Electrocatalytic N_(2) fixation through N_(2) reduction reaction(NRR)has been regarded as a promising route for sustainable NH_(3) synthesis,while exploring high-performing NRR catalysts is pivotal yet challenging.Her...Electrocatalytic N_(2) fixation through N_(2) reduction reaction(NRR)has been regarded as a promising route for sustainable NH_(3) synthesis,while exploring high-performing NRR catalysts is pivotal yet challenging.Herein,BN quantum dots/Ti_(3)C_(2)T_(x)-MXene(BNQDs/Ti_(3)C_(2)T_(x))heterostructure is demonstrated as an efficient and durable NRR catalyst,exhibiting a high NH_(3) yield of 52.8±3.3μg h^(-1) mg^(-1) with an FE of 19.1±1.6%at0.4 V(vs.RHE),which stand at the high level among all reported BN-and MXene-based NRR catalysts.Theoretical computations reveal that the electronic interactions between BNQDs and Ti_(3)C_(2)T_(x) enrich the electron density of B atoms at the heterointerface and endow them with enhanced electron-donating capability for N_(2) activation and protonation.Meanwhile,the decorated BNQDs can block the active sites of Ti_(3)C_(2)T_(x) for hydrogen evolution,rendering a high N_(2)-to-NH_(3) selectivity.展开更多
The interface-optical-propagating (IO-PR) mixing phonon modes of a quasi-zero-dimensional (QOD) wurtzite cylindrical quantum dot (QD) structure are derived and studied by employing the macroscopic dielectric con...The interface-optical-propagating (IO-PR) mixing phonon modes of a quasi-zero-dimensional (QOD) wurtzite cylindrical quantum dot (QD) structure are derived and studied by employing the macroscopic dielectric continuum model. The analytical phonon states of IO-PR mixing modes are given. It is found that there are two types of IO-PR mixing phonon modes, i.e. p-IO//z-PR mixing modes and the z-IO//p-PR mixing modes existing in QOD wurtzite QDs. And each IO-PR mixing modes also have symmetrical and antisymmetrieal forms. Via a standard procedure of field quantization, the Frohlich Hamiltonians of electron-(IO-PR) mixing phonons interaction are obtained. Numerical calculations on a wurtzite GaN cylindrical QD are performed. The results reveal that both the radial-direction size and the axial-direction size as well as the dielectric matrix have great influence on the dispersive frequencies of the IO-PR mixing phonon modes. The limiting features of dispersive curves of these phonon modes are discussed in depth. The phonon modes "reducing" behavior of wurtzite quantum confined systems has been observed obviously in the structures. Moreover, the degenerating behaviors of the IO-PR mixing phonon modes in wurtzite QOD QDs to the IO modes and PR modes in wurtzite Q2D QW and QID QWR systems are analyzed deeply from both of the viewpoints of physics and mathematics.展开更多
Nanozyme antibacterial agents with high enzyme-like catalytic activity and strong bacteria-binding ability have provided an alternative method to efficiently disinfect drug-resistance microorganism.Herein,the carbon n...Nanozyme antibacterial agents with high enzyme-like catalytic activity and strong bacteria-binding ability have provided an alternative method to efficiently disinfect drug-resistance microorganism.Herein,the carbon nitride quantum dots(CNQDs)nanozymes with high nitrogen vacancies(NVs)were mass-productively prepared by a simple ultrasonic-crushing method assisted by propylene glycol.It was found that the NVs of CNQDs were stemmed from the selective breaking of surface N-(C)_(2)sites,accounting for 6.2%.Experiments and density functional theory(DFT)simulations have demonstrated that the presence of NVs can alter the local electron distribution and extend theπ-electron delocalization to enhance the peroxidase-like activity.Biocompatible CNQDs could enter inside microorganisms by diffusion and elevate the bacteria-binding ability,which enhanced the accurate and rapid attack of·OH to the microorganisms.The sterilization rate of CNQDs against Gram-negative bacteria(E.coli),Gram-positive bacteria(S.aureus,B.subtilis),fungi(R.solani)reaches more than 99%.Thus,this work showed great potential for engineered nanozymes for broad-spectrum antibacterial in biomedicine and environmental protection.展开更多
