期刊文献+
共找到72,541篇文章
< 1 2 250 >
每页显示 20 50 100
Regulation of 2-acetyl-1-pyrroline and grain quality in early-season indica fragrant rice by nitrogen and silicon fertilization under different plantation methods 被引量:1
1
作者 Yongjian Chen Lan Dai +7 位作者 Siren Cheng Yong Ren Huizi Deng Xinyi Wang Yuzhan Li Xiangru Tang Zaiman Wang Zhaowen Mo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期511-535,共25页
Fragrant rice has a high market value,and it is a popular rice type among consumers owing to its pleasant flavor.Plantation methods,nitrogen(N)fertilizers,and silicon(Si)fertilizers can affect the grain yield and frag... Fragrant rice has a high market value,and it is a popular rice type among consumers owing to its pleasant flavor.Plantation methods,nitrogen(N)fertilizers,and silicon(Si)fertilizers can affect the grain yield and fragrance of fragrant rice.However,the core commercial rice production attributes,namely the head rice yield(HRY)and 2-acetyl-1-pyrroline(2-AP)content of fragrant rice,under various nitrogen and silicon(N-Si)fertilization levels and different plantation methods remain unknown.The field experiment in this study was performed in the early seasons of 2018 and 2019 with two popular indica fragrant rice cultivars(Yuxiangyouzhan and Xiangyaxiangzhan).They were grown under six N-Si fertilization treatments(combinations of two levels of Si fertilizer,0 kg Si ha^(−1)(Si0)and 150 kg Si ha^(−1)(Si1),and three levels of N fertilizer,0 kg N ha^(−1)(N0),150 kg N ha^(−1)(N1),and 220 kg N ha^(−1)(N2))and three plantation methods(artificial transplanting(AT),mechanical transplanting(MT),and mechanical direct-seeding(MD)).The results showed that the N-Si fertilization treatments and all the plantation methods significantly affected the HRY and 2-AP content and related parameters of the two different fragrant rice cultivars.Compared with the Si0N0 treatment,the N-Si fertilization treatments resulted in higher HRY and 2-AP contents.The rates of brown rice,milled rice,head rice,and chalky rice of the fragrant rice also improved with the N-Si fertilization treatments.The N-Si fertilization treatments increased the activities of N metabolism enzymes and the accumulation of N and Si in various parts of the fragrant rice,and affected their antioxidant response parameters.The key parameters for the HRY and 2-AP content were assessed by redundancy analysis.Furthermore,the structural equation model revealed that the Si and N accumulation levels indirectly affected the HRY by affecting the N metabolism enzyme activity,N use efficiency,and grain quality of fragrant rice.Moreover,high N and Si accumulation directly promoted the 2-AP content or affected the antioxidant response parameters and indirectly regulated 2-AP synthesis.The interactions of the MT method with the N-Si fertilization treatments varied in the fragrant rice cultivars in terms of the HRY and 2-AP content,whereas the MD method was beneficial to the 2-AP content in both fragrant rice cultivars under the N-Si fertilization treatments. 展开更多
关键词 fragrant rice 2-AP content head rice yield mechanical planting nitrogen silicon
下载PDF
Identification of the lysine and histidine transporter family in Camellia sinensis and the characterizations in nitrogen utilization 被引量:1
2
作者 Wei Huang Danni Ma +9 位作者 Fawad Zaman Xulei Hao Li Xia E Zhang Pu Wang Mingle Wang Fei Guo Yu Wang Dejiang Ni Hua Zhao 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第1期273-287,共15页
In plants,the lysine and histidine transporter(LHT)family represent a class of proteins that mediate the uptake,translocation,and utilization of amino acids.The tea plant(Camellia sinensis)is a perennial evergreen wit... In plants,the lysine and histidine transporter(LHT)family represent a class of proteins that mediate the uptake,translocation,and utilization of amino acids.The tea plant(Camellia sinensis)is a perennial evergreen with a relatively high level of amino acids.However,systematic identification and molecular characterization of the LHT gene family has rarely been reported in tea plants.In this study,22 CsLHTs were identified from the‘Shuchazao’genome and classified into two groups.The modeled three-dimensional structure and the conserved domains presented a high similarity among the LHTs proteins.Moreover,it was predicted that a few genes were conserved through the analysis of the physiochemical characters,structures and cis-elements in promoters.The expression patterns in tea plants revealed that CsLHT7 was mainly expressed in the roots,and CsLHT4 and CsLHT11 exhibited relatively high expression in both the roots and leaves.Moreover,the expression of all three genes could be induced by organic nitrogen.Additionally,heterogeneous expression of CsLHT4,CsLHT7 and CsLHT11 in Arabidopsis thaliana decreased the aerial parts biomass compared with that in WT plants while significantly increased the rosette biomass only for CsLHT11transgenic plants versus WT plants.Overall,our results provide fundamental information about CsLHTs and potential genes in N utilization for further analysis in tea plants. 展开更多
关键词 Camellia sinensis nitrogen Lysine and histidine transporter(LHT)family
下载PDF
Strategies to achieve effective nitrogen activation
3
作者 Bin Chang Huabin Zhang +1 位作者 Shuhui Sun Gaixia Zhang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期137-163,共27页
