facile hydrothermal method from a mixture of CQDs, Ni(OAc)2 and ...The NiS/CQDs nanocomposite (CQDs represents carbon quantum dots), with a mass ratio of NiS/CQDs to be 1.19:1 based on the ICP result, was obtained via a facile hydrothermal method from a mixture of CQDs, Ni(OAc)2 and Na2S. The self-assembly of ZnIn2S4 microspheres on the surface of NiS/CQDs was realized under microwave conditions to obtain a ternary NiS/CQDs/ZnIn2S4 nanocomposite. The as-obtained NiS/CQDs/ZnIn2S4 nanocomposite was fully characterized, and its photocatalytic hydrogen evolution under visible light irradiation was investigated. The ternary NiS/CQDs/ZnIn2S4 nanocomposite showed superior photocatalytic activity for hydrogen evolution than ternary CQDs/NiS/ZnIn2S4, which was obtained by deposition of NiS in the preformed CQDs/ZnIn2S4. The superior photocatalytic performance of ternary NiS/CQDs/ZnIn2S4 is ascribed to the introduction of CQDs, which act as a bridge to promote the vectorial transfer of photo-generated electrons from ZnIn2S4 to NiS. This result suggests that the rational design and fabrication of ternary CQDs-based systems are important for the efficient photocatalytic hydrogen evolution. This study provides a strategy for developing highly efficient noble-metal-free photocatalysts for hydrogen evolution using CQDs as a bridge to promote the charge transfer in the nanocomposite.展开更多
The bonding characteristics of Ni3Al doped with ternary elements has been investigated by means of the discrete variational Xα (DV-Xα) cluster method. From the computations. the addition of ternary element M (M= Pd....The bonding characteristics of Ni3Al doped with ternary elements has been investigated by means of the discrete variational Xα (DV-Xα) cluster method. From the computations. the addition of ternary element M (M= Pd. Ag. Cu and Co) substituting for the Ni sttes leads to the increase of delocalized bonding electrons. and the mechanism of ductilization of Ni3Al bV doping with M is explained based on the analysis of bonding characteristics. The increase of delocalized bonding electrons lowers the covalent bond directionality and strengthens grain boundary. The difference of strength between M-Al bond and M-Ni bond is an important factor in the effect of alloy stoichiometry on ductility. The larger the difference. the more the sensitivity to the alloy stoichiometry展开更多
基金V. ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20673107), the National Key Basic Research Special Foundation of China (No.G2007CB815203), and the Chinese Academy of Sciences (No.KJCX2-YW-N24).
文摘The laser-induced fluorescence excitation spectrum of jet-cooled NiS molecule has been recorded in the energy range of 15500 17200 cm-1. Fifteen bands have been assigned as three transition progressions:[15.65]^3Ⅱ1(v′=0-4)-X^3∑0^-(v″=0),[15.69]^3∑0^-(v′=0-4)-X^3∑0^-(v″=0),and [15.81]^3Ⅱ1(v′=0-4)-X^3∑0^-(v″=0).Spectroscopic constants for the three newly identified electronically excited states have been determined for the first time. In addition,the lifetimes for most observed vibronic bands have also been measured.
基金supported by the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.ZDBS-LY-DQC010)the National Natural Science Foundation of China(Grant No.42175045).
文摘In 2023,the majority of the Earth witnessed its warmest boreal summer and autumn since 1850.Whether 2023 will indeed turn out to be the warmest year on record and what caused the astonishingly large margin of warming has become one of the hottest topics in the scientific community and is closely connected to the future development of human society.We analyzed the monthly varying global mean surface temperature(GMST)in 2023 and found that the globe,the land,and the oceans in 2023 all exhibit extraordinary warming,which is distinct from any previous year in recorded history.Based on the GMST statistical ensemble prediction model developed at the Institute of Atmospheric Physics,the GMST in 2023 is predicted to be 1.41℃±0.07℃,which will certainly surpass that in 2016 as the warmest year since 1850,and is approaching the 1.5℃ global warming threshold.Compared to 2022,the GMST in 2023 will increase by 0.24℃,with 88%of the increment contributed by the annual variability as mostly affected by El Niño.Moreover,the multidecadal variability related to the Atlantic Multidecadal Oscillation(AMO)in 2023 also provided an important warming background for sparking the GMST rise.As a result,the GMST in 2023 is projected to be 1.15℃±0.07℃,with only a 0.02℃ increment,if the effects of natural variability—including El Niño and the AMO—are eliminated and only the global warming trend is considered.
