Electrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection.Here,we report an efficient NitRR catalyst composed of single Mn sites...Electrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection.Here,we report an efficient NitRR catalyst composed of single Mn sites with atomically dispersed oxygen(O)coordination on bacterial cellulose-converted graphitic carbon(Mn-O-C).Evidence of the atomically dispersed Mn-(O-C_(2))_(4)moieties embedding in the exposed basal plane of carbon surface is confirmed by X-ray absorption spectroscopy.As a result,the as-synthesized Mn-O-C catalyst exhibits superior NitRR activity with an NH_(3)yield rate(RNH_(3))of 1476.9±62.6μg h^(−1)cm^(−2)at−0.7 V(vs.reversible hydrogen electrode,RHE)and a faradaic efficiency(FE)of 89.0±3.8%at−0.5 V(vs.RHE)under ambient conditions.Further,when evaluated with a practical flow cell,Mn-O-C shows a high RNH_(3)of 3706.7±552.0μg h^(−1)cm^(−2)at a current density of 100 mA cm−2,2.5 times of that in the H cell.The in situ FT-IR and Raman spectroscopic studies combined with theoretical calculations indicate that the Mn-(O-C_(2))_(4)sites not only effectively inhibit the competitive hydrogen evolution reaction,but also greatly promote the adsorption and activation of nitrate(NO_(3)^(−)),thus boosting both the FE and selectivity of NH_(3)over Mn-(O-C_(2))_(4)sites.展开更多
Exploding foil initiator(EFI)is a kind of advanced device for initiating explosives,but its function is unstable when it comes to directly igniting pyrotechnics.To solve the problem,this research aims to reveal the ig...Exploding foil initiator(EFI)is a kind of advanced device for initiating explosives,but its function is unstable when it comes to directly igniting pyrotechnics.To solve the problem,this research aims to reveal the ignition mechanism of EFIs directly igniting pyrotechnics.An oscilloscope,a photon Doppler velocimetry,and a plasma spectrum measurement system were employed to obtain information of electric characteristics,impact pressure,and plasma temperature.The results of the electric characteristics and the impact pressure were inconsistent with ignition results.The only thing that the ignition success tests had in common was that their plasma all had a relatively long period of high-temperature duration(HTD).It eventually concludes that the ignition mechanism in this research is the microconvection heat transfer rather than the shock initiation,which differs from that of exploding foil initiators detonating explosives.Furthermore,the methods for evaluating the ignition success of semiconductor bridge initiators are not entirely applicable to the tests mentioned in this paper.The HTD is the critical parameter for judging the ignition success,and it is influenced by two factors:the late time discharge and the energy of the electric explosion.The longer time of the late time discharge and the more energy of the electric explosion,the easier it is to expand the HTD,which improves the probability of the ignition success.展开更多
Electroreduction of nitrate has been gaining wide attention in recent years owing to it's beneficial for converting nitrate into benign N_(2) from the perspective of electrocatalytic denitrification or into value-...Electroreduction of nitrate has been gaining wide attention in recent years owing to it's beneficial for converting nitrate into benign N_(2) from the perspective of electrocatalytic denitrification or into value-added ammonia from the perspective of electrocatalytic NH_(3) synthesis.By reason of the undesired formation of ammonia is dominant during electroreduction of nitrate-containing wastewater,chloride has been widely used to improve N_(2) selectivity.Nevertheless,selective electroreduction of nitrate to N2 gas in chloride-containing system poses several drawbacks.In this review,we focus on the key strategies for efficiently enhancing N_(2) selectivity of electroreduction of nitrate in chloride-free system,including optimal selection of elements,combining an active metal catalyst with another metal,manipulating the crystalline morphology and facet orientation,constructing core–shell structure catalysts,etc.Before summarizing the strategies,four possible reaction pathways of electro-reduction of nitrate to N_(2) are discussed.Overall,this review attempts to provide practical strategies for enhancing N2 selectivity without the aid of electrochlorination and highlight directions for future research for designing appropriate electrocatalyst for final electrocatalytic denitrifi-cation.展开更多
Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone ...Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone transport and rice growth and development remains unknown.In this study,we described OsNPF3.1 as an essential nitrate and phytohormone transporter gene for rice tillering and nitrogen utilization efficiency(NUtE).OsNPF3.1 possesses four major haplotypes of its promoter sequence in 517 cultivars,and its expression is positively associated with tiller number.Its expression was higher in the basal part,culm,and leaf blade than in other parts of the plant,and was strongly induced by nitrate,abscisic acid(ABA)and gibberellin 3(GA_3)in the root and shoot of rice.Electrophysiological experiments demonstrated that OsNPF3.1 is a pH-dependent low-affinity nitrate transporter,with rice protoplast uptake assays showing it to be an ABA and GA_3 transporter.OsNPF3.1 overexpression significantly promoted ABA accumulation in the roots and GA accumulation in the basal part of the plant which inhibited axillary bud outgrowth and rice tillering,especially at high nitrate concentrations.The NUtE of OsNPF3.1-overexpressing plants was enhanced under low and medium nitrate concentrations,whereas the NUtE of OsNPF3.1 clustered regularly interspaced short palindromic repeats(CRISPR)plants was increased under high nitrate concentrations.The results indicate that OsNPF3.1 transports nitrate and phytohormones in different rice tissues under different nitrate concentrations.The altered OsNPF3.1 expression improves NUtE in the OsNPF3.1-overexpressing and CRISPR lines at low and high nitrate concentrations,respectively.展开更多
Ammonia(NH_(3))is an irreplaceable chemical that has been widely demanded to keep the sustainable development of modern society.However,its industrial production consumes a huge amount of energy and releases extraordi...Ammonia(NH_(3))is an irreplaceable chemical that has been widely demanded to keep the sustainable development of modern society.However,its industrial production consumes a huge amount of energy and releases extraordinary greenhouse gases(GHGs),leading to various environmental issues.Achieving the green production of ammonia is a great challenge,which has been extensively pursued in the last decade.In this review,the most promising strategy,electrochemical nitrate reduction reaction(e-NO_(3)RR),is comprehensively investigated to give a complete understanding of its development and mechanism and provide guidance for future directions.However,owing to the complex reactions and limited selectivity,a comprehensive understanding of the mechanisms is crucial to further development and commercialization.Moreover,NO_(3)^(-)RR is a promising strategy for simultaneous water treatment and NH_(3)production.A detailed overview of the recent progress in NO_(3)^(-)RR for NH_(3)production with nontransition and transition metal based electrocatalysts is summarized.In addition,critical advanced techniques,future challenges,and prospects are discussed to guide future research on transition metal-based catalysts for commercial NH_(3)synthesis by NO_(3)^(-)reduction.展开更多
Reasonable nitrogen(N) application is a promising strategy for reducing crop cadmium(Cd) toxicity. However, the specific form of N and the required amount that affect Cd tolerance and accumulation in rice remain uncle...Reasonable nitrogen(N) application is a promising strategy for reducing crop cadmium(Cd) toxicity. However, the specific form of N and the required amount that affect Cd tolerance and accumulation in rice remain unclear. This study explored the influence of different N-fertilizer forms(NH_(4)NO_(3), NH_4Cl, and KNO_(3)) and dosages on Cd tolerance and uptake in Cd-stressed N-sensitive and N-insensitive indica rice accessions. The results indicated that the Cd tolerance of N-sensitive indica accessions is more robust than that of N-insensitive ones. Furthermore, the shoot Cd content and Cd translocation rate in both N-sensitive and N-insensitive indica accessions decreased with an appropriate supply of NH_(4)NO_(3) and NH_4Cl, whereas they were comparable or slightly increased with increased KNO_(3). Unfortunately, we did not find significant and regular differences in Cd accumulation or translocation between N-sensitive and N-insensitive rice accessions. Consistent with the reduction of shoot Cd content, the addition of NH_(4)NO_(3) and NH_4Cl also inhibited the instantaneous root Cd^(2+) uptake. The expression changes of Cd transport-related genes under different N forms and dosages suggested that the decreased shoot Cd content, caused by the increased supply of NH_(4)NO_(3) and NH_4Cl, is likely achieved by reducing the transcription of OsNRAMP1 and OsIRT1. In summary, our findings reveal that an appropriate supply of NH_(4)NO_(3) and NH_4Cl could reduce Cd uptake and transport in rice seedlings, suggesting that rational N management could reduce the Cd risk in rice production.展开更多