Ammonia serves as a crucial chemical raw material and hydrogen energy carrier.Aqueous electrocatalytic nitrogen reduction reaction(NRR),powered by renewable energy,has attracted tremendous interest during the past few... Ammonia serves as a crucial chemical raw material and hydrogen energy carrier.Aqueous electrocatalytic nitrogen reduction reaction(NRR),powered by renewable energy,has attracted tremendous interest during the past few years.Although some achievements have been revealed in aqueous NRR,significant challenges have also been identified.The activity and selectivity are fundamentally limited by nitrogen activation and competitive hydrogen evolution.This review focuses on the hurdles of nitrogen activation and delves into complementary strategies,including materials design and system optimization(reactor,electrolyte,and mediator).Then,it introduces advanced interdisciplinary technologies that have recently emerged for nitrogen activation using high-energy physics such as plasma and triboelectrification.With a better understanding of the corresponding reaction mechanisms in the coming years,these technologies have the potential to be extended in further applications.This review provides further insight into the reaction mechanisms of selectivity and stability of different reaction systems.We then recommend a rigorous and detailed protocol for investigating NRR performance and also highlight several potential research directions in this exciting field,coupling with advanced interdisciplinary applications,in situ/operando characterizations,and theoretical calculations. 展开更多
关键词 activation via mediators catalyst optimization electrochemical nitrogen fixation high-energy activation of nitrogen nitrogen
下载PDF
Nitrogen rhizodeposition from corn and soybean,and its contribution to the subsequent wheat crops
4
作者 Sainan Geng Lantao Li +6 位作者 Yuhong Miao Yinjie Zhang Xiaona Yu Duo Zhang Qirui Yang Xiao Zhang Yilun Wang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第7期2446-2457,共12页
Nitrogen(N)is a key factor in the positive response of cereal crops that follow leguminous crops when compared to gramineous crops in rotations,with the nonrecyclable rhizosphere-derived N playing an important role.Ho... Nitrogen(N)is a key factor in the positive response of cereal crops that follow leguminous crops when compared to gramineous crops in rotations,with the nonrecyclable rhizosphere-derived N playing an important role.However,quantitative assessments of differences in the N derived from rhizodeposition(NdfR)between legumes and gramineous crops are lacking,and comparative studies on their contributions to the subsequent cereals are scarce.In this study,we conducted a meta-analysis of NdfR from leguminous and gramineous crops based on 34 observations published worldwide.In addition,pot experiments were conducted to study the differences in the NdfR amounts,distributions and subsequent effects of two major wheat(Triticum aestivum L.)-preceding crops,corn(Zea mays L.)and soybean(Glycine max L.),by the cotton wick-labelling method in the main wheat-producing areas of China.The meta-analysis results showed that the NdfR of legumes was significantly greater by 138.93%compared to gramineous crops.In our pot experiment,the NdfR values from corn and soybean were 502.32 and 944.12 mg/pot,respectively,and soybean was also significantly higher than corn,accounting for 76.91 and 84.15%of the total belowground nitrogen of the plants,respectively.Moreover,in different soil particle sizes,NdfR was mainly enriched in the large macro-aggregates(>2 mm),followed by the small macro-aggregates(2–0.25 mm).The amount and proportion of NdfR in the macro-aggregates(>0.25 mm)of soybean were 3.48 and 1.66 times higher than those of corn,respectively,indicating the high utilization potential of soybean NdfR.Regarding the N accumulation of subsequent wheat,the contribution of soybean NdfR to wheat was approximately 3 times that of corn,accounting for 8.37 and 4.04%of the total N uptake of wheat,respectively.In conclusion,soybean NdfR is superior to corn in terms of the quantity and distribution ratio of soil macro-aggregates.In future field production,legume NdfR should be included in the nitrogen pool that can be absorbed and utilized by subsequent crops,and the role and potential of leguminous plants as nitrogen source providers in crop rotation systems should be fully utilized. 展开更多
关键词 crop rotation nitrogen rhizodeposition meta-analysis soil aggregates nitrogen transfer
下载PDF
An optimized strategy of nitrogen-split application based on the leaf positional differences in chlorophyll meter readings
5
作者 Gaozhao Wu Xingyu Chen +9 位作者 Yuguang Zang Ying Ye Xiaoqing Qian Weiyang Zhang Hao Zhang Lijun Liu Zujian Zhang Zhiqin Wang Junfei Gu Jianchang Yang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第8期2605-2617,共13页
Modern rice production faces the dual challenges of increasing grain yields while reducing inputs of chemical fertilizer.However,the disequilibrium between the nitrogen(N)supplement from the soil and the demand for N ... Modern rice production faces the dual challenges of increasing grain yields while reducing inputs of chemical fertilizer.However,the disequilibrium between the nitrogen(N)supplement from the soil and the demand for N of plants is a serious obstacle to achieving these goals.Plant-based diagnosis can help farmers make better choices regarding the timing and amount of topdressing N fertilizer.Our objective was to evaluate a non-destructive assessment of rice N demands based on the relative SPAD value(RSPAD)due to leaf positional differences.In this study,two field experiments were conducted,including a field experiment of different N rates(Exp.I)and an experiment to evaluate the new strategy of nitrogen-split application based on RSPAD(Exp.II).The results showed that higher N inputs significantly increased grain yield in modern high