期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
Recent Advances in Transition Metal-Based Catalysts for Electrocatalytic Nitrate Reduction Reaction
1
作者 LUO Hongxia CHEN Jun YANG Jianping 《Journal of Donghua University(English Edition)》 CAS 2024年第4期333-348,共16页
The accumulation of excessive nitrate in the atmosphere not only jeopardizes human health but also disrupts the balance of the nitrogen cycle in the ecosystem.Among various nitrate removal technologies,electrocatalyti... The accumulation of excessive nitrate in the atmosphere not only jeopardizes human health but also disrupts the balance of the nitrogen cycle in the ecosystem.Among various nitrate removal technologies,electrocatalytic nitrate reduction reaction(eNO_(3)RR)has been widely studied for its advantages of being eco-friendly,easy to operate,and controllable under environmental conditions with renewable energy as the driving force.Transition metal-based catalysts(TMCs)have been widely used in electrocatalysis due to their abundant reserves,low costs,easy-to-regulate electronic structure and considerable electrochemical activity.In addition,TMCs have been extensively studied in terms of the kinetics of the nitrate reduction reaction,the moderate adsorption energy of nitrogen-containing species and the active hydrogen supply capacity.Based on this,this review firstly discusses the mechanism as well as analyzes the two main reduction products(N_(2)and NH_(3))of eNO_(3)RR,and reveals the basic guidelines for the design of efficient nitrate catalysts from the perspective of the reaction mechanism.Secondly,this review mainly focuses on the recent advances in the direction of eNO_(3RR)with four types of TMCs,Fe,Co,Ni and Cu,and unveils the interfacial modulation strategies of Fe,Co,Ni and Cu catalysts for the activity,reaction pathway and stability.Finally,reasonable suggestions and opportunities are proposed for the challenges and future development of eNO_(3)RR.This review provides far-reaching implications for exploring cost-effective TMCs to replace high-cost noble metal catalysts(NMCs)for eNO_(3)RR. 展开更多
关键词 electrocatalysis nitrate reduction reaction transition metal-based catalyst(TMC) reaction mechanism nitrogen cycle
下载PDF
Identification of Dynamic Active Sites Among Cu Species Derived from MOFs@CuPc for Electrocatalytic Nitrate Reduction Reaction to Ammonia 被引量:3
2
作者 Xue‑Yang Ji Ke Sun +5 位作者 Zhi‑Kun Liu Xinghui Liu Weikang Dong Xintao Zuo Ruiwen Shao Jun Tao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第8期20-34,共15页
Direct electrochemical nitrate reduction reaction(NITRR)is a promising strategy to alleviate the unbalanced nitrogen cycle while achieving the electrosynthesis of ammonia.However,the restructuration of the high-activi... Direct electrochemical nitrate reduction reaction(NITRR)is a promising strategy to alleviate the unbalanced nitrogen cycle while achieving the electrosynthesis of ammonia.However,the restructuration of the high-activity Cu-based electrocatalysts in the NITRR process has hindered the identification of dynamical active sites and in-depth investigation of the catalytic mechanism.Herein,Cu species(single-atom,clusters,and nanoparticles)with tunable loading supported on N-doped TiO_(2)/C are successfully manufactured with MOFs@CuPc precursors via the pre-anchor and post-pyrolysis strategy.Restructuration behavior among Cu species is co-dependent on the Cu loading and reaction potential,as evidenced by the advanced operando X-ray absorption spectroscopy,and there exists an incompletely reversible transformation of the restructured structure to the initial state.Notably,restructured CuN_(4)&Cu_(4) deliver the high NH_(3) yield of 88.2 mmol h^(−1)g_(cata)^(−1) and FE(~94.3%)at−0.75 V,resulting from the optimal adsorption of NO_(3)^(−) as well as the rapid conversion of^(*)NH_(2)OH to^(*)NH_(2) intermediates originated from the modulation of charge distribution and d-band center for Cu site.This work not only uncovers CuN_(4)&Cu_(4) have the promising NITRR but also identifies the dynamic Cu species active sites that play a critical role in the efficient electrocatalytic reduction in nitrate to ammonia. 展开更多