Fluoride and nitrate enriched groundwater are potential threats to the safety of the groundwater supply that may cause significant effects on human health and public safety,especially in aggregated population areas an...Fluoride and nitrate enriched groundwater are potential threats to the safety of the groundwater supply that may cause significant effects on human health and public safety,especially in aggregated population areas and economic hubs.This study focuses on the high F^(−)and NO_(3)^(−)concentration groundwater in Tongzhou District,Beijing,North China.A total of 36 groundwater samples were collected to analyze the hydrochemical characteristics,elucidate genetic mechanisms and evaluate the potential human health risks.The results of the analysis indicate:Firstly,most of the groundwater samples are characterized by Mg-HCO_(3) and Na-HCO_(3) with the pH ranging from 7.19 to 8.28 and TDS with a large variation across the range 471-2337 mg/L.The NO_(3)^(−)concentration in 38.89%groundwater samples and the F^(−)concentration in 66.67%groundwater samples exceed the permissible limited value.Secondly,F^(−)in groundwater originates predominantly from water-rock interactions and the fluorite dissolution,which is also regulated by cation exchange,competitive adsorption of HCO_(3)−and an alkaline environment.Thirdly,the effect of sewage disposal and agricultural activities have a significant effect on high NO3-concentration,while the high F^(−)concentration is less influenced by anthropogenic activity.The alkaline environment favors nitrification,thus being conducive to the production of NO_(3)^(−).Finally,the health risk assessment is evaluated for different population groups.The results indicate that high NO_(3)^(−)and F^(−)concentration in groundwater would have the largest threat to children’s health.The findings of this study could contribute to the provision of a scientific basis for groundwater supply policy formulation relating to public health in Tongzhou District.展开更多
Ammonia(NH_(3))is a multifunctional compound that is an important feedstock for the agricultural and pharmaceutical industries and attractive energy storage medium.At present,NH_(3)synthesis is highly dependent on the...Ammonia(NH_(3))is a multifunctional compound that is an important feedstock for the agricultural and pharmaceutical industries and attractive energy storage medium.At present,NH_(3)synthesis is highly dependent on the conventional Haber–Bosch process that operates under harsh conditions,which consumes large quantities of fossil fuels and releases a large amount of carbon dioxide.As an alternative,electrosynthesis is a prospective method for producing NH_(3)under normal temperature and pressure conditions.Although electrocatalytic nitrogen reduction to ammonia has attracted considerable attentions,the low solubility of N_(2)and high N≡N cracking energy render the achievements of high NH_(3) yield rate and Faradaic efficiency difficult.Nitrate and nitrite(NO_(x)^(-))are common N-containing pollutants.Due to their high solubilities and low dissociation energy of N=O,NO_(x)^(-)−are ideal raw materials for NH_(3) production.Therefore,electrocatalytic NO_(x)^(-)−reduction to NH_(3)(eNO_(x)RR)is a prospective strategy to simultaneously realise environmental protection and NH_(3) synthesis.This review offers a comprehensive understanding of the thriving eNO_(x)RR under ambient conditions.At first,the popular theory and mechanism of eNO_(x)RR and a summary of the measurement system and evaluation criteria are introduced.Thereafter,various strategies for developing NO_(x)−reduction catalysts are systematically presented and discussed.Finally,the challenges and possible prospects of electrocatalytic NO_(x)^(-1) reduction are outlined to facilitate energy-saving and environmentally friendly large-scale synthesis of NH_(3) in the future.展开更多
Ammonia(NH_(3))is an important raw material for modern agriculture and industry,being widely demanded to sustain the sustainable development of modern society.Currently,the industrial production methods of NH_(3),such...Ammonia(NH_(3))is an important raw material for modern agriculture and industry,being widely demanded to sustain the sustainable development of modern society.Currently,the industrial production methods of NH_(3),such as the traditional Haber-Bosch process,have drawbacks including high energy consumption and significant carbon dioxide emissions.In recent years,the electrocatalytic nitrate reduction reaction(NO_(3)RR)powered by intermittent renewable energy sources has gradually become a multidisciplinary research hotspot,as it allows for the efficient synthesis of NH_(3)under mild conditions.In this review,we focus on the research of electrocatalysts with atomic-level site,which have attracted attention due to their extremely high atomic utilization efficiency and unique structural characteristics in the field of NO_(3)RR.Firstly,we introduce the mechanism of nitrate reduction for ammonia synthesis and discuss the in-situ characterization techniques related to the mechanism study.Secondly,we review the progress of the electrocatalysts with atomic-level site for nitrate reduction and explore the structure-activity relationship to guide the rational design of efficient catalysts.Lastly,the conclusions of this review and the challenges and prospective of this promising field are presented.展开更多
Focusing on revealing the origin of high ammonia yield rate on Cu via nitrate reduction(NO3RR),we herein applied constant potential method via grand-canonical density functional theory(GC-DFT)with implicit continuum s...Focusing on revealing the origin of high ammonia yield rate on Cu via nitrate reduction(NO3RR),we herein applied constant potential method via grand-canonical density functional theory(GC-DFT)with implicit continuum solvation model to predict the reaction energetics of NO3RR on pure copper surface in alkaline media.The potential-dependent mechanism on the most prevailing Cu(111)and the minor(100)and(110)facets were established,in consideration of NO_(2)_(−),NO,NH_(3),NH_(2)OH,N_(2),and N_(2)O as the main products.The computational results show that the major Cu(111)is the ideal surface to produce ammonia with the highest onset potential at 0.06 V(until−0.37 V)and the highest optimal potential at−0.31 V for ammonia production without kinetic obstacles in activation energies at critical steps.For other minor facets,the secondary Cu(100)shows activity to ammonia from−0.03 to−0.54 V with the ideal potential at−0.50 V,which requires larger overpotential to overcome kinetic activation energy barriers.The least Cu(110)possesses the longest potential range for ammonia yield from−0.27 to−1.12 V due to the higher adsorption coverage of nitrate,but also with higher tendency to generate di-nitrogen species.Experimental evaluations on commercial Cu/C electrocatalyst validated the accuracy of our proposed mechanism.The most influential(111)surface with highest percentage in electrocatalyst determined the trend of ammonia production.In specific,the onset potential of ammonia production at 0.1 V and emergence of yield rate peak at−0.3 V in experiments precisely located in the predicted potentials on Cu(111).Four critical factors for the high ammonia yield and selectivity on Cu surface via NO3RR are summarized,including high NO3RR activity towards ammonia on the dominant Cu(111)facet,more possibilities to produce ammonia along different pathways on each facet,excellent ability for HER inhibition and suitable surface size to suppress di-nitrogen species formation at high nitrate coverage.Overall,our work provides comprehensive potential-dependent insights into the reaction details of NO3RR to ammonia,which can serve as references for the future development of NO3RR electrocatalysts,achieving higher activity and selectivity by maximizing these characteristics of copper-based materials.展开更多