yielding super rice,but at the expense of lower nitrogen use efficiency(NUE).The N nutrition index(NNI)can adequately differentiate situations of excessive,optimal,and insufficient N nutrition in rice,and the optimal N rate for modern high yielding rice is higher than conventional cultivars.The RSPAD is calculated as the SPAD value of the top fully expanded leaf vs.the value of the third leaf,which takes into account the non-uniform N distribution within a canopy.The RSPAD can be used as an indicator for higher yield and NUE,and guide better management of N fertilizer application.Furthermore,we developed a new strategy of nitrogen-split application based on RSPAD,in which the N rate was reduced by 18.7%,yield was increased by 1.7%,and the agronomic N use efficiency was increased by 27.8%,when compared with standard farmers'practices.This strategy of N fertilization shows great potential for ensuring high yielding and improving NUE at lower N inputs. 展开更多
关键词 CANOPY crop management practices nitrogen nitrogen nutrition index rice SPAD
下载PDF
Influence of nitrogen status on fermentation performances of non-Saccharomyces yeasts:a review
6
作者 Jinchen Li Mengmeng Yuan +3 位作者 Nan Meng Hehe Li Jinyuan Sun Baoguo Sun 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期556-567,共12页
Nitrogen,one of the most crucial nutrients present in grapes and musts,plays a key role in yeast activities during alcoholic fermentation.Such influences are imposed on yeast growth and fermentation performances inclu... Nitrogen,one of the most crucial nutrients present in grapes and musts,plays a key role in yeast activities during alcoholic fermentation.Such influences are imposed on yeast growth and fermentation performances including the formation of secondary metabolites.Saccharomyces cerevisiae,the main yeast responsible for fermentation,has been studied extensively regarding nitrogen impacts.On the other hand,a similar study for non-Saccharomyces yeasts,whose contributions to winemaking have gradually been acknowledged,remains to be fully explored,with a few studies being reported.This review starts by discussing nitrogen impacts on non-Saccharomyces yeast growth and fermentation kinetics in different case scenarios,then proceeds to summarize the nitrogen preferences of individual yeast strains with regulation mechanisms elucidated by recent studies.Detailed discussions on the influences on the production of volatile compounds and proposed pathways therein are made,followed by future work suggested as the final section.In summarizing the nitrogen impacts on non-Saccharomyces yeasts throughout alcoholic fermentation,this review will be helpful in obtaining a more comprehensive view on these non-conventional wine yeasts in terms of nutrient requirements and corresponding volatile production.Research gaps will therefore be elucidated for future research. 展开更多
关键词 Non-Saccharomyces yeasts nitrogen Fermentation kinetics nitrogen preference Wine aroma
下载PDF
Plant Nitrogen Metabolism: Balancing Resilience to Nutritional Stress andAbiotic Challenges
7
作者 Muhammad Farhan Manda Sathish +10 位作者 Rafia Kiran Aroosa Mushtaq Alaa Baazeem Ammarah Hasnain Fahad Hakim Syed Atif Hasan Naqvi Mustansar Mubeen Yasir Iftikhar Aqleem Abbas Muhammad Zeeshan Hassan Mahmoud Moustafa 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第3期581-609,共29页
Plant growth and resilience to abiotic stresses,such as soil salinity and drought,depend intricately on nitrogen metabolism.This review explores nitrogen’s regulatory role in plant responses to these challenges,unvei... Plant growth and resilience to abiotic stresses,such as soil salinity and drought,depend intricately on nitrogen metabolism.This review explores nitrogen’s regulatory role in plant responses to these challenges,unveiling a dynamic interplay between nitrogen availability and abiotic stress.In the context of soil salinity,a nuanced rela-tionship emerges,featuring both antagonistic and synergistic interactions between salinity and nitrogen levels.Salinity-induced chlorophyll depletion in plants can be alleviated by optimal nitrogen supplementation;however,excessive nitrogen can exacerbate salinity stress.We delve into the complexities of this interaction and its agri-cultural implications.Nitrogen,a vital element within essential plant structures like chloroplasts,elicits diverse responses based on its availability.This review comprehensively examines manifestations of nitrogen deficiency and toxicity across various crop types,including cereals,vegetables,legumes,and fruits.Furthermore,we explore the broader consequences of nitrogen products,such as N_(2)O,NO_(2),and ammonia,on human health.Understand-ing the intricate relationship between nitrogen and salinity,especially chloride accumulation in nitrate-fed plants and sodium buildup in ammonium-fed plants,is pivotal for optimizing crop nitrogen management.However,prudent nitrogen use is essential,as overapplication can exacerbate nitrogen-related issues.Nitrogen Use Effi-ciency(NUE)is of paramount importance in addressing salinity challenges and enhancing sustainable crop productivity.Achieving this goal requires advancements in crop varieties with efficient nitrogen utilization,pre-cise timing and placement of nitrogen fertilizer application,and thoughtful nitrogen source selection to mitigate losses,particularly urea-based fertilizer volatilization.This review article delves into the multifaceted world of plant nitrogen metabolism and its pivotal role in enabling plant resilience to nutritional stress and abiotic challenges.It offers insights into future directions for sustainable agriculture. 展开更多