Graphitic carbon nitride quantum dots(CNQDs) are emerging as attractive photoluminescent(PL)materials with excellent application potential in fluorescence imaging and heavy-metal ion detection. However, three limitati...Graphitic carbon nitride quantum dots(CNQDs) are emerging as attractive photoluminescent(PL)materials with excellent application potential in fluorescence imaging and heavy-metal ion detection. However, three limitations, namely, low quantum yields(QYs), self-quenching,and excitation-dependent PL emission behaviors, severely impede the commercial applications of crystalline CNQDs.Here we address these three challenges by synthesizing borondoped amorphous CNQDs via a hydrothermal process followed by the top±down cutting approach. Structural disorder endows the amorphous boron-doped CNQDs(B-CNQDs)with superior elastic strain performance over a wide range of pH values, thus effectively promoting mass transport and reducing exciton quenching. Boron as a dopant could fine-tune the electronic structure and emission properties of the PL material to achieve excitation-independent emission via the formation of uniform boron states. As a result, the amorphous B-CNQDs show unprecedented fluorescent stability(i.e., no obvious fading after two years) and a high QY of 87.4%;these values indicate that the quantum dots obtained are very promising fluorescent materials. Moreover, the B-CNQDs show bright-blue fluorescence under ultraviolet excitation when applied as ink on commercially available paper and are capable of the selective and sensitive detection of Fe^(2+) and Cd^(2+) in the parts-per-billion range. This work presents a novel avenue and scientific insights on amorphous carbon-based fluorescent materials for photoelectrical devices and sensors.展开更多
The presence of toxic mercury (Ⅱ) in water is an ever-growing problem on earth that has various harmful effect on human health and aquatic living organisms.Therefore,detection of mercury (Ⅱ) in water is very much cr...The presence of toxic mercury (Ⅱ) in water is an ever-growing problem on earth that has various harmful effect on human health and aquatic living organisms.Therefore,detection of mercury (Ⅱ) in water is very much crucial and several researches are going on in this topic.Metal-organic frameworks (MOFs) are considered as an effective device for sensing of toxic heavy metal ions in water.The tunable functionalities with large surface area of highly semiconducting MOFs enhance its activity towards fluorescence sensing.In this study,we are reporting one highly selective and sensitive luminescent sensor for the detection of mercury (Ⅱ) in water.A series of binary MOF composites were synthesized using in-situ solvothermal synthetic technique for fluorescence sensing of Hg^(2+)in water.The welldistributed graphitic carbon nitride quantum dots on porous zirconium-based MOF improve Hg^(2+)sensing activity in water owing to their great electronic and optical properties.The binary MOF composite (2) i.e.,the sensor exhibited excellent limit of detection (LOD) value of 2.4 nmol/L for Hg^(2+).The sensor also exhibited excellent performance for mercury (Ⅱ)detection in real water samples.The characterizations of the synthesized materials were done using various spectroscopic techniques and the fluorescence sensing mechanism was studied.展开更多
Lithium-ion capacitors(LICs) of achieving high power and energy density have garnered significant attention. However, the kinetics unbalance between anode and cathode can impede the application of LICs. Vanadium nitri...Lithium-ion capacitors(LICs) of achieving high power and energy density have garnered significant attention. However, the kinetics unbalance between anode and cathode can impede the application of LICs. Vanadium nitride(VN) with a high theoretical specific capacity(~ 1200 m Ah·g^(-1)) is a better pseudocapacitive anode to match the response of cathode in LICs. However, the insertion/extraction of Li-ions in VN's operation results in significant volume expansion. Herein, the VN/N-r GO-5composite that three-dimentional(3D) dicyandiamidederived-carbon(DDC) tightly wrapped VN quantum dots(VN QDTs) on two-dimentional(2D) reduced graphene oxid(r GO) was prepared by a facile strategy. The VN QDTs can reduce ion diffusion length and improve charge transfer kinetics. The 2D r GO as a template provides support for nanoparticle dispersion and improves electrical conductivity. The 3D DDC tightly encapsulated with VN QDTs mitigates agglomeration of VN particles as well as volume expansion. Correspondingly, the LICs with VN/Nr GO-5 composite as anode and activated carbon(AC) as cathode were fabricated, which exhibits a high energy density and power density. Such strategy provides a perspective for improving the electrochemical properties of LIC anode materials by suppressing volume expansion and enhancing conductivity.展开更多
基金supported by the National Natural Science Foundation of China(51761024)Natural Science Foundation of Gansu Province(20JR10RA241)+2 种基金Longyuan Youth Innovative and Entrepreneurial Talents Project([2021]17)Central Government Guides Local Science and Technology Development Project(206Z1003G)Key Project of Education Department of Hebei Province(ZD2020339).