Eutrophication caused by inputs of excess nitrogen(N) has become a serious environmental problem in Hangzhou Bay(China),but the sources of this nitrogen are not well understood.In this study,the August 2019 distributi...Eutrophication caused by inputs of excess nitrogen(N) has become a serious environmental problem in Hangzhou Bay(China),but the sources of this nitrogen are not well understood.In this study,the August 2019 distributions of salinity,nutrients [nitrate(NO_(3)^(-)),nitrite,ammonium,and phosphate],and the stable isotopic composition of NO_(3)^(-)(δ^(15)N and δ^(18)O) were used to investigate sources of dissolved inorganic nitrogen(DIN) to Hangzhou B ay.Spatial distributions of nitrate,salinity,and nitrate δ^(18)O indicate that the Qiantang River,the Changjiang River,and nearshore coastal waters may all contribute nitrate to the bay.Based on the isotopic compositions of nitrate in these potential source waters and conservative mixing of nitrate in our study area,we suggest that the NO_(3)^(- )in Hangzhou B ay was likely derived mainly from soils,synthetic N fertilizer,and manure and sewage.End-member modeling indicates that in the upper half of the bay,the Qiantang River was a very important DIN source,possibly contributing more than 50% of DIN in the bay head area.In the lower half of the bay,DIN was sourced mainly from strongly intruding coastal water.DIN coming directly from the Changjiang River made a relatively small contribution to Hangzhou Bay DIN in August 2019.展开更多
The reduction of nitrate to nitrite by the oral microbiota has been proposed to be important for oral health and results in nitric oxide formation that can improve cardiometabolic conditions. Studies of bacterial comp...The reduction of nitrate to nitrite by the oral microbiota has been proposed to be important for oral health and results in nitric oxide formation that can improve cardiometabolic conditions. Studies of bacterial composition in subgingival plaque suggest that nitrate-reducing bacteria are associated with periodontal health, but the impact of periodontitis on nitrate-reducing capacity(NRC)and, therefore, nitric oxide availability has not been evaluated. The current study aimed to evaluate how periodontitis affects the NRC of the oral microbiota. First, 16S rRNA sequencing data from five different countries were analyzed, revealing that nitratereducing bacteria were significantly lower in subgingival plaque of periodontitis patients compared with healthy individuals(P < 0.05 in all five datasets with n = 20–82 samples per dataset). Secondly, subgingival plaque, saliva, and plasma samples were obtained from 42 periodontitis patients before and after periodontal treatment. The oral NRC was determined in vitro by incubating saliva with 8 mmol/L nitrate(a concentration found in saliva after nitrate-rich vegetable intake) and compared with the NRC of 15healthy individuals. Salivary NRC was found to be diminished in periodontal patients before treatment(P < 0.05) but recovered to healthy levels 90 days post-treatment. Additionally, the subgingival levels of nitrate-reducing bacteria increased after treatment and correlated negatively with periodontitis-associated bacteria(P < 0.01). No significant effect of periodontal treatment on the baseline saliva and plasma nitrate and nitrite levels was found, indicating that differences in the NRC may only be revealed after nitrate intake. Our results suggest that an impaired NRC in periodontitis could limit dietary nitrate-derived nitric oxide levels, and the effect on systemic health should be explored in future studies.展开更多
The accumulation of excessive nitrate in the atmosphere not only jeopardizes human health but also disrupts the balance of the nitrogen cycle in the ecosystem.Among various nitrate removal technologies,electrocatalyti...The accumulation of excessive nitrate in the atmosphere not only jeopardizes human health but also disrupts the balance of the nitrogen cycle in the ecosystem.Among various nitrate removal technologies,electrocatalytic nitrate reduction reaction(eNO_(3)RR)has been widely studied for its advantages of being eco-friendly,easy to operate,and controllable under environmental conditions with renewable energy as the driving force.Transition metal-based catalysts(TMCs)have been widely used in electrocatalysis due to their abundant reserves,low costs,easy-to-regulate electronic structure and considerable electrochemical activity.In addition,TMCs have been extensively studied in terms of the kinetics of the nitrate reduction reaction,the moderate adsorption energy of nitrogen-containing species and the active hydrogen supply capacity.Based on this,this review firstly discusses the mechanism as well as analyzes the two main reduction products(N_(2)and NH_(3))of eNO_(3)RR,and reveals the basic guidelines for the design of efficient nitrate catalysts from the perspective of the reaction mechanism.Secondly,this review mainly focuses on the recent advances in the direction of eNO_(3RR)with four types of TMCs,Fe,Co,Ni and Cu,and unveils the interfacial modulation strategies of Fe,Co,Ni and Cu catalysts for the activity,reaction pathway and stability.Finally,reasonable suggestions and opportunities are proposed for the challenges and future development of eNO_(3)RR.This review provides far-reaching implications for exploring cost-effective TMCs to replace high-cost noble metal catalysts(NMCs)for eNO_(3)RR.展开更多
Highly dispersed bimetallic alloy nanoparticle electrocatalysts have been demonstrated to exhibit exceptional performance in driving the nitrate reduction reaction(NO_(3)RR)to generate ammonia(NH_(3)).In this study,we...Highly dispersed bimetallic alloy nanoparticle electrocatalysts have been demonstrated to exhibit exceptional performance in driving the nitrate reduction reaction(NO_(3)RR)to generate ammonia(NH_(3)).In this study,we prepared mesoporous carbon nanofibers(mCNFs)functionalized with ordered PtFe alloys(O-PtFe-mCNFs)by a composite micelle interface-induced co-assembly method using poly(ethylene oxide)-block-polystyrene(PEO-b-PS)as a template.When employed as electrocatalysts,O-PtFe-mCNFs exhibited superior electrocatalytic performance for the NO_(3RR)compared to the mCNFs functionalized with disordered PtFe alloys(D-PtFe-mCNFs).Notably,the NH_(3)production performance was particularly outstanding,with a maximum NH_(3)yield of up to 959.6μmol/(h·cm~2).Furthermore,the Faraday efficiency(FE)was even 88.0%at-0.4 V vs.reversible hydrogen electrode(RHE).This finding provides compelling evidence of the potential of ordered PtFe alloy catalysts for the electrocatalytic NO_(3)RR.展开更多
This study aimed to evaluate the quality of water from village boreholes by measuring physicochemical parameters such as nitrates, nitrites, and total organic carbon (TOC). Forty-five (45) village pumps from the South...This study aimed to evaluate the quality of water from village boreholes by measuring physicochemical parameters such as nitrates, nitrites, and total organic carbon (TOC). Forty-five (45) village pumps from the Southern (Basse Côte) and the Northern (Korhogo) region of Cte d’Ivoire (west Africa) were sampled. Physicochemical parameters such as temperature, pH, conductivity at 25˚C, and turbidity were determined in situ, while nitrite and nitrate were analyzed according to ISO 10304-1 (2007) standard and total organic carbon (TOC) by NF EN 1484 (1997) standard. The results showed that the borehole waters of the Basse Côte and Korhogo analyzed are acidic, with an average temperature of 27.51˚C ± 0.16˚C and 29.95˚C ± 0.51˚C respectively for the Basse Côte and Korhogo regions. The borehole waters of the Basse Côtedo not contain nitrites, while those of Korhogo have average nitrite contents of 0.32 mg/l. The average nitrate rate in the waters of the Basse Côte and Korhogo are 12.08 ± 2.11 mg/l and 11.03 ± 3.18 mg/l respectively. The average TOC concentration of the waters of the Basse Côte is 1.28 ± 0.32 mg/l and that of Korhogo is 0.56 ± 0.09 mg/L. The study showed that the borehole waters of the Basse Côte and Korhogo have average temperatures between 27.4˚C and 29.95˚C with a slightly acidic pH value and acceptable salinity. The TOC concentrations obtained at the different sampling points were all below the French standard (2 mg/L) except for certains pumps of the Basse Côte. The water samples from the Basse Côte were devoid of nitrite. On the other hand, those from Korhogo revealed the presence of nitrite. Also, the borehole waters of the regions of the Basse Côte and Korhogo contain relatively high nitrate contents, presumably due to anthropometric activity. Overall, our study on the quality of drinking water showed that the waters analyzed are in compliance with international standards and safe for consumption.展开更多