关键词 Metal-organic frameworks Copper phthalocyanine Electrocatalytic nitrate reduction reaction
下载PDF
Elucidating the Role of Mass Transfer in Electrochemical Redox Reactions on Electrospun Fibers 被引量:1
3
作者 Yan Li Ziwang Kan +6 位作者 Lina Jia Dan Zhang Yan Hong Jingjing Liu Haibo Huang Siqi Li Song Liu 《Transactions of Tianjin University》 EI CAS 2023年第5期313-320,共8页
Mass transfer can tune the surface concentration of reactants and products and subsequently infl uence the catalytic perfor-mance.The morphology of nanomaterials plays an important role in the mass transfer of reactio... Mass transfer can tune the surface concentration of reactants and products and subsequently infl uence the catalytic perfor-mance.The morphology of nanomaterials plays an important role in the mass transfer of reaction microdomains,but related studies are lacking.Herein,a facile electrospinning technique utilizing cellulose was employed to fabricate a series of carbon nanofi bers with diff erent diameters,which exhibited excellent electrochemical nitrate reduction reaction and oxygen evolu-tion reaction activities.Furthermore,the microstructure of electrocatalysts could infl uence the gas-liquid-solid interfacial mass transfer,resulting in diff erent electrochemical performances. 展开更多
关键词 Mass transfer ELECTROSPINNING Electrochemical nitrate reduction reaction Oxygen evolution reaction
下载PDF
Oxygen‑Coordinated Single Mn Sites for Efficient Electrocatalytic Nitrate Reduction to Ammonia 被引量:2
4
作者 Shengbo Zhang Yuankang Zha +8 位作者 Yixing Ye Ke Li Yue Lin Lirong Zheng Guozhong Wang Yunxia Zhang Huajie Yin Tongfei Shi Haimin Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期147-159,共13页
Electrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection.Here,we report an efficient NitRR catalyst composed of single Mn sites... Electrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection.Here,we report an efficient NitRR catalyst composed of single Mn sites with atomically dispersed oxygen(O)coordination on bacterial cellulose-converted graphitic carbon(Mn-O-C).Evidence of the atomically dispersed Mn-(O-C_(2))_(4)moieties embedding in the exposed basal plane of carbon surface is confirmed by X-ray absorption spectroscopy.As a result,the as-synthesized Mn-O-C catalyst exhibits superior NitRR activity with an NH_(3)yield rate(RNH_(3))of 1476.9±62.6μg h^(−1)cm^(−2)at−0.7 V(vs.reversible hydrogen electrode,RHE)and a faradaic efficiency(FE)of 89.0±3.8%at−0.5 V(vs.RHE)under ambient conditions.Further,when evaluated with a practical flow cell,Mn-O-C shows a high RNH_(3)of 3706.7±552.0μg h^(−1)cm^(−2)at a current density of 100 mA cm−2,2.5 times of that in the H cell.The in situ FT-IR and Raman spectroscopic studies combined with theoretical calculations indicate that the Mn-(O-C_(2))_(4)sites not only effectively inhibit the competitive hydrogen evolution reaction,but also greatly promote the adsorption and activation of nitrate(NO_(3)^(−)),thus boosting both the FE and selectivity of NH_(3)over Mn-(O-C_(2))_(4)sites. 展开更多
关键词 Atomically dispersed Oxygen coordination Nitrate reduction reaction In situ spectroscopic studies Hydrogen evolution reaction
下载PDF
Mesoporous Carbon Nanofibers Loaded with Ordered PtFe Alloy Nanoparticles for Electrocatalytic Nitrate Reduction to Ammonia
5
作者 XIE Meng LUO Wei QIU Pengpeng 《Journal of Donghua University(English Edition)》 CAS 2024年第4期365-376,共12页
Highly dispersed bimetallic alloy nanoparticle electrocatalysts have been demonstrated to exhibit exceptional performance in driving the nitrate reduction reaction(NO_(3)RR)to generate ammonia(NH_(3)).In this study,we... Highly dispersed bimetallic alloy nanoparticle electrocatalysts have been demonstrated to exhibit exceptional performance in driving the nitrate reduction reaction(NO_(3)RR)to generate ammonia(NH_(3)).In this study,we prepared mesoporous carbon nanofibers(mCNFs)functionalized with ordered PtFe alloys(O-PtFe-mCNFs)by a composite micelle interface-induced co-assembly method using poly(ethylene oxide)-block-polystyrene(PEO-b-PS)as a template.When employed as electrocatalysts,O-PtFe-mCNFs exhibited superior electrocatalytic performance for the NO_(3RR)compared to the mCNFs functionalized with disordered PtFe alloys(D-PtFe-mCNFs).Notably,the NH_(3)production performance was particularly outstanding,with a maximum NH_(3)yield of up to 959.6μmol/(h·cm~2).Furthermore,the Faraday efficiency(FE)was even 88.0%at-0.4 V vs.reversible hydrogen electrode(RHE).This finding provides compelling evidence of the potential of ordered PtFe alloy catalysts for the electrocatalytic NO_(3)RR. 展开更多