关键词 Synthetic nitrogen nitrogen signaling sustainable agriculture EUTROPHICATION AMMONIUM NITRATE
下载PDF
Increased dependence on nitrogen-fixation of a native legume in competition with an invasive plant
8
作者 Meixu Han Haiyang Zhang +12 位作者 Mingchao Liu Jinqi Tang Xiaocheng Guo Weizheng Ren Yong Zhao Qingpei Yang Binglin Guo Qinwen Han Yulong Feng Zhipei Feng Honghui Wu Xitian Yang Deliang Kong 《Plant Diversity》 SCIE CAS CSCD 2024年第4期510-518,共9页
Suppression of roots and/or their symbiotic microorganisms,such as mycorrhizal fungi and rhizobia,is an effective way for alien plants to outcompete native plants.However,little is known about how invasive and native ... Suppression of roots and/or their symbiotic microorganisms,such as mycorrhizal fungi and rhizobia,is an effective way for alien plants to outcompete native plants.However,little is known about how invasive and native plants interact with the quantity and activity of nutrient-acquisition agents.Here a pot experiment was conducted with monoculture and mixed plantings of an invasive plant,Xanthium strumarium,and a common native legume,Glycine max.We measured traits related to root and nodule quantity and activity and mycorrhizal colonization.Compared to the monoculture,fine root quantity(biomass,surface area)and activity(root nitrogen(N)concentration,acid phosphatase activity)of G.max decreased in mixed plantings;nodule quantity(biomass)decreased by 45%,while nodule activity in Nfixing via rhizobium increased by 106%;mycorrhizal colonization was unaffected.Contribution of N fixation to leaf N content in G.max increased in the mixed plantings,and this increase was attributed to a decrease in the rhizosphere soil N of G.max in the mixed plantings.Increased root quantity and activity,along with a higher mycorrhizal association was observed in X.strumarium in the mixed compared to monoculture.Together,the invasive plant did not directly scavenge N from nodule-fixed N,but rather depleted the rhizosphere soil N of the legume,thereby stimulating the activity of N-fixation and increasing the dependence of the native legume on this N source.The quantity-activity framework holds promise for future studies on how native legumes respond to alien plant invasions. 展开更多
关键词 Mycorrhizal strategy nitrogen depletion Plant invasion Root nutrient acquisition strategy Symbiotic nitrogen fixation
下载PDF
Genetic and Agronomic Parameter Estimates of Growth, Yield and Related Traits of Maize (Zea mays L.) under Different Rates of Nitrogen Fertilization
9
作者 Prince Emmanuel Norman Lansana Kamara +6 位作者 Aloysius Beah Kelvin Sahr Gborie Francess Sia Saquee Sheku Alfred Kanu Fayia Augustine Kassoh Yvonne Sylvia Gloria Ethel Norman Abdul Salaam Kargbo 《American Journal of Plant Sciences》 CAS 2024年第4期274-291,共18页
This study evaluated the genetic and agronomic parameter estimates of maize under different nitrogen rates. The trial was established at the Njala Agricultural Research Centre experimental site during 2021 and 2022 in... This study evaluated the genetic and agronomic parameter estimates of maize under different nitrogen rates. The trial was established at the Njala Agricultural Research Centre experimental site during 2021 and 2022 in a split block design with three maize varieties (IWCD2, 2009EVDT, and DMR-ESR-Yellow) and seven nitrogen (0, 30, 60, 90, 120, 150 and 180 kg∙N∙ha<sup>−</sup><sup>1</sup>) rates. Findings showed that cob diameter and anthesis silking time (ASI) had intermediate heritability, ASI had high genetic advance, ASI and grain yield had high genotypic coefficient of variation (GCV), while traits with high phenotypic coefficient of variation (PCV) were plant height, ASI, grain yield, number of kernel per cob, number of kernel rows, ear length, and ear height. The PCV values were higher than GCV, indicating the influence of the environment in the studied traits. Nitrogen rates and variety significantly (p < 0.05) influenced grain yield production. Mean grain yields and economic parameter estimates increased with increasing nitrogen rates, with the 30 and 180 kg∙N∙ha<sup>−</sup><sup>1</sup> plots exhibiting the lowest and highest grain yields of 1238 kg∙ha<sup>−</sup><sup>1</sup> and 2098 kg∙ha<sup>−</sup><sup>1</sup>, respectively. Variety and nitrogen effects on partial factor productivity (PFP<sub>N</sub>), agronomic efficiency (AEN), net returns (NR), value cost ratio (VCR) and marginal return (MR) indicated that these parameters were significantly affected (p < 0.05) by these factors. The highest PFP<sub>N</sub> (41.3 kg grain kg<sup>−</sup><sup>1</sup>∙N) and AEN (29.4 kg grain kg<sup>−</sup><sup>1</sup>∙N) were obtained in the 30 kg∙N∙ha<sup>−</sup><sup>1</sup> plots, while the highest VCR (2.8) and MR (SLL 1.8 SLL<sup>−</sup><sup>1</sup> spent on N) were obtained in the 180 kg∙N∙ha<sup>−</sup><sup>1</sup>. The significant influence of variety and nitrogen on traits suggests that increasing yields and maximizing profits require use of appropriate nitrogen fertilization and improved farming practices that could be exploited for increased productivity of maize. 展开更多
关键词 nitrogen Rates Genetic and Agronomic Estimates Introduced Genotypes Grain Yield Zea mays
下载PDF
The nitrogen transformation behavior based on the pyrolysis products of wheat stra
10
作者 Shun Guo Yunfei Li +1 位作者 Shengwei Tang Tao Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期58-65,共8页