Technologies for reducing corn leaf burn caused by foliar spray of urea-ammonium nitrate (UAN) during the early growing season are limited. A field experiment was carried out to evaluate the effects of humic acid on c...Technologies for reducing corn leaf burn caused by foliar spray of urea-ammonium nitrate (UAN) during the early growing season are limited. A field experiment was carried out to evaluate the effects of humic acid on corn leaf burn caused by foliar spray of undiluted UAN solution on corn canopy at Jackson, TN in 2018. Thirteen treatments of the mixtures of UAN and humic acid were evaluated at V6 of corn with different UAN application rates and different UAN/humic acid ratios. Leaf burn during 1 2, 3, 4, 5, 6, 7, and 14 days after UAN foliar spray significantly differed between with or without humic acid addition. The addition of humic acid to UAN significantly reduced leaf burn at each UAN application rate (15, 25, and 35 gal/acre). The reduction of leaf burn was enhanced as the humic acid/UAN ratio went up from 10% to 30%. Leaf burn due to foliar application of UAN became severer with higher UAN rates. The linear regression of leaf burn 14 days after application with humic acid/UAN ratio was highly significant and negative. However, the linear regression of leaf burn 14 days after application with the UAN application rate was highly significant and positive. In conclusion, adding humic acid to foliar-applied UAN is beneficial for reducing corn leaf burn during the early growing season.展开更多
Nitrate pollution is of great importance in both the environmental and health contexts, necessitating the development of efficient mitigation strategies. This review provides a comprehensive analysis of the many catal...Nitrate pollution is of great importance in both the environmental and health contexts, necessitating the development of efficient mitigation strategies. This review provides a comprehensive analysis of the many catalysts employed in the electrochemical reduction of nitrate to ammonia, and presents a viable environmentally friendly approach to address the issue of nitrate pollution. Hence, the electrochemical transformation of nitrate to ammonia serves the dual purpose of addressing nitrate pollution in water bodies, and is a useful agricultural resource. This review examines a range of catalyst materials such as noble and non-noble metals, metal oxides, carbon-based materials, nitrogen-doped carbon species, metal complexes, and semiconductor photocatalysts. It evaluates catalytic efficiency, selectivity, stability, and overall process optimization. The performance of catalysts is influenced by various factors, including reaction conditions, catalyst structure, loading techniques, and electrode interfaces. Comparative analysis was performed to evaluate the catalytic activity, selectivity, Faradaic efficiency, current density, stability, and durability of the catalysts. This assessment offers significant perspectives on the structural, compositional, and electrochemical characteristics that affect the efficacy of these catalysts, thus informing future investigations and advancements in this domain. In addition to mitigating nitrate pollution, the electrochemical reduction of nitrate to ammonia is in line with sustainable agricultural methods, resource conservation, and the utilization of renewable energy resources. This study explores the factors that affect the catalytic efficiency, provides new opportunities to address nitrate pollution, and promotes the development of sustainable environmental solutions.展开更多
The accuracy of interpolation models applied to groundwater depends, among other factors, on the interpolation method chosen. Therefore, it is necessary to compare different approaches. For this, different methods of ...The accuracy of interpolation models applied to groundwater depends, among other factors, on the interpolation method chosen. Therefore, it is necessary to compare different approaches. For this, different methods of interpolation of nitrate concentrations were contrasted in sixty-seven wells in an aquifer in Aguascalientes, Mexico. Four general interpolation methods were used in ArcGIS 10.5 to make the maps: IDW, Kriging, Natural Neighbor and Spline. In the modeling, only method type was varied. The input parameters (location, temporality, and nitrate concentration) were the same in the four interpolations;despite this, different maximum and minimum values were obtained for each interpolation method: for IDW, 0.2 to 22.0 mg/l, for Kriging, 3.5 to 16.5 mg/l, for Natural Neighbor, 0.3 to 21.7 mg/l and for Spline −30.8 to 37.2 mg/l. Finally, an assessment of the maps obtained was conducted by comparing them with the Official Mexican Standard (OMS), where 24 of the 67 wells were found outside the 10 mg/l that the OMS establishes as maximum permissible limit for human consumption. Taking as a starting point the measured values of nitrates (0.25 to 22.12 mg/l), as well as the spatial distribution of the interpolated values, it was determined that the Krigging method best fitted the data measured in the wells within the studied aquifer.展开更多
The stability of lithium metal anodes essentially dictates the lifespan of high-energy-density lithium metal batteries.Lithium nitrate(LiNO_(3))is widely recognized as an effective additive to stabilize lithium metal ...The stability of lithium metal anodes essentially dictates the lifespan of high-energy-density lithium metal batteries.Lithium nitrate(LiNO_(3))is widely recognized as an effective additive to stabilize lithium metal anodes by forming LiN_(x)O_(y)-containing solid electrolyte interphase(SEI).However,its poor solubility in electrolytes,especially ester electrolytes,hinders its applications in lithium metal batteries.Herein,an organic nitrate,isosorbide nitrate(ISDN),is proposed to replace LiNO_(3).ISDNhas a high solubility of 3.3M in ester electrolytes due to the introduction of organic segments in the molecule.The decomposition of ISDN generates LiN_(x)O_(y)-rich SEI,enabling uniform lithium deposition.The lifespan of lithium metal batteries with ISDN significantly increases from 80 to 155 cycles under demanding conditions.Furthermore,a lithium metal pouch cell of 439Whkg^(−1) delivers 50 cycles.This work opens a new avenue to develop additives by molecular modifications for practical lithium metal batteries.展开更多
Direct electrochemical nitrate reduction reaction(NITRR)is a promising strategy to alleviate the unbalanced nitrogen cycle while achieving the electrosynthesis of ammonia.However,the restructuration of the high-activi...Direct electrochemical nitrate reduction reaction(NITRR)is a promising strategy to alleviate the unbalanced nitrogen cycle while achieving the electrosynthesis of ammonia.However,the restructuration of the high-activity Cu-based electrocatalysts in the NITRR process has hindered the identification of dynamical active sites and in-depth investigation of the catalytic mechanism.Herein,Cu species(single-atom,clusters,and nanoparticles)with tunable loading supported on N-doped TiO_(2)/C are successfully manufactured with MOFs@CuPc precursors via the pre-anchor and post-pyrolysis strategy.Restructuration behavior among Cu species is co-dependent on the Cu loading and reaction potential,as evidenced by the advanced operando X-ray absorption spectroscopy,and there exists an incompletely reversible transformation of the restructured structure to the initial state.Notably,restructured CuN_(4)&Cu_(4) deliver the high NH_(3) yield of 88.2 mmol h^(−1)g_(cata)^(−1) and FE(~94.3%)at−0.75 V,resulting from the optimal adsorption of NO_(3)^(−) as well as the rapid conversion of^(*)NH_(2)OH to^(*)NH_(2) intermediates originated from the modulation of charge distribution and d-band center for Cu site.This work not only uncovers CuN_(4)&Cu_(4) have the promising NITRR but also identifies the dynamic Cu species active sites that play a critical role in the efficient electrocatalytic reduction in nitrate to ammonia.展开更多
基金the financial support from the Natural Science Foundation of China(Grant No.52172106)Anhui Provincial Natural Science Foundation(Grant Nos.2108085QB60 and 2108085QB61)China Postdoctoral Science Foundation(Grant Nos.2020M682057 and 2023T160651).