关键词 ordered PtFe alloy mesoporous carbon nanofiber(mCNF) nitrate reduction reaction(NO3RR) ammonia(NH3)production reaction
下载PDF
Nanoengineering Metal–Organic Frameworks and Derivatives for Electrosynthesis of Ammonia 被引量:3
6
作者 Daming Feng Lixue Zhou +3 位作者 Timothy J.White Anthony K.Cheetham Tianyi Ma Fengxia Wei 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期205-240,共36页
Electrocatalytic synthesis under mild conditions has become increasingly important as one of the practical alternatives for industrial applications,especially for the green ammonia(NH_(3))industry.A properly engineere... Electrocatalytic synthesis under mild conditions has become increasingly important as one of the practical alternatives for industrial applications,especially for the green ammonia(NH_(3))industry.A properly engineered electrocatalyst plays a vital role in the realization of superior catalytic performance.Among various types of promising nanomaterials,metal–organic frameworks(MOFs)are competitive candidates for developing efficient electrocatalytic NH_(3) synthesis from simple nitrogen-containing molecules or ions,such as N_(2) and NO_(3)^(−).In this review,recent advances in the development of electrocatalysts derived from MOFs for the electrosynthesis of NH_(3) are collected,categorized,and discussed,including their application in the N_(2) reduction reaction(NRR)and the NO_(3)^(−)reduction reaction(NO3RR).Firstly,the fundamental principles are illustrated,such as plausible mechanisms of NH_(3) generation from N_(2) and NO_(3)^(−),the apparatus of corresponding electrocatalysis,parameters for evaluation of reaction efficiency,and detection methods of yielding NH_(3).Then,the electrocatalysts for NRR processes are discussed in detail,including pristine MOFs,MOF-hybrids,MOF-derived N-doped porous carbons,single atomic catalysts from pyrolysis of MOFs,and other MOF-related materials.Subsequently,MOF-related NO3RR processes are also listed and discussed.Finally,the existing challenges and prospects for the rational design and fabrication of electrocatalysts from MOFs for electrochemical NH_(3) synthesis are presented,such as the evolution of investigation methods with artificial intelligence,innovation in synthetic methods of MOF-related catalysts,advancement of characterization techniques,and extended electrocatalytic reactions. 展开更多
关键词 Metal–organic frameworks Electrosynthesis of ammonia Nitrogen reduction reactions Nitrate reduction reactions
下载PDF
High-throughput mechanistic study of highly selective hydrogen-bonded organic frameworks for electrochemical nitrate reduction to ammonia
7
作者 Shuo Wang Yi Wang +2 位作者 Yunfan Fu Tianfu Liu Guoxiong Wang 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期408-415,I0011,共9页
Hydrogen-bonded organic frameworks(HOFs),an emerging porous macrocyclic materials linked by hydrogen-bond,hold potential for gas separation and storage,sensors,optical,and electrocatalysts.Here,HOF-based electrocataly... Hydrogen-bonded organic frameworks(HOFs),an emerging porous macrocyclic materials linked by hydrogen-bond,hold potential for gas separation and storage,sensors,optical,and electrocatalysts.Here,HOF-based electrocatalysts are rationally developed for nitrates reduction to ammonia,allowing not only to regulate wastewater pollution but also to accomplish carbon-neutral ammonia(NH_(3))synthesis.We preform high-throughput computational screening of thirty-six HOFs with various metals as active sites,denoted as HOF-M1,for nitrate reduction reaction(NO_(3)RR)toward NH_(3).We have implemented a hierarchical four-step screening strategy,and ultimately,HOF-Ti1 was selected based on its exceptional catalytic activity and selectivity in the NO_(3)RR process.Through additional analysis,we discovered that the d band center of the active metal sites serves as an effective parameter for designing and predicting the performance of HOFs in NO_(3)RR.This research not only showcases the immense potential of electrocatalysis in transforming NO_(3)RR into NH_(3)but also provides researchers with a compelling incentive to undertake further experimental investigations. 展开更多