基金the National Key Research and Development Program of China(Grant No.2020YFA0608803)the National Natural Science Foundation of China(Grant Nos.41975107,41875092 and 42005020).
文摘To explain the recent three-year La Niña event from 2020 to 2022,which has caused catastrophic weather events worldwide,Fasullo et al.(2023)demonstrated that the increase in biomass aerosol resulting from the 2019-20 Australian wildfire season could have triggered this multi-year La Niña.Here,we present compelling evidence from paleo-proxies,utilizing a substantial sample size of 26 volcanic eruptions in the Southern Hemisphere(SH),to support the hypothesis that ocean cooling in the SH can lead to a multi-year La Niña event.This research highlights the importance of focusing on the Southern Ocean,as current climate models struggle to accurately simulate the Pacific response driven by the Southern Ocean.
基金the National Natural Science Foundation of China(52070194,52073309,51902347,51908555)Natural Science Foundation of Hunan Province(2022JJ20069,2020JJ5741).
文摘Benefited from its high process feasibility and controllable costs,binary-metal layered structured LiNi_(0.8)Mn_(0.2)O_(2)(NM)can effectively alleviate the cobalt supply crisis under the surge of global electric vehicles(EVs)sales,which is considered as the most promising nextgeneration cathode material for lithium-ion batteries(LIBs).However,the lack of deep understanding on the failure mechanism of NM has seriously hindered its application,especially under the harsh condition of high-voltage without sacrifices of reversible capacity.Herein,singlecrystal LiNi_(0.8)Mn_(0.2)O_(2) is selected and compared with traditional LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM),mainly focusing on the failure mechanism of Cofree cathode and illuminating the significant effect of Co element on the Li/Ni antisite defect and dynamic characteristic.Specifically,the presence of high Li/Ni antisite defect in NM cathode easily results in the extremely dramatic H2/H3 phase transition,which exacerbates the distortion of the lattice,mechanical strain changes and exhibits poor electrochemical performance,especially under the high cutoff voltage.Furthermore,the reaction kinetic of NM is impaired due to the absence of Co element,especially at the single-crystal architecture.Whereas,the negative influence of Li/Ni antisite defect is controllable at low current densities,owing to the attenuated polarization.Notably,Co-free NM can exhibit better safety performance than that of NCM cathode.These findings are beneficial for understanding the fundamental reaction mechanism of single-crystal Ni-rich Co-free cathode materials,providing new insights and great encouragements to design and develop the next generation of LIBs with low-cost and high-safety performances.
基金supported by the National Natural Science Foundation of China(Nos.22279111,51971195,and 11935004)the Natural Science Foundation of Hebei Province(No.B2020203037)Subsidy for Hebei Key Laboratory of Applied Chemistry after Operation Performance(No.22567616H).
文摘MgH_(2),albeit with slow desorption kinetics,has been extensively studied as one of the most ideal solid hydrogen storage materials.Adding such catalyst as Ni can improve the desorption kinetics of MgH_(2),whereas the catalytic role has been attributed to different substances such as Ni,Mg_(2)Ni,Mg_(2)NiH0.3,and Mg_(2)NiH4.In the present study,Ni nanoparticles(Ni-NPs)supported on mesoporous carbon(Ni@C)have been synthesized to improve the hydrogen desorption kinetics of MgH_(2).The utilization of Ni@C largely decreases the dehydrogenation activation energy from 176.9 to 79.3 kJ mol−1 and the peak temperature of dehydrogenation from 375.5 to 235℃.The mechanism of Ni catalyst is well examined by advanced aberration-corrected environmental transmission electron microscopy and/or x-ray diffraction.During the first dehydrogenation,detailed microstructural studies reveal that the decomposition of MgH_(2)is initially triggered by the Ni-NPs,which is the rate-limiting step.Subsequently,the generated Mg reacts rapidly with Ni-NPs to form Mg_(2)Ni,which further promotes the dehydrogenation of residual MgH_(2).In the following dehydrogenation cycle,Mg_(2)NiH4 can rapidly decompose into Mg_(2)Ni,which continuously promotes the decomposition of MgH_(2).Our study not only elucidates the mechanism of Ni catalyst but also helps design and assemble catalysts with improved dehydriding kinetics of MgH_(2).