文摘Electrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection.Here,we report an efficient NitRR catalyst composed of single Mn sites with atomically dispersed oxygen(O)coordination on bacterial cellulose-converted graphitic carbon(Mn-O-C).Evidence of the atomically dispersed Mn-(O-C_(2))_(4)moieties embedding in the exposed basal plane of carbon surface is confirmed by X-ray absorption spectroscopy.As a result,the as-synthesized Mn-O-C catalyst exhibits superior NitRR activity with an NH_(3)yield rate(RNH_(3))of 1476.9±62.6μg h^(−1)cm^(−2)at−0.7 V(vs.reversible hydrogen electrode,RHE)and a faradaic efficiency(FE)of 89.0±3.8%at−0.5 V(vs.RHE)under ambient conditions.Further,when evaluated with a practical flow cell,Mn-O-C shows a high RNH_(3)of 3706.7±552.0μg h^(−1)cm^(−2)at a current density of 100 mA cm−2,2.5 times of that in the H cell.The in situ FT-IR and Raman spectroscopic studies combined with theoretical calculations indicate that the Mn-(O-C_(2))_(4)sites not only effectively inhibit the competitive hydrogen evolution reaction,but also greatly promote the adsorption and activation of nitrate(NO_(3)^(−)),thus boosting both the FE and selectivity of NH_(3)over Mn-(O-C_(2))_(4)sites.
文摘Exploding foil initiator(EFI)is a kind of advanced device for initiating explosives,but its function is unstable when it comes to directly igniting pyrotechnics.To solve the problem,this research aims to reveal the ignition mechanism of EFIs directly igniting pyrotechnics.An oscilloscope,a photon Doppler velocimetry,and a plasma spectrum measurement system were employed to obtain information of electric characteristics,impact pressure,and plasma temperature.The results of the electric characteristics and the impact pressure were inconsistent with ignition results.The only thing that the ignition success tests had in common was that their plasma all had a relatively long period of high-temperature duration(HTD).It eventually concludes that the ignition mechanism in this research is the microconvection heat transfer rather than the shock initiation,which differs from that of exploding foil initiators detonating explosives.Furthermore,the methods for evaluating the ignition success of semiconductor bridge initiators are not entirely applicable to the tests mentioned in this paper.The HTD is the critical parameter for judging the ignition success,and it is influenced by two factors:the late time discharge and the energy of the electric explosion.The longer time of the late time discharge and the more energy of the electric explosion,the easier it is to expand the HTD,which improves the probability of the ignition success.
基金supported by State Key Laboratory of Water Resource Protection and Utilization in Coal Mining(No.GJNY-18-73.17).
文摘Electroreduction of nitrate has been gaining wide attention in recent years owing to it's beneficial for converting nitrate into benign N_(2) from the perspective of electrocatalytic denitrification or into value-added ammonia from the perspective of electrocatalytic NH_(3) synthesis.By reason of the undesired formation of ammonia is dominant during electroreduction of nitrate-containing wastewater,chloride has been widely used to improve N_(2) selectivity.Nevertheless,selective electroreduction of nitrate to N2 gas in chloride-containing system poses several drawbacks.In this review,we focus on the key strategies for efficiently enhancing N_(2) selectivity of electroreduction of nitrate in chloride-free system,including optimal selection of elements,combining an active metal catalyst with another metal,manipulating the crystalline morphology and facet orientation,constructing core–shell structure catalysts,etc.Before summarizing the strategies,four possible reaction pathways of electro-reduction of nitrate to N_(2) are discussed.Overall,this review attempts to provide practical strategies for enhancing N2 selectivity without the aid of electrochlorination and highlight directions for future research for designing appropriate electrocatalyst for final electrocatalytic denitrifi-cation.
基金supported by the the Guizhou Provincial Excellent Young Talents Project of Science and Technology,China(YQK(2023)002)the Guizhou Provincial Science and Technology Projects,China((2022)Key 008)+2 种基金the Guizhou Provincial Science and Technology Support Plan,China((2022)Key 026)the Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province,China((2023)008)the Key Laboratory of Functional Agriculture of Guizhou Provincial Higher Education Institutions,China((2023)007)。
文摘Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone transport and rice growth and development remains unknown.In this study,we described OsNPF3.1 as an essential nitrate and phytohormone transporter gene for rice tillering and nitrogen utilization efficiency(NUtE).OsNPF3.1 possesses four major haplotypes of its promoter sequence in 517 cultivars,and its expression is positively associated with tiller number.Its expression was higher in the basal part,culm,and leaf blade than in other parts of the plant,and was strongly induced by nitrate,abscisic acid(ABA)and gibberellin 3(GA_3)in the root and shoot of rice.Electrophysiological experiments demonstrated that OsNPF3.1 is a pH-dependent low-affinity nitrate transporter,with rice protoplast uptake assays showing it to be an ABA and GA_3 transporter.OsNPF3.1 overexpression significantly promoted ABA accumulation in the roots and GA accumulation in the basal part of the plant which inhibited axillary bud outgrowth and rice tillering,especially at high nitrate concentrations.The NUtE of OsNPF3.1-overexpressing plants was enhanced under low and medium nitrate concentrations,whereas the NUtE of OsNPF3.1 clustered regularly interspaced short palindromic repeats(CRISPR)plants was increased under high nitrate concentrations.The results indicate that OsNPF3.1 transports nitrate and phytohormones in different rice tissues under different nitrate concentrations.The altered OsNPF3.1 expression improves NUtE in the OsNPF3.1-overexpressing and CRISPR lines at low and high nitrate concentrations,respectively.
基金supported by the National Natural Science Foundation of China(Grant Nos.22050410268,22176131)Shenzhen Basic Research General Project(JCYJ20210324095205015,JCYJ20220818095601002)。
文摘Ammonia(NH_(3))is an irreplaceable chemical that has been widely demanded to keep the sustainable development of modern society.However,its industrial production consumes a huge amount of energy and releases extraordinary greenhouse gases(GHGs),leading to various environmental issues.Achieving the green production of ammonia is a great challenge,which has been extensively pursued in the last decade.In this review,the most promising strategy,electrochemical nitrate reduction reaction(e-NO_(3)RR),is comprehensively investigated to give a complete understanding of its development and mechanism and provide guidance for future directions.However,owing to the complex reactions and limited selectivity,a comprehensive understanding of the mechanisms is crucial to further development and commercialization.Moreover,NO_(3)^(-)RR is a promising strategy for simultaneous water treatment and NH_(3)production.A detailed overview of the recent progress in NO_(3)^(-)RR for NH_(3)production with nontransition and transition metal based electrocatalysts is summarized.In addition,critical advanced techniques,future challenges,and prospects are discussed to guide future research on transition metal-based catalysts for commercial NH_(3)synthesis by NO_(3)^(-)reduction.
基金supported by the National Natural Science Foundation of China (Grant No.31971872)the Open Research Fund of State Key Laboratory of Hybrid Rice, China (Grant No.2022KF02)+3 种基金the National Natural Science Foundation of China (Grant Nos.32101755 and 32188102)the Zhejiang Provincial Natural Science Foundation, China (Grant No.LY22C130005)the Key Research and Development Program of Zhejiang Province, China (Grant No.2021C02056)the ‘Pioneer’ and ‘Leading Goose’ R&D Program of Zhejiang, China (Grant No.2023C02014)。
文摘Reasonable nitrogen(N) application is a promising strategy for reducing crop cadmium(Cd) toxicity. However, the specific form of N and the required amount that affect Cd tolerance and accumulation in rice remain unclear. This study explored the influence of different N-fertilizer forms(NH_(4)NO_(3), NH_4Cl, and KNO_(3)) and dosages on Cd tolerance and uptake in Cd-stressed N-sensitive and N-insensitive indica rice accessions. The results indicated that the Cd tolerance of N-sensitive indica accessions is more robust than that of N-insensitive ones. Furthermore, the shoot Cd content and Cd translocation rate in both N-sensitive and N-insensitive indica accessions decreased with an appropriate supply of NH_(4)NO_(3) and NH_4Cl, whereas they were comparable or slightly increased with increased KNO_(3). Unfortunately, we did not find significant and regular differences in Cd accumulation or translocation between N-sensitive and N-insensitive rice accessions. Consistent with the reduction of shoot Cd content, the addition of NH_(4)NO_(3) and NH_4Cl also inhibited the instantaneous root Cd^(2+) uptake. The expression changes of Cd transport-related genes under different N forms and dosages suggested that the decreased shoot Cd content, caused by the increased supply of NH_(4)NO_(3) and NH_4Cl, is likely achieved by reducing the transcription of OsNRAMP1 and OsIRT1. In summary, our findings reveal that an appropriate supply of NH_(4)NO_(3) and NH_4Cl could reduce Cd uptake and transport in rice seedlings, suggesting that rational N management could reduce the Cd risk in rice production.