关键词 Nitrate reduction reaction Ammonia synthesis Hydrogen-bonded organic frameworks High-throughput calculations ELECTROCATALYSTS
下载PDF
Zeolite-mediated hybrid Cu^(+)/Cu~0 interface for electrochemical nitrate reduction to ammonia
8
作者 Jiabao Lv Angjian Wu +12 位作者 Liang Wang Yunhao Zhong Zhihao Zeng Qunxing Huang Xiaoqing Lin Hao Zhang Shaojun Liu Qian Liu Songqiang Zhu Xiaodong Li Jianhua Yan Zhifu Qi Hao Bin Wu 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期136-143,I0005,共9页
The electrocatalytic conversion of reactive nitrogen species to ammonia is a promising strategy for efficient NH_(3) synthesis.In this study,we reveal that the hybrid Cu^(+)/Cu~0 interface is catalytically active for ... The electrocatalytic conversion of reactive nitrogen species to ammonia is a promising strategy for efficient NH_(3) synthesis.In this study,we reveal that the hybrid Cu^(+)/Cu~0 interface is catalytically active for electrochemical ammonia synthesis from nitrate reduction.To maintain the hybrid Cu^(+)/Cu~0 state at negative reaction potentials,hydrophilic zeolite is used to modify Cu/Cu_(2)O electrocatalyst,which demonstrates an impressive NH_(3) production rate of 41.65 mg h^(-1) cm^(-2)with ~100% Faradaic efficiency of ammonia synthesis at-0.6 V vs.RHE.In-situ Raman spectroscopy unveil the high activity originates from the zeolite reconstruction at the electrode–electrolyte interface,which protects the valence state of Cu~0/Cu^(+) site under negative potential and promotes electrochemical activity towards NH_(3) synthesis. 展开更多
关键词 Electrochemical nitrate reduction reaction Ammonia synthesis In-situ Raman spectroscopy ZEOLITE Density functional theory
下载PDF
Peroxynitrite Scavenging Activities of Resveratrol and Piceid 被引量:4
9
作者 ZHAO Guang-rong TIAN Li-li +4 位作者 MA Qiong WANG Chang-song QIAO Bin ZHANG Jun-gang JI Xiang-wu 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2012年第6期953-956,共4页
In vitro antioxidant activities of resveratrol and piceid against peroxynitrite(ONOO-) were examined by the inhibition of 3-nitrotyrosine formation.Trolox was used as a positive control.Resveratrol and piceid exhibi... In vitro antioxidant activities of resveratrol and piceid against peroxynitrite(ONOO-) were examined by the inhibition of 3-nitrotyrosine formation.Trolox was used as a positive control.Resveratrol and piceid exhibited high ONOO--scavenging activities in a concentration dependent manner.The antioxidant activities(the concentration of test compound required to yield a 50% inhibition of tyrosine nitration,IC 50) of resveratrol and piceid against ONOO-were(48.34±0.97) and(74.69±1.49) μmol/L,respectively.Compared with that of trolox[(105.40±1.16) μmol/L],their scavenging activities were 2.2-and 1.5-fold higher for resveratrol and piceid.Formation of nitroresveratrol as shown by UV-Vis spectroscopy and liquid chromatography-tandom mass spectrometry(LC-MS/MS) analysis indicates that resveratrol could directly scavenge ONOO-via nitration reaction.Our results demonstrate that foods and medicinal herbs with resveratrol and piceid as stronger ONOO-scavengers are valuable ingredients and have healthy application in preventing humans from peroxynitrite-mediated oxidative damage by scavenging peroxynitrite efficiently. 展开更多
关键词 RESVERATROL PICEID PEROXYNITRITE 3-NITROTYROSINE Antioxidant activity nitration reaction Radical scavenging
下载PDF
Recent progress in electrochemical synthesis of carbon-free hydrogen carrier ammonia and ammonia fuel cells:A review 被引量:1
10
作者 Feng Du Wei Sun +1 位作者 Hui Luo Chang Ming Li 《Materials Reports(Energy)》 2022年第4期3-18,共16页