文摘Electrocatalytic N_(2) fixation through N_(2) reduction reaction(NRR)has been regarded as a promising route for sustainable NH_(3) synthesis,while exploring high-performing NRR catalysts is pivotal yet challenging.Herein,BN quantum dots/Ti_(3)C_(2)T_(x)-MXene(BNQDs/Ti_(3)C_(2)T_(x))heterostructure is demonstrated as an efficient and durable NRR catalyst,exhibiting a high NH_(3) yield of 52.8±3.3μg h^(-1) mg^(-1) with an FE of 19.1±1.6%at0.4 V(vs.RHE),which stand at the high level among all reported BN-and MXene-based NRR catalysts.Theoretical computations reveal that the electronic interactions between BNQDs and Ti_(3)C_(2)T_(x) enrich the electron density of B atoms at the heterointerface and endow them with enhanced electron-donating capability for N_(2) activation and protonation.Meanwhile,the decorated BNQDs can block the active sites of Ti_(3)C_(2)T_(x) for hydrogen evolution,rendering a high N_(2)-to-NH_(3) selectivity.
基金Supported by National Natural Science Foundation of China under Grant Nos. 60711120203, 60890193STPAA of Guangzhou City under Grant No. 2060
文摘The interface-optical-propagating (IO-PR) mixing phonon modes of a quasi-zero-dimensional (QOD) wurtzite cylindrical quantum dot (QD) structure are derived and studied by employing the macroscopic dielectric continuum model. The analytical phonon states of IO-PR mixing modes are given. It is found that there are two types of IO-PR mixing phonon modes, i.e. p-IO//z-PR mixing modes and the z-IO//p-PR mixing modes existing in QOD wurtzite QDs. And each IO-PR mixing modes also have symmetrical and antisymmetrieal forms. Via a standard procedure of field quantization, the Frohlich Hamiltonians of electron-(IO-PR) mixing phonons interaction are obtained. Numerical calculations on a wurtzite GaN cylindrical QD are performed. The results reveal that both the radial-direction size and the axial-direction size as well as the dielectric matrix have great influence on the dispersive frequencies of the IO-PR mixing phonon modes. The limiting features of dispersive curves of these phonon modes are discussed in depth. The phonon modes "reducing" behavior of wurtzite quantum confined systems has been observed obviously in the structures. Moreover, the degenerating behaviors of the IO-PR mixing phonon modes in wurtzite QOD QDs to the IO modes and PR modes in wurtzite Q2D QW and QID QWR systems are analyzed deeply from both of the viewpoints of physics and mathematics.
基金the National Natural Science Foundation of China(Nos.21876099,22106088,and 22276110)Key Research&Developmental Program of Shandong Province(No.2021CXGC011202)Fundamental Research Funds of Shandong University(No.zy202102).
文摘Nanozyme antibacterial agents with high enzyme-like catalytic activity and strong bacteria-binding ability have provided an alternative method to efficiently disinfect drug-resistance microorganism.Herein,the carbon nitride quantum dots(CNQDs)nanozymes with high nitrogen vacancies(NVs)were mass-productively prepared by a simple ultrasonic-crushing method assisted by propylene glycol.It was found that the NVs of CNQDs were stemmed from the selective breaking of surface N-(C)_(2)sites,accounting for 6.2%.Experiments and density functional theory(DFT)simulations have demonstrated that the presence of NVs can alter the local electron distribution and extend theπ-electron delocalization to enhance the peroxidase-like activity.Biocompatible CNQDs could enter inside microorganisms by diffusion and elevate the bacteria-binding ability,which enhanced the accurate and rapid attack of·OH to the microorganisms.The sterilization rate of CNQDs against Gram-negative bacteria(E.coli),Gram-positive bacteria(S.aureus,B.subtilis),fungi(R.solani)reaches more than 99%.Thus,this work showed great potential for engineered nanozymes for broad-spectrum antibacterial in biomedicine and environmental protection.