基金supported by the project of China Geological Survey(Grant No.DD20221677-2)the fundamental research funds of Chinese Academy of Geological Sciences Basal Research Fund(Grant No.JKYQN202307).
文摘Fluoride and nitrate enriched groundwater are potential threats to the safety of the groundwater supply that may cause significant effects on human health and public safety,especially in aggregated population areas and economic hubs.This study focuses on the high F^(−)and NO_(3)^(−)concentration groundwater in Tongzhou District,Beijing,North China.A total of 36 groundwater samples were collected to analyze the hydrochemical characteristics,elucidate genetic mechanisms and evaluate the potential human health risks.The results of the analysis indicate:Firstly,most of the groundwater samples are characterized by Mg-HCO_(3) and Na-HCO_(3) with the pH ranging from 7.19 to 8.28 and TDS with a large variation across the range 471-2337 mg/L.The NO_(3)^(−)concentration in 38.89%groundwater samples and the F^(−)concentration in 66.67%groundwater samples exceed the permissible limited value.Secondly,F^(−)in groundwater originates predominantly from water-rock interactions and the fluorite dissolution,which is also regulated by cation exchange,competitive adsorption of HCO_(3)−and an alkaline environment.Thirdly,the effect of sewage disposal and agricultural activities have a significant effect on high NO3-concentration,while the high F^(−)concentration is less influenced by anthropogenic activity.The alkaline environment favors nitrification,thus being conducive to the production of NO_(3)^(−).Finally,the health risk assessment is evaluated for different population groups.The results indicate that high NO_(3)^(−)and F^(−)concentration in groundwater would have the largest threat to children’s health.The findings of this study could contribute to the provision of a scientific basis for groundwater supply policy formulation relating to public health in Tongzhou District.
基金supported by the National Natural Science Foundation of China[Nos.U21A20332,52103226,52202275,52203314,and 12204253]the Distinguished Young Scholars Fund of Jiangsu Province[No.BK20220061]the Fellowship of China Postdoctoral Science Foundation[No.2021M702382]。
文摘Ammonia(NH_(3))is a multifunctional compound that is an important feedstock for the agricultural and pharmaceutical industries and attractive energy storage medium.At present,NH_(3)synthesis is highly dependent on the conventional Haber–Bosch process that operates under harsh conditions,which consumes large quantities of fossil fuels and releases a large amount of carbon dioxide.As an alternative,electrosynthesis is a prospective method for producing NH_(3)under normal temperature and pressure conditions.Although electrocatalytic nitrogen reduction to ammonia has attracted considerable attentions,the low solubility of N_(2)and high N≡N cracking energy render the achievements of high NH_(3) yield rate and Faradaic efficiency difficult.Nitrate and nitrite(NO_(x)^(-))are common N-containing pollutants.Due to their high solubilities and low dissociation energy of N=O,NO_(x)^(-)−are ideal raw materials for NH_(3) production.Therefore,electrocatalytic NO_(x)^(-)−reduction to NH_(3)(eNO_(x)RR)is a prospective strategy to simultaneously realise environmental protection and NH_(3) synthesis.This review offers a comprehensive understanding of the thriving eNO_(x)RR under ambient conditions.At first,the popular theory and mechanism of eNO_(x)RR and a summary of the measurement system and evaluation criteria are introduced.Thereafter,various strategies for developing NO_(x)−reduction catalysts are systematically presented and discussed.Finally,the challenges and possible prospects of electrocatalytic NO_(x)^(-1) reduction are outlined to facilitate energy-saving and environmentally friendly large-scale synthesis of NH_(3) in the future.
基金financial support from the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX24_0690)financial support from the National Natural Science Foundation of China (Project No. 22275088, 52101260)+4 种基金the Project of Shuangchuang Scholar of Jiangsu Province (Project No. JSSCBS20210212)the Fundamental Research Funds for the Central Universities (Project No. 30921011203)the Start-Up Grant (Project No. AE89991/340) from Nanjing University of Science and Technologyfinancial support from the Foundation of Jiangsu Educational Committee (22KJB310008)the Senior Talent Program of Jiangsu University (20JDG073)
文摘Ammonia(NH_(3))is an important raw material for modern agriculture and industry,being widely demanded to sustain the sustainable development of modern society.Currently,the industrial production methods of NH_(3),such as the traditional Haber-Bosch process,have drawbacks including high energy consumption and significant carbon dioxide emissions.In recent years,the electrocatalytic nitrate reduction reaction(NO_(3)RR)powered by intermittent renewable energy sources has gradually become a multidisciplinary research hotspot,as it allows for the efficient synthesis of NH_(3)under mild conditions.In this review,we focus on the research of electrocatalysts with atomic-level site,which have attracted attention due to their extremely high atomic utilization efficiency and unique structural characteristics in the field of NO_(3)RR.Firstly,we introduce the mechanism of nitrate reduction for ammonia synthesis and discuss the in-situ characterization techniques related to the mechanism study.Secondly,we review the progress of the electrocatalysts with atomic-level site for nitrate reduction and explore the structure-activity relationship to guide the rational design of efficient catalysts.Lastly,the conclusions of this review and the challenges and prospective of this promising field are presented.
基金supported by is supported by the Shanghai Municipal Science and Technology Major Projectthe support from Shanghai Super Postdoctoral Incentive Program
文摘Focusing on revealing the origin of high ammonia yield rate on Cu via nitrate reduction(NO3RR),we herein applied constant potential method via grand-canonical density functional theory(GC-DFT)with implicit continuum solvation model to predict the reaction energetics of NO3RR on pure copper surface in alkaline media.The potential-dependent mechanism on the most prevailing Cu(111)and the minor(100)and(110)facets were established,in consideration of NO_(2)_(−),NO,NH_(3),NH_(2)OH,N_(2),and N_(2)O as the main products.The computational results show that the major Cu(111)is the ideal surface to produce ammonia with the highest onset potential at 0.06 V(until−0.37 V)and the highest optimal potential at−0.31 V for ammonia production without kinetic obstacles in activation energies at critical steps.For other minor facets,the secondary Cu(100)shows activity to ammonia from−0.03 to−0.54 V with the ideal potential at−0.50 V,which requires larger overpotential to overcome kinetic activation energy barriers.The least Cu(110)possesses the longest potential range for ammonia yield from−0.27 to−1.12 V due to the higher adsorption coverage of nitrate,but also with higher tendency to generate di-nitrogen species.Experimental evaluations on commercial Cu/C electrocatalyst validated the accuracy of our proposed mechanism.The most influential(111)surface with highest percentage in electrocatalyst determined the trend of ammonia production.In specific,the onset potential of ammonia production at 0.1 V and emergence of yield rate peak at−0.3 V in experiments precisely located in the predicted potentials on Cu(111).Four critical factors for the high ammonia yield and selectivity on Cu surface via NO3RR are summarized,including high NO3RR activity towards ammonia on the dominant Cu(111)facet,more possibilities to produce ammonia along different pathways on each facet,excellent ability for HER inhibition and suitable surface size to suppress di-nitrogen species formation at high nitrate coverage.Overall,our work provides comprehensive potential-dependent insights into the reaction details of NO3RR to ammonia,which can serve as references for the future development of NO3RR electrocatalysts,achieving higher activity and selectivity by maximizing these characteristics of copper-based materials.