In order to provide basic design parameters for the industrial pyrolysis process,the transformation behavior of nitrogen was investigated using wheat straw as raw material.The distributions of nitrogen in pyrolysis ch... In order to provide basic design parameters for the industrial pyrolysis process,the transformation behavior of nitrogen was investigated using wheat straw as raw material.The distributions of nitrogen in pyrolysis char,oil,and gas were obtained and the nitrogenous components in the products were analyzed systematically by X-ray photoelectron spectroscopy(XPS),pyrolysis-gas chromatography/mass spectrometry(Py-GC/MS)and thermogravimetric-Fourier transform infrared spectrometry(TG-FTIR).The nitrogen distribution ranges of the pyrolysis char,oil,and gas were 37.34%–54.82%,32.87%–40.94%and 10.20%–28.83%,respectively.More nitrogen was retained in char at lower pyrolysis temperature and the nitrogen distribution of oil was from rise to decline with increasing temperature.The most abundant N-containing compounds in three-phase products were pyrrole-N,amines,and HCN,respectively.In addition,the transformation mechanism of nitrogen from wheat straw to pyrolysis products was concluded. 展开更多
关键词 PYROLYSIS nitrogen transformation Wheat straw Py-GC/MS TG-FTIR
下载PDF
Nitrogen isotope stratigraphy of the Early Cambrian successions in the Tarim Basin:Spatial variability of nitrogen cycling and its implication for paleo-oceanic redox conditions
11
作者 Bi Zhu Xuefeng Li +1 位作者 Lu Ge Yongquan Chen 《Acta Geochimica》 EI CAS CSCD 2024年第4期785-801,共17页
The Early Cambrian represents a critical time period characterized by extraordinary biological innovations and dynamic redox conditions in seawaters.Nitrogen isotopic signatures of ancient sediments have the potential... The Early Cambrian represents a critical time period characterized by extraordinary biological innovations and dynamic redox conditions in seawaters.Nitrogen isotopic signatures of ancient sediments have the potential to elucidate the evolutionary path of marine redox states and the biogeochemical nitrogen cycle within the water column of the Early Cambrian ocean.While existing research on this topic has predominantly focused on South China,the exploration of other continental margins has been limited,leaving contradictory hypotheses untested.In this study,pairedδ^(15)N andδ^(13)C org analyses were performed on the Lower Cambrian successions from the Shiairike section(inner ramp)and Well Tadong 2(deep shelf/basin)in the northwestern and eastern Tarim Basin,respectively.Our data from the Shiairike section reveal a discernible shift in the operation of different nitrogen cycles for the black chert-shale unit,also referred to as the black rock series in Chinese literature,of the Yurtus Formation(Fortunian stage to lower Stage 3).Oscillatingδ^(15)N values for its lower part are suggestive of alternating anaerobic assimilation of NH 4+and denitrification/anammox.This is likely attributed to a shallow,unstable chemocline consistent with the upwelling and incursion of deep,anoxic waters during a major transgression.In contrast,aerobic nitrogen cycling,indicated by positiveδ^(15)N values of>2‰,dominated the upper part alongside a reduction in upwelling intensity.On the other hand,theδ^(15)N signatures of Xishanbulake and Xidashan Formations of Well Tadong 2,which encompass a time interval from the Cambrian Fortunian Age to Age 4,are indicative of N_(2)fixation by diazotrophs as the major nitrogen source.The two studied intervals,although not time-equivalent,exhibit separated states of nitrogen cycling at least during the deposition of the Yurtus black rock series.The spatially different nitrogen cycling of the studied sections is compatible with a redox-stratified ocean during the deposition of the Yurtus black rock series.The build-up of a NO_(3)−reservoir and aerobic nitrogen cycling in seawater was largely restricted to near-shore settings whereas anaerobic nitrogen cycling dominated by N_(2)fixation served as the main nitrogen uptake pathway in off-shore settings. 展开更多
关键词 nitrogen isotopes Early Cambrian TARIM Black rock series
下载PDF
Cooperation between single atom catalyst and support to promote nitrogen electroreduction to ammonia:A theoretical insight
12
作者 Wanying Guo Siyao Wang +2 位作者 Hongxia Wang Qinghai Cai Jingxiang Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期336-344,共9页
The co-catalysis between single atom catalyst(SAC)and its support has recently emerged as a promising strategy to synergistically boost the catalytic activity of some complex electrochemical reactions,encompassing mul... The co-catalysis between single atom catalyst(SAC)and its support has recently emerged as a promising strategy to synergistically boost the catalytic activity of some complex electrochemical reactions,encompassing multiple intermediates and pathways.Herein,we utilized defective BC_(3)monolayer-supported SACs as a prototype to investigate the cooperative effects of SACs and their support on the catalytic performance of the nitrogen reduction reaction(NRR)for ammonia(NH_(3))production.The results showed that these SACs can be firmly stabilized on these defective BC_(3)supports with high stability against aggregation.Furthermore,co-activation of the inert N_(2)reactant was observed in certain embedded SACs and their neighboring B atoms on certain BC3 sheets due to the noticeable charge transfer and significant N–N bond elongation.Our high-throughput screening revealed that the Mo/DV_(CC)and W/DV_(CC)exhibit superior NRR catalytic performance,characterized by a low limiting potential of−0.33 and−0.43 V,respectively,which can be further increased under acid conditions based on the constant potential method.Moreover,varying NRR catalytic activities can be attributed to the differences in the valence state of active sites.Remarkably,further microkinetic modeling analysis displayed that the turnover frequency of N_(2)–to–NH_(3)conversion on Mo/DV_(CC)is as large as 1.20×10^(−3)s^(−1)site−1 at 700 K and 100 bar,thus guaranteeing its ultra-fast reaction rate.Our results not only suggest promising advanced electrocatalysts for NRR but also offer an effective avenue to regulate the electrocatalytic performance via the co-catalytic metal–support interactions. 展开更多