基金financially supported by the National Key K&D Program of China(No.2023YFE0200300)the National Natural Science Foundation of China(Nos.52174303and 51874084)the Program of Introducing Talents of Discipline to Universities(No.B21001)。
文摘Multistage heat treatment involving quenching(Q),lamellarizing(L),and tempering(T)is applied to marine 10Ni5CrMoV steel.The microstructure and mechanical properties were studied by multiscale characterizations,and the kinetics of reverse austenite transformation,strain hardening behavior,and toughening mechanism were further investigated.The lamellarized specimens possess low yield strength but high toughness,especially cryogenic toughness.Lamellarization leads to the development of film-like reversed austenite at the martensite block and lath boundaries,refining the martensite structure and lowering the equivalent grain size.Kinetic analysis of austenite reversion based on the JMAK model shows that the isothermal transformation is dominated by the growth of reversed austenite,and the maximum transformation of reversed austenite is reached at the peak temperature(750℃).The strain hardening behavior based on the modified Crussard-Jaoul analysis indicates that the reversed austenite obtained from lamellarization reduces the proportion of martensite,significantly hindering crack propagation via martensitic transformation during the deformation.As a consequence,the QLT specimens exhibit high machinability and low yield strength.Compared with the QT specimen,the ductile-brittle transition temperature of the QLT specimens decreases from-116 to-130℃due to the low equivalent grain size and reversed austenite,which increases the cleavage force required for crack propagation and absorbs the energy of external load,respectively.This work provides an idea to improve the cryogenic toughness of marine 10Ni5CrMoV steel and lays a theoretical foundation for its industrial application and comprehensive performance improvement.
基金supported by the Fundamental Research Funds for the Central Universities(QNTD202302)National Natural Science Foundation of China(22378024)the Foreign expert program(G2022109001L).
文摘Developing a cost-effective and environmentally friendly process for the production of valuable chemicals from abundant herbal biomass receives great attentions in recent years.Herein,taking advantage of the“lignin first”strategy,corn straw is converted to valuable chemicals including lignin monomers,furfural and 5-methoxymethylfurfural via a two steps process.The key of this research lies in the development of a green and low-cost catalytic process utilizing magnetic Raney Ni catalyst and high boiling point ethylene glycol.The utilization of neat ethylene glycol as the sole slovent under atmospheric conditions obviates the need for additional additives,thereby facilitating the entire process to be conducted in glass flasks and rendering it highly convenient for scaling up.In the initial step,depolymerization of corn straw lignin resulted in a monomer yield of 18.1 wt%.Subsequently,in a dimethyl carbonate system,the carbohydrate component underwent complete conversion in a one-pot process,yielding furfural and 5-methoxymethylfurfural as the primary products with an impressive yield of 47.7%.
基金supported by the National Natural Science Foundation of China(No.52374372)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.23KJB430042)+3 种基金the Jiangsu Province Large Scientific Instruments Open Sharing Autonomous Research Filing Project,China(No.TC2023A037)the Yangzhou City−Yangzhou University Cooperation Foundation,China(No.YZ2022183)High-end Talent Support Program of Yangzhou University,China,Qinglan Project of Yangzhou University,ChinaLvyangjinfeng Talent program of Yangzhou,China.