基金The Zhejiang Provincial Natural Science Foundation of China under contract No.LZ22D060002the Key R&D Program of Zhejiang under contract No.2022C03044the National Key Research and Development Program of China under contract No.2021YFC3101702。
文摘Eutrophication caused by inputs of excess nitrogen(N) has become a serious environmental problem in Hangzhou Bay(China),but the sources of this nitrogen are not well understood.In this study,the August 2019 distributions of salinity,nutrients [nitrate(NO_(3)^(-)),nitrite,ammonium,and phosphate],and the stable isotopic composition of NO_(3)^(-)(δ^(15)N and δ^(18)O) were used to investigate sources of dissolved inorganic nitrogen(DIN) to Hangzhou B ay.Spatial distributions of nitrate,salinity,and nitrate δ^(18)O indicate that the Qiantang River,the Changjiang River,and nearshore coastal waters may all contribute nitrate to the bay.Based on the isotopic compositions of nitrate in these potential source waters and conservative mixing of nitrate in our study area,we suggest that the NO_(3)^(- )in Hangzhou B ay was likely derived mainly from soils,synthetic N fertilizer,and manure and sewage.End-member modeling indicates that in the upper half of the bay,the Qiantang River was a very important DIN source,possibly contributing more than 50% of DIN in the bay head area.In the lower half of the bay,DIN was sourced mainly from strongly intruding coastal water.DIN coming directly from the Changjiang River made a relatively small contribution to Hangzhou Bay DIN in August 2019.
基金funded by grants from EU Marie Curie ITN RAPID(grant number 290246)Versus Arthritis(Grant Number 20823)+4 种基金the BBSRC(BB/P504567/1)supported by a student stipend from the University of Glasgow and Dentsply Sirona(Project Number 300881)supported by a grant from the European Regional Development Fund and the Spanish Ministry of Science,Innovation and Universities with the reference RTI2018-102032-B-I00the Valencian Innovation Agency with the reference INNVAL20/19/006supported by an FPI fellowship from the Spanish Ministry of Science,Innovation,and Universities with the reference Bio2015-68711-R。
文摘The reduction of nitrate to nitrite by the oral microbiota has been proposed to be important for oral health and results in nitric oxide formation that can improve cardiometabolic conditions. Studies of bacterial composition in subgingival plaque suggest that nitrate-reducing bacteria are associated with periodontal health, but the impact of periodontitis on nitrate-reducing capacity(NRC)and, therefore, nitric oxide availability has not been evaluated. The current study aimed to evaluate how periodontitis affects the NRC of the oral microbiota. First, 16S rRNA sequencing data from five different countries were analyzed, revealing that nitratereducing bacteria were significantly lower in subgingival plaque of periodontitis patients compared with healthy individuals(P < 0.05 in all five datasets with n = 20–82 samples per dataset). Secondly, subgingival plaque, saliva, and plasma samples were obtained from 42 periodontitis patients before and after periodontal treatment. The oral NRC was determined in vitro by incubating saliva with 8 mmol/L nitrate(a concentration found in saliva after nitrate-rich vegetable intake) and compared with the NRC of 15healthy individuals. Salivary NRC was found to be diminished in periodontal patients before treatment(P < 0.05) but recovered to healthy levels 90 days post-treatment. Additionally, the subgingival levels of nitrate-reducing bacteria increased after treatment and correlated negatively with periodontitis-associated bacteria(P < 0.01). No significant effect of periodontal treatment on the baseline saliva and plasma nitrate and nitrite levels was found, indicating that differences in the NRC may only be revealed after nitrate intake. Our results suggest that an impaired NRC in periodontitis could limit dietary nitrate-derived nitric oxide levels, and the effect on systemic health should be explored in future studies.
基金National Natural Science Foundation of China(Nos.52172291 and 52122312)“Dawn”Program of Shanghai Education Commission,China(No.22SG31)。
文摘The accumulation of excessive nitrate in the atmosphere not only jeopardizes human health but also disrupts the balance of the nitrogen cycle in the ecosystem.Among various nitrate removal technologies,electrocatalytic nitrate reduction reaction(eNO_(3)RR)has been widely studied for its advantages of being eco-friendly,easy to operate,and controllable under environmental conditions with renewable energy as the driving force.Transition metal-based catalysts(TMCs)have been widely used in electrocatalysis due to their abundant reserves,low costs,easy-to-regulate electronic structure and considerable electrochemical activity.In addition,TMCs have been extensively studied in terms of the kinetics of the nitrate reduction reaction,the moderate adsorption energy of nitrogen-containing species and the active hydrogen supply capacity.Based on this,this review firstly discusses the mechanism as well as analyzes the two main reduction products(N_(2)and NH_(3))of eNO_(3)RR,and reveals the basic guidelines for the design of efficient nitrate catalysts from the perspective of the reaction mechanism.Secondly,this review mainly focuses on the recent advances in the direction of eNO_(3RR)with four types of TMCs,Fe,Co,Ni and Cu,and unveils the interfacial modulation strategies of Fe,Co,Ni and Cu catalysts for the activity,reaction pathway and stability.Finally,reasonable suggestions and opportunities are proposed for the challenges and future development of eNO_(3)RR.This review provides far-reaching implications for exploring cost-effective TMCs to replace high-cost noble metal catalysts(NMCs)for eNO_(3)RR.
基金National Natural Science Foundation of China(Nos.52225204,52173233 and 52202085)Innovation Program of Shanghai Municipal Education Commission,China(No.2021-01-07-00-03-E00109)+3 种基金Natural Science Foundation of Shanghai,China(No.23ZR1479200)“Shuguang Program”Supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission,China(No.20SG33)Fundamental Research Funds for the Central Universities,China(No.2232024Y-01)DHU Distinguished Young Professor Program,China(Nos.LZA2022001 and LZB2023002)。
文摘Highly dispersed bimetallic alloy nanoparticle electrocatalysts have been demonstrated to exhibit exceptional performance in driving the nitrate reduction reaction(NO_(3)RR)to generate ammonia(NH_(3)).In this study,we prepared mesoporous carbon nanofibers(mCNFs)functionalized with ordered PtFe alloys(O-PtFe-mCNFs)by a composite micelle interface-induced co-assembly method using poly(ethylene oxide)-block-polystyrene(PEO-b-PS)as a template.When employed as electrocatalysts,O-PtFe-mCNFs exhibited superior electrocatalytic performance for the NO_(3RR)compared to the mCNFs functionalized with disordered PtFe alloys(D-PtFe-mCNFs).Notably,the NH_(3)production performance was particularly outstanding,with a maximum NH_(3)yield of up to 959.6μmol/(h·cm~2).Furthermore,the Faraday efficiency(FE)was even 88.0%at-0.4 V vs.reversible hydrogen electrode(RHE).This finding provides compelling evidence of the potential of ordered PtFe alloy catalysts for the electrocatalytic NO_(3)RR.
