期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Structure and photoluminescence properties of InN films grown on porous silicon by MOCVD 被引量:1
1
作者 王军 张红燕 《Optoelectronics Letters》 EI 2017年第3期214-216,共3页
In this work, indium nitride(InN) films were successfully grown on porous silicon(PS) using metal oxide chemical vapor deposition(MOCVD) method. Room temperature photoluminescence(PL) and field emission scanning elect... In this work, indium nitride(InN) films were successfully grown on porous silicon(PS) using metal oxide chemical vapor deposition(MOCVD) method. Room temperature photoluminescence(PL) and field emission scanning electron microscopy(FESEM) analyses are performed to investigate the optical, structural and morphological properties of the InN/PS nanocomposites. FESEM images show that the pore size of InN/PS nanocomposites is usually less than 4 μm in diameter, and the overall thickness is approximately 40 μm. The InN nanoparticles penetrate uniformly into PS layer and adhere to them very well. Nitrogen(N) and indium(In) can be detected by energy dispersive spectrometer(EDS). An important gradual decrease of the PL intensity for PS occurs with the increase of oxidation time, and the PL intensity of PS is quenched after 24 h oxidization. However, there is a strong PL intensity of InN/PS nanocomposites at 430 nm(2.88 eV), which means that PS substrate can influence the structural and optical properties of the InN, and the grown InN on PS substrate has good optical quality. 展开更多
关键词 MOCVD FESEM indium adhere nitride spectrometer dispersive uniformly Room porous
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部