Ammonia(NH3)is a cornerstone widely used in the modern agriculture and industry,the annual global production gradually increases to almost 200 million tons.Nearly 80%of the produced NH3 is used in the fertilizer indus... Ammonia(NH3)is a cornerstone widely used in the modern agriculture and industry,the annual global production gradually increases to almost 200 million tons.Nearly 80%of the produced NH3 is used in the fertilizer industry and is essential for the development of global agriculture and consequently for maintaining population growth.Furthermore,NH3 can power hydrogen(H2)fueled devices,such as H2 fuel cells(FC),to use the interconversion between chemical energy and electric energy of nitrogen(N2)cycle,which can effectively alleviate the intermittent problems of renewable energy.However,the problems faced by NH3 in storage and release still restrict its development.Herein,this review introduces the latest research and development of electrochemical NH3 synthesis and direct NH3 FC,as well as outlines the technical challenges,possible improvement measures and development perspectives.N2 reduction reaction(NRR)and nitrate reduction reaction(NO3RR)are two potential approaches for electrochemical NH3 synthesis.However,the existing research foundation still faces challenges in achieving high selectivity and efficiency.Direct NH3 FC are easy to transport and are expected to be widely used in mobile energy consuming equipment,but also limited by the lack of highly active and stable NH3 oxidation electrocatalysts.The perspectives of ammonia fuel cells as an alternative green energy are discussed. 展开更多
关键词 Electrocatalysis Nitrogen reduction reaction(NRR) Nitrate reduction reaction(NO3RR) Carbon-free hydrogen carrier Ammonia fuel cells
下载PDF
Engineering transition metal-based nanomaterials for high-performance electrocatalysis 被引量:4
11
作者 Changhong Wang Changming Li +1 位作者 Jinlong Liu Chunxian Guo 《Materials Reports(Energy)》 2021年第1期127-140,共14页
Transition metal(TM)based electrocatalysts attract increasing attention in energy conversion reactions,and current effects focus on material engineering strategies to tailor physicochemical properties of TM based elec... Transition metal(TM)based electrocatalysts attract increasing attention in energy conversion reactions,and current effects focus on material engineering strategies to tailor physicochemical properties of TM based electrocatalysts for improved performance.This review provides a summary about the recent advances of engineering TM based nanomaterials for electrocatalytic reactions,which include hydrogen evolution reaction(HER),oxygen evolution reaction(OER),CO2 reduction reaction(CO2RR),and nitrate reduction reaction(NO3RR).We highlight four engineering strategies,namely,size engineering,facet engineering,composition engineering,and crystal structure engineering for TM based electrocatalysts,and pay a special emphasis on exploring the relationship between their physicochemical properties and catalytic activities.We outline the opportunities in this research field,in particular,the strategy of rationally combining in-situ and operando techniques and theoretical predication to design efficient electrocatalysts.Finally,issues that deserve attention and consideration for practical applications are discussed. 展开更多
关键词 Transition metal NANOMATERIALS ELECTROCATALYSIS Hydrogen evolution reaction Oxygen evolution reaction CO2 reduction reaction Nitrate reduction reaction Engineering strategy
下载PDF
Unveiling enzyme-mimetic active intermediate of a bioinspired oxo-MoS_(x) electrocatalyst for aqueous nitrate reduction
12
作者 Yuting Wang Bin Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第2期90-92,I0004,共4页
Excessive nitrate in groundwater has emerged as a serious environmental concern. The elevated nitrate concentration in drinking water causes a serious threat to public health on account of the possible transformation ... Excessive nitrate in groundwater has emerged as a serious environmental concern. The elevated nitrate concentration in drinking water causes a serious threat to public health on account of the possible transformation of nitrate to nitrite, which is one of the main predisposing factors of methemoglobinemia [1]. 展开更多