文摘This study aimed to evaluate the quality of water from village boreholes by measuring physicochemical parameters such as nitrates, nitrites, and total organic carbon (TOC). Forty-five (45) village pumps from the Southern (Basse Côte) and the Northern (Korhogo) region of Cte d’Ivoire (west Africa) were sampled. Physicochemical parameters such as temperature, pH, conductivity at 25˚C, and turbidity were determined in situ, while nitrite and nitrate were analyzed according to ISO 10304-1 (2007) standard and total organic carbon (TOC) by NF EN 1484 (1997) standard. The results showed that the borehole waters of the Basse Côte and Korhogo analyzed are acidic, with an average temperature of 27.51˚C ± 0.16˚C and 29.95˚C ± 0.51˚C respectively for the Basse Côte and Korhogo regions. The borehole waters of the Basse Côtedo not contain nitrites, while those of Korhogo have average nitrite contents of 0.32 mg/l. The average nitrate rate in the waters of the Basse Côte and Korhogo are 12.08 ± 2.11 mg/l and 11.03 ± 3.18 mg/l respectively. The average TOC concentration of the waters of the Basse Côte is 1.28 ± 0.32 mg/l and that of Korhogo is 0.56 ± 0.09 mg/L. The study showed that the borehole waters of the Basse Côte and Korhogo have average temperatures between 27.4˚C and 29.95˚C with a slightly acidic pH value and acceptable salinity. The TOC concentrations obtained at the different sampling points were all below the French standard (2 mg/L) except for certains pumps of the Basse Côte. The water samples from the Basse Côte were devoid of nitrite. On the other hand, those from Korhogo revealed the presence of nitrite. Also, the borehole waters of the regions of the Basse Côte and Korhogo contain relatively high nitrate contents, presumably due to anthropometric activity. Overall, our study on the quality of drinking water showed that the waters analyzed are in compliance with international standards and safe for consumption.
文摘Technologies for reducing corn leaf burn caused by foliar spray of urea-ammonium nitrate (UAN) during the early growing season are limited. A field experiment was carried out to evaluate the effects of humic acid on corn leaf burn caused by foliar spray of undiluted UAN solution on corn canopy at Jackson, TN in 2018. Thirteen treatments of the mixtures of UAN and humic acid were evaluated at V6 of corn with different UAN application rates and different UAN/humic acid ratios. Leaf burn during 1 2, 3, 4, 5, 6, 7, and 14 days after UAN foliar spray significantly differed between with or without humic acid addition. The addition of humic acid to UAN significantly reduced leaf burn at each UAN application rate (15, 25, and 35 gal/acre). The reduction of leaf burn was enhanced as the humic acid/UAN ratio went up from 10% to 30%. Leaf burn due to foliar application of UAN became severer with higher UAN rates. The linear regression of leaf burn 14 days after application with humic acid/UAN ratio was highly significant and negative. However, the linear regression of leaf burn 14 days after application with the UAN application rate was highly significant and positive. In conclusion, adding humic acid to foliar-applied UAN is beneficial for reducing corn leaf burn during the early growing season.
文摘Nitrate pollution is of great importance in both the environmental and health contexts, necessitating the development of efficient mitigation strategies. This review provides a comprehensive analysis of the many catalysts employed in the electrochemical reduction of nitrate to ammonia, and presents a viable environmentally friendly approach to address the issue of nitrate pollution. Hence, the electrochemical transformation of nitrate to ammonia serves the dual purpose of addressing nitrate pollution in water bodies, and is a useful agricultural resource. This review examines a range of catalyst materials such as noble and non-noble metals, metal oxides, carbon-based materials, nitrogen-doped carbon species, metal complexes, and semiconductor photocatalysts. It evaluates catalytic efficiency, selectivity, stability, and overall process optimization. The performance of catalysts is influenced by various factors, including reaction conditions, catalyst structure, loading techniques, and electrode interfaces. Comparative analysis was performed to evaluate the catalytic activity, selectivity, Faradaic efficiency, current density, stability, and durability of the catalysts. This assessment offers significant perspectives on the structural, compositional, and electrochemical characteristics that affect the efficacy of these catalysts, thus informing future investigations and advancements in this domain. In addition to mitigating nitrate pollution, the electrochemical reduction of nitrate to ammonia is in line with sustainable agricultural methods, resource conservation, and the utilization of renewable energy resources. This study explores the factors that affect the catalytic efficiency, provides new opportunities to address nitrate pollution, and promotes the development of sustainable environmental solutions.
文摘The accuracy of interpolation models applied to groundwater depends, among other factors, on the interpolation method chosen. Therefore, it is necessary to compare different approaches. For this, different methods of interpolation of nitrate concentrations were contrasted in sixty-seven wells in an aquifer in Aguascalientes, Mexico. Four general interpolation methods were used in ArcGIS 10.5 to make the maps: IDW, Kriging, Natural Neighbor and Spline. In the modeling, only method type was varied. The input parameters (location, temporality, and nitrate concentration) were the same in the four interpolations;despite this, different maximum and minimum values were obtained for each interpolation method: for IDW, 0.2 to 22.0 mg/l, for Kriging, 3.5 to 16.5 mg/l, for Natural Neighbor, 0.3 to 21.7 mg/l and for Spline −30.8 to 37.2 mg/l. Finally, an assessment of the maps obtained was conducted by comparing them with the Official Mexican Standard (OMS), where 24 of the 67 wells were found outside the 10 mg/l that the OMS establishes as maximum permissible limit for human consumption. Taking as a starting point the measured values of nitrates (0.25 to 22.12 mg/l), as well as the spatial distribution of the interpolated values, it was determined that the Krigging method best fitted the data measured in the wells within the studied aquifer.
基金supported by the Key Research and Development Program of Yunnan Province(202103A A080019)S&T Program of Hebei(22344402D)+4 种基金National Key Research and Development Program(2021YFB2400300)National Natural Science Foundation of China(22108149)China Postdoctoral Science Foundation(2021M700404)Scientific and Technological Key Project of Shanxi Province(20191102003)Beijing Institute of Technology Research Fund Program for Young Scholars.
文摘The stability of lithium metal anodes essentially dictates the lifespan of high-energy-density lithium metal batteries.Lithium nitrate(LiNO_(3))is widely recognized as an effective additive to stabilize lithium metal anodes by forming LiN_(x)O_(y)-containing solid electrolyte interphase(SEI).However,its poor solubility in electrolytes,especially ester electrolytes,hinders its applications in lithium metal batteries.Herein,an organic nitrate,isosorbide nitrate(ISDN),is proposed to replace LiNO_(3).ISDNhas a high solubility of 3.3M in ester electrolytes due to the introduction of organic segments in the molecule.The decomposition of ISDN generates LiN_(x)O_(y)-rich SEI,enabling uniform lithium deposition.The lifespan of lithium metal batteries with ISDN significantly increases from 80 to 155 cycles under demanding conditions.Furthermore,a lithium metal pouch cell of 439Whkg^(−1) delivers 50 cycles.This work opens a new avenue to develop additives by molecular modifications for practical lithium metal batteries.
基金supported by the National Natural Science Foundation of China(Grant numbers 92061106 and 21971016).
文摘Direct electrochemical nitrate reduction reaction(NITRR)is a promising strategy to alleviate the unbalanced nitrogen cycle while achieving the electrosynthesis of ammonia.However,the restructuration of the high-activity Cu-based electrocatalysts in the NITRR process has hindered the identification of dynamical active sites and in-depth investigation of the catalytic mechanism.Herein,Cu species(single-atom,clusters,and nanoparticles)with tunable loading supported on N-doped TiO_(2)/C are successfully manufactured with MOFs@CuPc precursors via the pre-anchor and post-pyrolysis strategy.Restructuration behavior among Cu species is co-dependent on the Cu loading and reaction potential,as evidenced by the advanced operando X-ray absorption spectroscopy,and there exists an incompletely reversible transformation of the restructured structure to the initial state.Notably,restructured CuN_(4)&Cu_(4) deliver the high NH_(3) yield of 88.2 mmol h^(−1)g_(cata)^(−1) and FE(~94.3%)at−0.75 V,resulting from the optimal adsorption of NO_(3)^(−) as well as the rapid conversion of^(*)NH_(2)OH to^(*)NH_(2) intermediates originated from the modulation of charge distribution and d-band center for Cu site.This work not only uncovers CuN_(4)&Cu_(4) have the promising NITRR but also identifies the dynamic Cu species active sites that play a critical role in the efficient electrocatalytic reduction in nitrate to ammonia.