A strain capable of phenol degradation, hetemtrophic nitrification and aerobic denitrification was isolated from activated sludge of coking-plant wastewater ponds under aerobic condition. Based on its morphology, phys...A strain capable of phenol degradation, hetemtrophic nitrification and aerobic denitrification was isolated from activated sludge of coking-plant wastewater ponds under aerobic condition. Based on its morphology, physiology, biochemical analysis and phylogenetic characteristics, the isolate was identified as Diaphorobacter sp. PD-7. Biodegradation tests of phenol showed that the maximum phenol degradation occurred at the late phase of exponential growth stages, with 1400 mg·L^-1 phenol completely degraded within 85 h. Diaphorobacter sp. PD-7 accumulated a vast quantity of phenol hydroxylase in this physiological phase, ensuring that the cells quickly utilize phenol as a sole carbon and energy source. The kinetic behavior ofDiaphorobacter sp. PD-7 in batch cultures was investigated over a wide range of initial phenol concentrations (0-1400mg·L^-1) by using the Haldane model, which adequately describes the dynamic behavior of phenol biodegradation by strain Diaphombacter sp. PD-7. At initial phenol concentration of 1400mg· L^-l, batch experiments (0.25 L flask) of nitrogen removal under aerobic condition gave almost entirely removal of 120.69mg· L^- 1 ammonium nitrogen within 75 h, while nitrate nitrogen removal reached 91% within 65 h. Moreover, hydroxylamine oxidase, periplasmic nitrate reductase and nitrite reductase were successfully expressed in the isolate.展开更多
Viscous sludge bulking is a rare phenomenon in activated sludge process.The performances of nutrients removal were investigated with normal sludge and viscous bulking sludge.The results showed that when COD loading an...Viscous sludge bulking is a rare phenomenon in activated sludge process.The performances of nutrients removal were investigated with normal sludge and viscous bulking sludge.The results showed that when COD loading and C/N ratio were around 0.13 mg COD/(mg MLSS·d)and 7.67,the effect of viscous sludge bulking on the maximum specific oxidation rates of NH_(4)^(+)⁃N was very little,while the maximum specific oxidation rates of NO_(2)^(-)⁃N decreased from 24.69 mg/(g·h)to 1.20 mg/(g·h).Compared with normal sludge,viscous bulking sludge had bigger particle size and more extracellular polymeric substances(EPS).The mass transfer resistance in sludge flocs might be the main cause of the difference in NO-2⁃N oxidation rates.Therefore,this study demonstrates that viscous sludge bulking is beneficial to enhance simultaneous nitrification and denitrification(SND),and excessive EPS will exhibit storage function during phosphorus removal process.展开更多
基金the National Natural Science Foundation of China(51378330 and51408396)the Natural Science Foundation of Shanxi Province(2013021023-3)
文摘A strain capable of phenol degradation, hetemtrophic nitrification and aerobic denitrification was isolated from activated sludge of coking-plant wastewater ponds under aerobic condition. Based on its morphology, physiology, biochemical analysis and phylogenetic characteristics, the isolate was identified as Diaphorobacter sp. PD-7. Biodegradation tests of phenol showed that the maximum phenol degradation occurred at the late phase of exponential growth stages, with 1400 mg·L^-1 phenol completely degraded within 85 h. Diaphorobacter sp. PD-7 accumulated a vast quantity of phenol hydroxylase in this physiological phase, ensuring that the cells quickly utilize phenol as a sole carbon and energy source. The kinetic behavior ofDiaphorobacter sp. PD-7 in batch cultures was investigated over a wide range of initial phenol concentrations (0-1400mg·L^-1) by using the Haldane model, which adequately describes the dynamic behavior of phenol biodegradation by strain Diaphombacter sp. PD-7. At initial phenol concentration of 1400mg· L^-l, batch experiments (0.25 L flask) of nitrogen removal under aerobic condition gave almost entirely removal of 120.69mg· L^- 1 ammonium nitrogen within 75 h, while nitrate nitrogen removal reached 91% within 65 h. Moreover, hydroxylamine oxidase, periplasmic nitrate reductase and nitrite reductase were successfully expressed in the isolate.
基金the Key Scientific Research in Colleges and Universities of Henan Province Project(Grant No.20B560018)the National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2015ZX07204-002-04).
文摘Viscous sludge bulking is a rare phenomenon in activated sludge process.The performances of nutrients removal were investigated with normal sludge and viscous bulking sludge.The results showed that when COD loading and C/N ratio were around 0.13 mg COD/(mg MLSS·d)and 7.67,the effect of viscous sludge bulking on the maximum specific oxidation rates of NH_(4)^(+)⁃N was very little,while the maximum specific oxidation rates of NO_(2)^(-)⁃N decreased from 24.69 mg/(g·h)to 1.20 mg/(g·h).Compared with normal sludge,viscous bulking sludge had bigger particle size and more extracellular polymeric substances(EPS).The mass transfer resistance in sludge flocs might be the main cause of the difference in NO-2⁃N oxidation rates.Therefore,this study demonstrates that viscous sludge bulking is beneficial to enhance simultaneous nitrification and denitrification(SND),and excessive EPS will exhibit storage function during phosphorus removal process.