关键词 Active intermediates Electrocatalysis Nitrate reduction reaction Enzyme mimic Neutral medium
下载PDF
Au nanoclusters anchored on TiO_(2) nanosheets for high-efficiency electroreduction of nitrate to ammonia 被引量:2
13
作者 Miaosen Yang Tianran Wei +5 位作者 Jia He Qian Liu Ligang Feng Hongyi Li Jun Luo Xijun Liu 《Nano Research》 SCIE EI CSCD 2024年第3期1209-1216,共8页
Electrocatalytic nitrate reduction reaction(NO_(3)RR)offers a unique rationale for green NH_(3) synthesis,yet the lack of high-efficiency NO_(3)RR catalysts remains a great challenge.In this work,we show that Au nanoc... Electrocatalytic nitrate reduction reaction(NO_(3)RR)offers a unique rationale for green NH_(3) synthesis,yet the lack of high-efficiency NO_(3)RR catalysts remains a great challenge.In this work,we show that Au nanoclusters anchored on TiO_(2) nanosheets can efficiently catalyze the conversion of NO_(3)RR-to-NH_(3) under ambient conditions,achieving a maximal Faradic efficiency of 91%,a peak yield rate of 1923μg·h^(-1)·mgcat.-1,and high durability over 10 consecutive cycles,all of which are comparable to the recently reported metrics(including transition metal and noble metal-based catalysts)and exceed those of pristine TiO_(2).Moreover,a galvanic Zn-nitrate battery using the catalyst as the cathode was proposed,which shows a power density of 3.62 mW·cm^(-2) and a yield rate of 452μg·h^(-1)·mgcat.-1.Theoretical simulations further indicate that the atomically dispersed Au clusters can promote the adsorption and activation of NO_(3)-species,and reduce the NO_(3)RR-to-NH_(3) barrier,thus leading to an accelerated cathodic reaction.This work highlights the importance of metal clusters for the NH_(3) electrosynthesis and nitrate removal. 展开更多
关键词 NH3 electrosynthesis Zn-nitrate battery Au nanoclusters nitrate reduction reaction(NRR) TiO_(2)nanosheets
原文传递
Screening of transition metal oxides for electrocatalytic nitrate reduction to ammonia at large currents
14
作者 Qiongfei Wu Weijie Zhu +3 位作者 Dongxu Ma Chao Liang Zhoucheng Wang Hanfeng Liang 《Nano Research》 SCIE EI CSCD 2024年第5期3902-3910,共9页
Electrochemical nitrate reduction reaction(NO_(3)RR)towards ammonia,as an emerging and appealing technology alternative to the energy-intensive Haber-Bosch process and inefficient nitrogen reduction reaction,has recen... Electrochemical nitrate reduction reaction(NO_(3)RR)towards ammonia,as an emerging and appealing technology alternative to the energy-intensive Haber-Bosch process and inefficient nitrogen reduction reaction,has recently aroused wide concern and research.However,the current research of the NO_(3)RR towards ammonia lacks the overall performance comparison of various electrocatalysts.Given this,we here make a comparison of 12 common transition metal oxide catalysts for the NO_(3)RR under a high cathodic current density of 0.25 A·cm^(-2),wherein Co_(3)O_(4) catalyst displays the highest ammonia Faradaic efficiency(85.15%)and moderate activity(ca.-0.25 V vs.reversible hydrogen electrode).Other external factors,such as nitrate concentrations in the electrolyte and applied potential ranges,have also been specifically investigated for the NO_(3)RR. 展开更多
关键词 nitrate reduction reaction ammonia production transition metal oxides Co_(3)O_(4)
原文传递
Ultrafine nano-copper derived from dopamine polymerization&synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments
15
作者 Xue Zhao Mengshan Chen +3 位作者 Dan Wang Haoran Zhang Guangzhi Hu Yingtang Zhou 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第8期383-390,共8页
Electrochemical-nitrate-reduction-reaction(eNitRR)synthesis of ammonia is an effective way to treat ni-trate wastewater and alleviate the pressure of the Haber-Bosch ammonia production industry.How to develop effectiv... Electrochemical-nitrate-reduction-reaction(eNitRR)synthesis of ammonia is an effective way to treat ni-trate wastewater and alleviate the pressure of the Haber-Bosch ammonia production industry.How to develop effective catalysts to electrochemically reduce nitrate to ammonia and purify sewage under com-plex environmental conditions is the focus of current research.Herein,the dopamine polymerization pro-cess and the[(C_(12)H_(8)N_(2))_(2)Cu]^(2+)complex embedding process were run simultaneously in time and space,and ultrafine Cu nanoparticles(Cu/CN)were effectively loaded on nitrogen-doped carbon after heat treat-ment.Using Cu/CN as the catalyst,the ammonia yield rate and Faradaic efficiency of the electrochemical conversion of NO_(3)^(-)to NH_(3)are highly 8984.0μg h^(−1)mg cat.