基金supported by the National Natural Science Foundation of China (51772085 and 12072110)the Natural Science Foundation of Hunan Province (2020JJ4190)。
文摘Graphitic carbon nitride quantum dots(CNQDs) are emerging as attractive photoluminescent(PL)materials with excellent application potential in fluorescence imaging and heavy-metal ion detection. However, three limitations, namely, low quantum yields(QYs), self-quenching,and excitation-dependent PL emission behaviors, severely impede the commercial applications of crystalline CNQDs.Here we address these three challenges by synthesizing borondoped amorphous CNQDs via a hydrothermal process followed by the top±down cutting approach. Structural disorder endows the amorphous boron-doped CNQDs(B-CNQDs)with superior elastic strain performance over a wide range of pH values, thus effectively promoting mass transport and reducing exciton quenching. Boron as a dopant could fine-tune the electronic structure and emission properties of the PL material to achieve excitation-independent emission via the formation of uniform boron states. As a result, the amorphous B-CNQDs show unprecedented fluorescent stability(i.e., no obvious fading after two years) and a high QY of 87.4%;these values indicate that the quantum dots obtained are very promising fluorescent materials. Moreover, the B-CNQDs show bright-blue fluorescence under ultraviolet excitation when applied as ink on commercially available paper and are capable of the selective and sensitive detection of Fe^(2+) and Cd^(2+) in the parts-per-billion range. This work presents a novel avenue and scientific insights on amorphous carbon-based fluorescent materials for photoelectrical devices and sensors.
文摘The presence of toxic mercury (Ⅱ) in water is an ever-growing problem on earth that has various harmful effect on human health and aquatic living organisms.Therefore,detection of mercury (Ⅱ) in water is very much crucial and several researches are going on in this topic.Metal-organic frameworks (MOFs) are considered as an effective device for sensing of toxic heavy metal ions in water.The tunable functionalities with large surface area of highly semiconducting MOFs enhance its activity towards fluorescence sensing.In this study,we are reporting one highly selective and sensitive luminescent sensor for the detection of mercury (Ⅱ) in water.A series of binary MOF composites were synthesized using in-situ solvothermal synthetic technique for fluorescence sensing of Hg^(2+)in water.The welldistributed graphitic carbon nitride quantum dots on porous zirconium-based MOF improve Hg^(2+)sensing activity in water owing to their great electronic and optical properties.The binary MOF composite (2) i.e.,the sensor exhibited excellent limit of detection (LOD) value of 2.4 nmol/L for Hg^(2+).The sensor also exhibited excellent performance for mercury (Ⅱ)detection in real water samples.The characterizations of the synthesized materials were done using various spectroscopic techniques and the fluorescence sensing mechanism was studied.
基金financially supported by the National Natural Science Foundation of China (Nos.22005167 and 21905152)Shandong Provincial Natural Science Foundation of China (Nos.ZR2020QB125, ZR2020MB045 and ZR2022QE003)+2 种基金China Postdoctoral Science Foundation (Nos.2021M693256, 2021T140687 and 2022M713249)Qingdao Postdoctoral Applied Research Project, Taishan Scholar Project of Shandong Province of China (No.tsqn202211160)the Youth Innovation Team Project for Talent Introduction and Cultivation in Universities of Shandong Province。
文摘Lithium-ion capacitors(LICs) of achieving high power and energy density have garnered significant attention. However, the kinetics unbalance between anode and cathode can impede the application of LICs. Vanadium nitride(VN) with a high theoretical specific capacity(~ 1200 m Ah·g^(-1)) is a better pseudocapacitive anode to match the response of cathode in LICs. However, the insertion/extraction of Li-ions in VN's operation results in significant volume expansion. Herein, the VN/N-r GO-5composite that three-dimentional(3D) dicyandiamidederived-carbon(DDC) tightly wrapped VN quantum dots(VN QDTs) on two-dimentional(2D) reduced graphene oxid(r GO) was prepared by a facile strategy. The VN QDTs can reduce ion diffusion length and improve charge transfer kinetics. The 2D r GO as a template provides support for nanoparticle dispersion and improves electrical conductivity. The 3D DDC tightly encapsulated with VN QDTs mitigates agglomeration of VN particles as well as volume expansion. Correspondingly, the LICs with VN/Nr GO-5 composite as anode and activated carbon(AC) as cathode were fabricated, which exhibits a high energy density and power density. Such strategy provides a perspective for improving the electrochemical properties of LIC anode materials by suppressing volume expansion and enhancing conductivity.