关键词 CO-CATALYSIS Single atom catalyst nitrogen reduction DFT computations
下载PDF
Magnesium fertilizer application increases peanut growth and pod yield under reduced nitrogen application in southern China
13
作者 Yu Gao Ruier Zeng +6 位作者 Suzhe Yao Ying Wang Jianguo Wang Shubo Wan Wei Hu Tingting Chen Lei Zhang 《The Crop Journal》 SCIE CSCD 2024年第3期915-926,共12页
This study investigated the effect of magnesium application on peanut growth and yield under two nitrogen(N)application rates in acidic soil in southern China.The chlorophyll content,net photosynthetic rate and dry ma... This study investigated the effect of magnesium application on peanut growth and yield under two nitrogen(N)application rates in acidic soil in southern China.The chlorophyll content,net photosynthetic rate and dry matter accumulation of the N-sensitive cultivar decreased under reduced N treatments,whereas no effect was observed on the relevant indicators in the N-insensitive variety GH1026.Mg application increased the net photosynthetic rate by increasing the expression of genes involved in chlorophyll synthesis and Rubisco activity in the leaves during the pegging stage under 50%N treatment,while no effect on the net photosynthetic rate was observed under the 100%N treatment.The rate of dry matter accumulation at the early growth stage,total dry matter accumulation and pod yield at harvest increased after Mg application under 50%N treatment by increasing the transportation of assimilates from stems and leaves to pods in both peanut varieties,whereas no effect was found under 100%N treatment.Moreover,Mg application increased the NUE under 50%N treatment.No improvement of NUE in either peanut variety was found under 100%N treatment,while Mg application under the 50%N treatment can obtain a higher economic benefit than the 100%N treatment.In acidic soil,application of 307.5 kg ha^(-1)of Mg sulfate fertilizer under 50%reduced nitrogen application is a suitable fertilizer management measure for improving carbon assimilation,NUE and achieve high peanut yields in southern China. 展开更多
关键词 PEANUT Magnesium YIELD Reduced nitrogen application rate
下载PDF
Proteomic response of Phaeocystis globosa to nitrogen limitation
14
作者 Haisu LIU Ruiwang WEI +2 位作者 Qiangyong LEI Lei CUI Songhui LÜ 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第1期141-149,共9页
Phaeocystis globosa is an important unicellular eukaryotic alga that can also form colonies.P.globosa can cause massive harmful algal blooms and plays an important role in the global carbon or sulfur cycling.Thus far,... Phaeocystis globosa is an important unicellular eukaryotic alga that can also form colonies.P.globosa can cause massive harmful algal blooms and plays an important role in the global carbon or sulfur cycling.Thus far,the ecophysiology of P.globosa has been investigated by numerous studies.However,the proteomic response of P.globosa to nitrogen depletion remains largely unknown.We compared four protein preparation methods of P.globosa for two-dimensional electrophoresis(2-DE)(Urea/Triton X-100 with trichloroacetic acid(TCA)/acetone precipitation;TCA/acetone precipitation;Radio Immuno Precipitation Assay(RIPA)with TCA/acetone precipitation;and Tris buffer).Results show that the combination of RIPA with TCA/acetone precipitation had a clear gel background and showed the best protein spot separation effect,based on which the proteomic response to nitrogen depletion was studied using 2-DE.In addition,we identified six differentially expressed proteins whose relative abundance increased or decreased more than 1.5-fold(P<0.05).Most proteins could not be identified,which might be attributed to the lack of genomic sequences of P.globosa.Under nitrogen limitation,replication protein-like,RNA ligase,and sn-glycerol-3-phosphate dehydrogenase were reduced,which may decrease the DNA replication level and ATP production in P.globosa cells.The increase of endonucleaseⅢand transcriptional regulator enzyme may affect the metabolic and antioxidant function of P.globosa cells and induce cell apoptosis.These findings provide a basis for further proteomic study of P.globosa and the optimization of protein preparation methods of marine microalgae. 展开更多
关键词 Phaeocystis globosa nitrogen limitation proteomic response two-dimensional electrophoresis
下载PDF
Reproductive height determines the loss of clonal grasses with nitrogen enrichment in a temperate grassland
15
作者 Xu Chen Haining Lu +4 位作者 Zhengru Ren Yuqiu Zhang Ruoxuan Liu Yunhai Zhang Xingguo Han 《Plant Diversity》 SCIE CAS CSCD 2024年第2期256-264,共9页