文摘The interdiffusion coefficients in Al_(0.2)CoCrFeNi,CoCrCu_(0.2)FeNi,and CoCrFeMn_(0.2)Ni high-entropy alloys were efficiently determined by combining diffusion couple experiments and high-throughput determination of interdiffusion coefficients(HitDIC)software at 1273−1373 K.The results show that the addition of Al,Cu,and Mn to CoCrFeNi high-entropy alloys promotes the diffusion of Co,Cr,and Fe atoms.The comparison of tracer diffusion coefficients indicates that there is no sluggish diffusion in tracer diffusion on the thermodynamic temperature scale for the present Al_(0.2)CoCrFeNi,CoCrCu_(0.2)FeNi,and CoCrFeMn_(0.2)Ni high-entropy alloys.The linear relationship between diffusion entropy and activation energy reveals that the diffusion process of atoms is unaffected by an increase in the number of components as long as the crystal structure remains unchanged.
基金This work was supported by the National Natural Science Foundation of China (No.21273212 and No.21173205), the National Key Basic Research Program of China (No.2010CB923302), the Chinese Academy of Sciences (No.KJCX2-YW-N24), the Fundamental Research Funds for the Central Universities of China (No.WK2340000012), and the University of Science and Technology of China-National Synchrotron Radiation Laboratory (No.KY2340000021).
文摘Laser-induced fluorescence excitation spectra of jet-cooled NiS molecules were recorded in the energy range of 12200-13550 cm^-1. Four vibronic bands with rotational structure have been observed and assigned to the [12.4]^3∑-0-X^3∑0 transition progression. The relevant rotational constants, significant isotopic shifts, and (equilibrium) molecular parameters have been determined. In addition, the lifetimes of the observed bands have also been measured.
基金Projects(51271040,51171031)supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘The formation of periodic layered structure in Ni3Si/Zn diffusion couples with Zn in vapor or liquid state was investigated by SEM-EDS, FESEM and XRD. The results show that the diffusion path in solid-liquid reaction is Ni3Si/(T+γ)/γ/…T/γ/Ni4Zn12Si3/γ/…Ni4Zn12Si3/γ/Ni4Zn12Si3/δ…/Ni4Zn12Si3/δ/liquid-Zn, and the diffusion path in solid-vapor reaction is Ni3Si/θ/(T+γ)/γ/…/T/γ/…T/γ/vapor-Zn. With increasing Zn diffusion flux, the diffusion reaction path moves toward the Zn-rich direction, and the distance from the Ni3Si substrate to the periodic layer pair nearest to the interface decreases. In the initial stage of both reactions,γphase nucleates and grows within T matrix phase at first, and then conjuncts together to form a band to reduce the surface energy. Based on the experimental results and diffusion kinetics analysis, the microstructure differences were compared and the formation mechanism of the periodic layered structure in Ni3Si/Zn system was discussed.
文摘Modification of nickel sulfide cocatalysts is considered to be a promising approach for efficient enhancement of the photocatalytic hydrogen production performance of g-C3N4.Providing more NiS cocatalyst to function as active sites of g-C3N4 is still highly desirable.To realize this goal,in this work,a facile sulfur-mediated photodeposition approach was developed.Specifically,photogenerated electrons excited by visible light reduce the S molecules absorbed on g-C3N4 surface to S^2‒,and subsequently NiS cocatalyst is formed in situ on the g-C3N4 surface by a combination of Ni2+and S2‒due to their small solubility product constant(Ksp=3.2×10^‒19).This approach has several advantages.The NiS cocatalyst is clearly in situ deposited on the photogenerated electron transfer sites of g-C3N4,and thus provides more active sites for H2 production.In addition,this method utilizes solar energy with mild reaction conditions at room temperature.Consequently,the synthesized NiS/g-C3N4 photocatalyst achieves excellent hydrogen generation performance with the performance of the optimal sample(244μmol h^‒1 g^‒1)close to that of 1 wt%Pt/g-C3N4(316μmol h^‒1 g^‒1,a well-known excellent photocatalyst).More importantly,the present sulfur-mediated photodeposition route is versatile and facile and can be used to deposit various metal sulfides such as CoSx,CuSx and AgSx on the g-C3N4 surface,and all the resulting metal sulfide-modified g-C3N4 photocatalysts exhibit improved H2-production performance.Our study offers a novel insight for the synthesis of high-efficiency photocatalysts.