^(−1)and 95.6%,respectively.Even in the face of complex water environments,such as neutral media,acidic media,coexisting ions,and actual nitrate wastewater,nitrate wastewater can be effectively purified to form high value-added ammonia.The strat-egy of simultaneous embedding increases the exposure rate of Cu sites,and the support of CN is also beneficial to reduce the energy barrier of ^(∗)NO_(3)activation.This study rationally designed catalysts that are beneficial to eNitRR,and considered the situation faced by practical applications during the research stage,reducing the performance gap between laboratory exploration and industrial applications. 展开更多
关键词 Electrochemical nitrate reduction reaction Synthetic ammonia Sewage treatment Nano copper DOPAMINE
原文传递
Recent advances and challenges of nitrogen/nitrate electro catalytic reduction to ammonia synthesis
16
作者 Junwen CAO Yikun HU +2 位作者 Yun ZHENG Wenqiang ZHANG Bo YU 《Frontiers in Energy》 SCIE EI CSCD 2024年第2期128-140,共13页
The Haber-Bosch process is the most widely used synthetic ammonia technology at present.Since its invention,it has provided an important guarantee for global food security.However,the traditional Haber-Bosch ammonia s... The Haber-Bosch process is the most widely used synthetic ammonia technology at present.Since its invention,it has provided an important guarantee for global food security.However,the traditional Haber-Bosch ammonia synthesis process consumes a lot of energy and causes serious environmental pollution.Under the serious pressure of energy and environment,a green,clean,and sustainable ammonia synthesis route is urgently needed.Electrochemical synthesis of ammonia is a green and mild new method for preparing ammonia,which can directly convert nitrogen or nitrate into ammonia using electricity driven by solar,wind,or water energy,without greenhouse gas and toxic gas emissions.Herein,the basic mechanism of the nitrogen reduction reaction(NRR)to ammonia and nitrate reduction reaction(NO_(3)^(-))to ammonia were discussed.The representative approaches and major technologies,such as lithium mediated electrolysis and solid oxide electrolysis cell(SOEC)electrolysis for NRR,high activity catalyst and advanced electrochemical device fabrication for(NO_(3)^(-))RR and electrochemical ammonia synthesis were summarized.Based on the above discussion and analysis,the main challenges and development directions for electrochemical ammonia synthesis were further proposed. 展开更多
关键词 electrochemical ammonia synthesis NITROGEN NITRATE nitrogen reduction reaction(NRR)to ammonia nitrate reduction reaction(NO_(3)^(-))RR
原文传递
B and Fe co-doped Co_(2)P hollow nanocubes for nitrate electroreduction to ammonia
17
作者 Jing Miao Qingling Hong +4 位作者 Liping Liang Guomin Li Zhihong Liu Shibin Yin Yu Chen 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第2期278-282,共5页
Nitrate(NO_(3)^(−))electroreduction reaction(NO_(3)^(−)RR)provides an attractive and sustainable route for NO_(3)^(−)pollution mitigation or energy-saved ammonia(NH3)synthesis.In this work,high-quality B and Fe co-dop... Nitrate(NO_(3)^(−))electroreduction reaction(NO_(3)^(−)RR)provides an attractive and sustainable route for NO_(3)^(−)pollution mitigation or energy-saved ammonia(NH3)synthesis.In this work,high-quality B and Fe co-doped Co_(2) P hollow nanocubes(B/Fe-Co_(2) P HNCs)are successfully synthesized though simultaneous boronation-phosphorization treatment,which reveal outstanding selectivity,activity,stability for the NO_(3)^(−)to NH_(3) conversion in neutral electrolyte because of big surface area,fast mass transport,superhydrophilic surface,and optimized electronic structure.B/Fe-Co_(2) P HNCs can achieve the high NH3 yield rate(22.67 mg h^(−1) mg_(cat)^(−1))as well as Faradaic efficiency(97.54%)for NO_(3)^(−)RR,greatly outperforming most of non-precious metal based NO_(3)^(−)RR electrocatalysts. 展开更多