Tall clonal grasses commonly display competitive advantages with nitrogen(N)enrichment.However,it is currently unknown whether the height is derived from the vegetative or reproductive module.Moreover,it is unclear wh... Tall clonal grasses commonly display competitive advantages with nitrogen(N)enrichment.However,it is currently unknown whether the height is derived from the vegetative or reproductive module.Moreover,it is unclear whether the height of the vegetative or reproductive system regulates the probability of extinction and colonization,and determines species diversity.In this study,the impacts on clonal grasses were studied in a field experiment employing two frequencies(twice a year vs.monthly)crossing with nine N addition rates in a temperate grassland,China.We found that the N addition decreased species frequency and increased extinction probability,but did not change the species colonization probability.A low frequency of N addition decreased species frequency and colonization probability,but increased extinction probability.Moreover,we found that species reproductive height was the best index to predict the extinction probability of clonal grasses in N-enriched conditions.The low frequency of N addition may overestimate the negative effect from N deposition on clonal grass diversity,suggesting that a higher frequency of N addition is more suitable in assessing the ecological effects of N deposition.Overall,this study illustrates that reproductive height was associated with the clonal species extinction probability under N-enriched environment. 展开更多
关键词 ANPP Biodiversity Clonal grass COLONIZATION EXTINCTION nitrogen addition frequency
下载PDF
Plasma nitrogen fixation system with dual-loop enhancement for improved energy efficiency and its efficacy for lettuce cultivation
16
作者 韩泽阳 张梦雪 +8 位作者 张頔 何欣 井天军 葛知轩 李玉鸽 朱童 任云鸿 仲崇山 季方 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第1期82-92,共11页
Plasma nitrogen fixation(PNF)has been emerging as a promising technology for greenhouse gasfree and renewable energy-based agriculture.Yet,most PNF studies seldom address practical application-specific issues.In this ... Plasma nitrogen fixation(PNF)has been emerging as a promising technology for greenhouse gasfree and renewable energy-based agriculture.Yet,most PNF studies seldom address practical application-specific issues.In this work,we present the development of a compact and automatic PNF system for on-site agricultural applications.The system utilized a gliding-arc discharge as the plasma source and employed a dual-loop design to generate NO_(x)from air and water under atmospheric conditions.Experimental results showed that the system with a dualloop design performs well in terms of energy costs and production rates.Optimal operational parameters for the system were determined through experimentation,resulting in an energy cost of 13.9 MJ mol^(-1)and an energy efficiency of 16 g kWh^(-1)for NO_(3)^(-)production,respectively.Moreover,the concentration of exhausted NO_(x)was below the emission standards.Soilless lettuce cultivation experiments demonstrated that NO_(x)^(-)produced by the PNF system could serve as liquid nitrate nitrogen fertilizer.Overall,our work demonstrates the potential of the developed PNF system for on-site application in the production of green-leaf vegetables. 展开更多
关键词 plasma nitrogen fixation gliding arc soilless cultivation LETTUCE
下载PDF
Synergistic effects of planting density and nitrogen fertilization on chlorophyll degradation and leaf senescence after silking in maize
17
作者 Tianqiong Lan Lunjing Du +9 位作者 Xinglong Wang Xiaoxu Zhan Qinlin Liu Gui Wei Chengcheng Lyu Fan Liu Jiaxu Gao Dongju Feng Fanlei Kong Jichao Yuan 《The Crop Journal》 SCIE CSCD 2024年第2期605-613,共9页
Regulating planting density and nitrogen(N)fertilization could delay chlorophyll(Chl)degradation and leaf senescence in maize cultivars.This study measured changes in ear leaf green area(GLA_(ear)),Chl content,the act... Regulating planting density and nitrogen(N)fertilization could delay chlorophyll(Chl)degradation and leaf senescence in maize cultivars.This study measured changes in ear leaf green area(GLA_(ear)),Chl content,the activities of Chl a-degrading enzymes after silking,and the post-silking dry matter accumulation and grain yield under multiple planting densities and N fertilization rates.The dynamic change of GLA_(ear)after silking fitted to the logistic model,and the GLA_(ear) duration and the GLAearat 42 d after silking were affected mainly by the duration of the initial senescence period(T_(1))which was a key factor of the leaf senescence.The average chlorophyllase(CLH)activity was 8.3 times higher than pheophytinase activity and contributed most to the Chl content,indicating that CLH is a key enzyme for degrading Chl a in maize.Increasing density increased the CLH activity and decreased the Chl content,T1,GLAear,and GLA_(ear) duration.Under high density,appropriate N application reduced CLH activity,increased Chl content,prolonged T1,alleviated high-density-induced leaf senescence,and increased post-silking dry matter accumulation and grain yield. 展开更多
关键词 DENSITY nitrogen fertilization Leaf senescence Chlorophyll-degrading enzyme Logistic model
下载PDF
Effects of dense planting patterns on photosynthetic traits of different vertical layers and yield of wheat under different nitrogen rates
18
作者 Cuicun Wang Ke Zhang +9 位作者 Qing Liu Xiufeng Zhang Zhikuan Shi Xue Wang Caili Guo Qiang Cao Yongchao Tian Yan Zhu Xiaojun Liu Weixing Cao 《The Crop Journal》 SCIE CSCD 2024年第2期594-604,共11页