基金supported by the Agency for Science,Technology and Research(A*Star),Republic of Singapore under the IAF-PP program‘Integrated large format hybrid manufacturing using wire-fed and powder-blown technology for LAAM process’,Grant No.A1893a0031the Academy of Sciences Project of Guangdong Province,Grant No.2016GDASRC-0105。
文摘It is well-known that grain refiners can tailor the microstructure and enhance the mechanical properties of titanium alloys fabricated by additive manufacturing(AM). However, the intrinsic mechanisms of Ni addition on AM-built Ti–6Al–4V alloy is not well established. This limits its industrial applications. This work systematically investigated the influence of Ni additive on Ti–6Al–4V alloy fabricated by laser aided additive manufacturing(LAAM). The results showed that Ni addition yields three key effects on the microstructural evolution of LAAM-built Ti–6Al–4V alloy.(a) Ni additive remarkably refines the prior-β grains, which is due to the widened solidification range. As the Ni addition increased from 0 to 2.5 wt. %, the major-axis length and aspect ratio of the prior-β grains reduced from over 1500 μm and 7 to 97.7 μm and1.46, respectively.(b) Ni additive can discernibly induce the formation of globular α phase,which is attributed to the enhanced concentration gradient between the β and α phases. This is the driving force of globularization according to the termination mass transfer theory. The aspect ratio of the α laths decreased from 4.14 to 2.79 as the Ni addition increased from 0 to2.5 wt. %.(c) Ni as a well-known β-stabilizer and it can remarkably increase the volume fraction of β phase. Room-temperature tensile results demonstrated an increase in mechanical strength and an almost linearly decreasing elongation with increasing Ni addition. A modified mathematical model was used to quantitatively analyze the strengthening mechanism. It was evident from the results that the α lath phase and the solid solutes contribute the most to the overall yield strength of the LAAM-built Ti–6Al–4V–x Ni alloys in this work. Furthermore, the decrease in elongation with increasing Ni addition is due to the deterioration in deformability of the β phase caused by a large amount of solid-solution Ni atoms. These findings can accelerate the development of additively manufactured titanium alloys.
基金the National Natural Science Foundation of China(21501137)the Hubei Natural Science Foundation for financial support(2018CFB680)Support from the Australian Research Council(ARC)through ARC Discovery projects(DP130102699,DP 130102274,DP160102627)
文摘Photocatalytic solar energy conversion to hydrogen is sustainable and attractive for addressing the global energy and environmental issue. Herein, a novel photocatalytic system (NiS/Ni3S4 cocatalysts modified mesoporous TiO2) with superior photocatalytic hydrogen evolution capability through the synergistic impact of NiS/Ni3S4 (NiSx) cocatalyst and efficient hole scavenger has been demonstrated. The photocatalytic hydrogen evolution of TiO2-NiSx hybrids with the different content of NiSx and upon different organic hole scavengers was both investigated. The hybrid of TiO2 decorated with 3%(mole ratio of Ni^2+) NiSx cocatalyst in methanol solution showed the optimal photocatalytic hydrogen evolution rate of 981.59 μmol h^-1 g^-1 which was about 20 times higher than that of bare mesoporous TiO2. Our results suggested that the boosted hydrogen production performance is attributed to both the improved photoinduced electrons migration between NiS and Ni3S4 in cocatalyst and the high hole captured efficiency by hole scavengers of methanol.
基金DST, Govt. of India for the award of INSPIRE fellowship
文摘The kinetics of extractive separation of La(Ⅲ) and Ni(Ⅱ) from nitrate medium in the presence of lactic acid (HLac) using di-2-ethylhexyl phosphoric acid (DEHPA) diluted in petrofin was investigated using a cell with constant interfacial area and continuous stirring. The effects of stirring speed, interfacial area, pH, HLac concentration, extractant concentration, concentrations of metal ions and temperature on the extraction rate were examined. Results suggested that the extraction regime is diffusion-controlled. The reaction which occurred at the interface was found to be the rate-determining step. The extraction rates of both metal ions are found to be independent of pH. The extraction rates of La(Ⅲ) and Ni(Ⅱ) are first-order dependent with respect to lactic acid and metal ions (La(Ⅲ) and Ni(Ⅱ)) concentrations. The extraction rate of La(Ⅲ) is first-order dependent on DEHPA concentration and for Ni(Ⅱ), it varies to the power of 1.5. The separation of La(Ⅲ) and Ni(Ⅱ) from nitrate solution is possible at low interfacial area and low stirring speed.