关键词 Nitrate electroreduction reaction Ammonia synthesis Transition metal phosphides Hollow nanocubes
原文传递
Electro-triggered Joule heating method to synthesize single-phase CuNi nano-alloy catalyst for efficient electrocatalytic nitrate reduction toward ammonia 被引量:6
18
作者 Zunjie Zhang Yang Liu +6 位作者 Xiaozhi Su Ziwei Zhao Zhenkun Mo Chenyi Wang Yaling Zhao Ye Chen Shuyan Gao 《Nano Research》 SCIE EI CSCD 2023年第5期6632-6641,共10页
Electrochemical nitrate reduction reaction(NO_(3)RR)has great potential for ammonia(NH_(3))synthesis benefiting from its environmental friendliness and sustainability.Cu-based alloys with elemental diversity and adsor... Electrochemical nitrate reduction reaction(NO_(3)RR)has great potential for ammonia(NH_(3))synthesis benefiting from its environmental friendliness and sustainability.Cu-based alloys with elemental diversity and adsorption tunability are widely used as electrocatalyst to lower the reaction overpotential for NO_(3)RR catalysis.However,phase separation commonly found in alloys leads to uneven distribution of elements,which limits the possibility of further optimizing the catalytic activity.Herein,an electrotriggered Joule heating method,possessing unique superiority of flash heating and cooling that lead to well-dispersed nanoparticles and uniform mixing of various elements,was adopted to synthesize a single-phase CuNi nano-alloy catalyst evenly dispersed on carbon fiber paper,CFP-Cu_(1)Ni_(1),which exhibited a more positive NO_(3)RR initial potential of 0.1 V versus reversible hydrogen electrode(vs.RHE)than that of pure copper nanoparticles at 10 mA·cm^(−2)in 0.5 mol·L^(−1)Na_(2)SO_(4)+0.1 mol·L^(−1)KNO_(3)solution.Importantly,CFP-Cu_(1)Ni_(1) presented high electrocatalytic activity with a Faradaic efficiency of 95.7%and NH_(3)yield rate of 180.58μmol·h^(−1)·cm^(−2)(2550μmol·h^(−1)·mg_(cat)^(−1))at−0.22 V vs.RHE.Theoretical calculations showed that alloying Cu with Ni into single-phase caused an upshift of its d-band center,which promoted the adsorption of NO_(3)−and weakened the adsorption of NH_(3).Moreover,the competitive adsorption of hydrogen ions was restrained until−0.24 V.This work offers a rational design concept with clear guidance for rapid synthesis of uniformly dispersed single-phase nano-alloy catalyst for efficient electrochemical NO_(3)RR toward ammonia. 展开更多
关键词 AMMONIA nitrate reduction reaction CuNi nano-alloy SINGLE-PHASE adsorption energy
原文传递
纳米多孔Ru掺杂Cu协同调节反应中间体吸附与水分子解离促进电化学硝酸盐还原合成氨 被引量:1
19
作者 崔玉环 孙昌宁 +6 位作者 丁国鹏 赵明 葛欣 张伟 朱永福 王智力 蒋青 《Science China Materials》 SCIE EI CAS CSCD 2023年第11期4387-4395,共9页
作为能源密集型Haber-Bosch工艺合成氨的一种新兴替代品,电化学硝酸盐还原反应(NO_(3)RR)在可持续合成氨和废水处理方面受到了关注.然而,由于缺乏有效的电催化剂,NO_(3)RR目前仍然面临氨产率低和选择性差的问题.本文报道了通过脱合金法... 作为能源密集型Haber-Bosch工艺合成氨的一种新兴替代品,电化学硝酸盐还原反应(NO_(3)RR)在可持续合成氨和废水处理方面受到了关注.然而,由于缺乏有效的电催化剂,NO_(3)RR目前仍然面临氨产率低和选择性差的问题.本文报道了通过脱合金法制备的纳米双模式孔Ru掺杂Cu催化剂作为NO_(3)RR的电催化剂,在-0.2 V versus RHE的电位下表现出29.63±0.74 mg h^(-1)mg_(cat.)^(-1)的超高氨产率与97.3%±2.5%的法拉第效率,优于大多数报道的催化剂.密度泛函理论计算表明,在Cu中掺杂Ru可以优化中间体的吸附能,降低NO_(3)RR速控步骤的能垒.此外,Ru原子可以促进H2O的吸附/解离,为含N中间体氢化为NH_(3)提供活性氢.这项工作为NO_(3)RR等过程进行高性能催化剂的合理设计提供了新的途径. 展开更多
关键词 nitrate reduction reaction ammonia synthesis na-noporous metal ELECTROCATALYSIS density functional theory
原文传递
调节Co_(3)O_(4)的价电子结构提高硝酸根还原制氨的催化活性 被引量:1
20
作者 陈文达 陈志达 +11 位作者 黄振城 郑黎荣 赵晓娟 胡江涛 曹慧群 李永亮 任祥忠 欧阳晓平 叶盛华 颜学庆 张黔玲 刘剑洪 《Science China Materials》 SCIE EI CAS CSCD 2023年第10期3901-3911,共11页
通过硝酸根电化学还原反应将NO_(3)^(-)转化为NH_(3)是一种有前景的制氨和“绿氢”储存方案.Co_(3)O_(4)对于硝酸根还原析氨反应表现出较高的析氨法拉第效率和稳定性,有望成为理想的催化剂.然而,在Co_(3)O_(4)上发生硝酸根还原反应仍需... 通过硝酸根电化学还原反应将NO_(3)^(-)转化为NH_(3)是一种有前景的制氨和“绿氢”储存方案.Co_(3)O_(4)对于硝酸根还原析氨反应表现出较高的析氨法拉第效率和稳定性,有望成为理想的催化剂.然而,在Co_(3)O_(4)上发生硝酸根还原反应仍需较高的过电位,从而阻碍了能量转换效率的提升.本文中,我们合成了Cu掺杂Co_(3)O_(4)多孔空心纳米球用作硝酸根还原析氨催化剂.Cu掺杂在保障析氨法拉第效率和稳定性的前提下大幅降低了反应所需的过电位,有效提高了析氨速率.实验和理论分析均表明,Cu掺杂使Co_(3)O_(4)的最高占据态能量上移,缩小了Co_(3)O_(4)的最高占据态与NO_(3)^(-)的最低未占据分子轨道之间的能垒,从而降低了电子从Co_(3)O_(4)向NO_(3)^(-)跃迁所需的过电位,赋予了Cu掺杂Co_(3)O_(4)多孔空心纳米球优异的硝酸根还原析氨电催化活性和耐久性.本研究为纳米材料的电化学性能调控研究提供了新的理论视角. 展开更多
关键词 Co_(3)O_(4) nitrate reduction reaction AMMONIA frontier orbital
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部