A two-year field experiment was conducted to measure the effects of densification methods on photosynthesis and yield of densely planted wheat.Inter-plant and inter-row distances were used to define ratefixed pattern(... A two-year field experiment was conducted to measure the effects of densification methods on photosynthesis and yield of densely planted wheat.Inter-plant and inter-row distances were used to define ratefixed pattern(RR)and row-fixed pattern(RS)density treatments.Meanwhile,four nitrogen(N)rates(0,144,192,and 240 kg N ha-1,termed N0,N144,N192,and N240)were applied with three densities(225,292.5,and 360×10^(4)plants ha^(-1),termed D225,D292.5,and D360).The wheat canopy was clipped into three equal vertical layers(top,middle,and bottom layers),and their chlorophyll density(Ch D)and photosynthetically active radiation interception(FIPAR)were measured.Results showed that the response of Ch D and FIPAR to N rate,density,and pattern varied with different layers.N rate,density,and pattern had significant interaction effects on Ch D.The maximum values of whole-canopy Ch D in the two seasons appeared in N240 combined with D292.5 and D360 under RR,respectively.Across two growing seasons,FIPAR values of RR were higher than those of RS by 29.37%for the top layer and 5.68%for the middle layer,while lower than those of RS by 20.62%for the bottom layer on average.With a low N supply(N0),grain yield was not significantly affected by density for both patterns.At N240,increasing density significantly increased yield under RR,but D360 of RS significantly decreased yield by 3.72%and 9.00%versus D225 in two seasons,respectively.With an appropriate and sufficient N application,RR increased the yield of densely planted wheat more than RS.Additionally,the maximum yield in two seasons appeared in the combination of D360 with N144 or N192 rather than of D225 with N240 under both patterns,suggesting that dense planting combined with an appropriate N-reduction application is feasible to increase photosynthesis capacity and yield. 展开更多
关键词 Chlorophyll density Densification method nitrogen Photosynthetically active radiation INTERCEPTION WHEAT
下载PDF
Could natural phytochemicals be used to reduce nitrogen excretion and excreta‑derived N_(2)O emissions from ruminants?
19
作者 Yuchao Zhao Ming Liu +1 位作者 Linshu Jiang Leluo Guan 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第2期490-508,共19页
Ruminants play a critical role in our food system by converting plant biomass that humans cannot or choose not to consume into edible high-quality food.However,ruminant excreta is a significant source of nitrous oxide... Ruminants play a critical role in our food system by converting plant biomass that humans cannot or choose not to consume into edible high-quality food.However,ruminant excreta is a significant source of nitrous oxide(N_(2)O),a potent greenhouse gas with a long-term global warming potential 298 times that of carbon dioxide.Natural phytochemicals or forages containing phytochemicals have shown the potential to improve the efficiency of nitrogen(N)utilization and decrease N_(2)O emissions from the excreta of ruminants.Dietary inclusion of tannins can shift more of the excreted N to the feces,alter the urinary N composition and consequently reduce N_(2)O emissions from excreta.Essential oils or saponins could inhibit rumen ammonia production and decrease urinary N excretion.In grazed pastures,large amounts of glucosinolates or aucubin can be introduced into pasture soils when animals consume plants rich in these compounds and then excrete them or their metabolites in the urine or feces.If inhibitory compounds are excreted in the urine,they would be directly applied to the urine patch to reduce nitrification and subsequent N_(2)O emissions.The phytochemicals’role in sustainable ruminant production is undeniable,but much uncertainty remains.Inconsistency,transient effects,and adverse effects limit the effectiveness of these phytochemicals for reducing N losses.In this review,we will identify some current phytochemicals found in feed that have the potential to manipulate ruminant N excretion or mitigate N_(2)O production and deliberate the challenges and opportunities associated with using phytochemicals or forages rich in phytochemicals as dietary strategies for reducing N excretion and excreta-derived N_(2)O emissions. 展开更多
关键词 nitrogen metabolism Nitrous oxide Plant bioactive compounds RUMINANT Urine patches
下载PDF
Nitrogen mineralization in the oldest climax communities in the eastern Mediterranean region
20
作者 Fatma Selcen Sakar Gürcan Güleryüz 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第1期213-228,共16页
In this study,we investigated how tree species affect N mineralization in connection to some soil properties and seconder metabolite levels of litter,in the soil of the old-est native forest communities.In the oldest ... In this study,we investigated how tree species affect N mineralization in connection to some soil properties and seconder metabolite levels of litter,in the soil of the old-est native forest communities.In the oldest pure communi-ties of Pinus nigra(PN),Fagus orientalis(FO),and Abies bornmuelleriana(AB)in the mountain range of Mount Uludağ,Bursa,Turkey,annual net yield and N mineraliza-tion in the 0-5-and 5-20-cm soil layers were determined in a field incubation study over 1 year.Sampling locations were chosen from 1300 to 1600 m a.s.l.,and moisture content(%),pH,water-holding capacity(%),organic C,total N,and C/N ratio,and annual net mineral N yield of the soil and hydro-lyzed tannic acid and total phenolic compounds in litter were compared for these forest communities.F.orientalis had the highest annual net Nmin yield(43.9±4.8 kg ha^(-1) a^(-1)),P.nigra the lowest(30.5±4.2 kg ha^(-1) a^(-1)).Our findings show that in the oldest forest ecosystems,the seasonal soil moisture content and tree species play an essential role in N cycling and that hydrolyzed tannic acids and total phenolic compounds effectively control N turnover.Tannic acid and total phenolics in the litter were found to inhibit nitrification,but total phenolics were found to stimulate ammonification. 展开更多
关键词 Oldest forest communities nitrogen mineralization NITRIFICATION Tannic acid Total phenolic LITTER
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部