基金supported by the National Basic Research Program of China(21571089,21503102,51571125)the Fundamental Research Funds for the Central Universities(lzujbky-2016-k02,lzujbky-2018-k08,lzujbky-2017-it42)~~
文摘The development of highly active and stable reversible oxygen electrocatalysts is crucial for improving the efficiency of metal‐air battery devices.Herein,an efficient liquid exfoliation strategy was designed for producing silk‐like FeS2/NiS2 hybrid nanocrystals with enhanced reversible oxygen catalytic performance that displayed excellent properties for Zn‐air batteries.Because of the unique silk‐like morphology and interface nanocrystal structure,they can catalyze the oxygen evolution reaction(OER)efficiently with a low overpotential of 233 mV at j=10 mA cm?2.This is an improvement from the recently reported catalysts in 1.0 M KOH.Meanwhile,the oxygen reduction reaction(ORR)activity of the silk‐like FeS2/NiS2 hybrid nanocrystals showed an onset potential of 911 mV and a half‐wave potential of 640 mV.In addition,the reversible oxygen electrode activity of the silk‐like FeS2/NiS2 hybrid nanocrystals was calculated to be 0.823 V,based on the potential of the OER and ORR.Further,the homemade rechargeable Zn‐air batteries using FeS2/NiS2 hybrid nanocrystals as the air‐cathode displayed a high open‐circuit voltage of 1.25 V for more than 17 h and an excellent rechargeable performance for 25 h.The solid Zn‐air batteries exhibited an excellent rechargeable performance for 15 h.This study provided a new method for designing interface nanocrystals with a unique morphology for efficient multifunctional electrocatalysts in electrochemical reactions and renewable energy devices.
基金supported by the National Key Basic Research Program of China(973 Program,2014CB239303)the National Natural Science Foundation of China(21872031,U1705251)the Award Program for Minjiang Scholar Professorship~~
文摘The NiS/CQDs nanocomposite (CQDs represents carbon quantum dots), with a mass ratio of NiS/CQDs to be 1.19:1 based on the ICP result, was obtained via a facile hydrothermal method from a mixture of CQDs, Ni(OAc)2 and Na2S. The self-assembly of ZnIn2S4 microspheres on the surface of NiS/CQDs was realized under microwave conditions to obtain a ternary NiS/CQDs/ZnIn2S4 nanocomposite. The as-obtained NiS/CQDs/ZnIn2S4 nanocomposite was fully characterized, and its photocatalytic hydrogen evolution under visible light irradiation was investigated. The ternary NiS/CQDs/ZnIn2S4 nanocomposite showed superior photocatalytic activity for hydrogen evolution than ternary CQDs/NiS/ZnIn2S4, which was obtained by deposition of NiS in the preformed CQDs/ZnIn2S4. The superior photocatalytic performance of ternary NiS/CQDs/ZnIn2S4 is ascribed to the introduction of CQDs, which act as a bridge to promote the vectorial transfer of photo-generated electrons from ZnIn2S4 to NiS. This result suggests that the rational design and fabrication of ternary CQDs-based systems are important for the efficient photocatalytic hydrogen evolution. This study provides a strategy for developing highly efficient noble-metal-free photocatalysts for hydrogen evolution using CQDs as a bridge to promote the charge transfer in the nanocomposite.
文摘The bonding characteristics of Ni3Al doped with ternary elements has been investigated by means of the discrete variational Xα (DV-Xα) cluster method. From the computations. the addition of ternary element M (M= Pd. Ag. Cu and Co) substituting for the Ni sttes leads to the increase of delocalized bonding electrons. and the mechanism of ductilization of Ni3Al bV doping with M is explained based on the analysis of bonding characteristics. The increase of delocalized bonding electrons lowers the covalent bond directionality and strengthens grain boundary. The difference of strength between M-Al bond and M-Ni bond is an important factor in the effect of alloy stoichiometry on ductility. The larger the difference. the more the sensitivity to the alloy stoichiometry