[Objective] The study aimed to discuss the effects of aeration on nitrification process in a polluted urban river, [Metbod] Through indoor simulation experiments, the effects of different aeration conditions (aeratin...[Objective] The study aimed to discuss the effects of aeration on nitrification process in a polluted urban river, [Metbod] Through indoor simulation experiments, the effects of different aeration conditions (aerating water named Ew, aerating sediment named Es ) on nitrification process in a polluted urban river were studied.[ Result]The nitrification of the control group named Ec proceeded slowly, while two kinds of aeration promo- ted the process of nitrification, that is, the peak values of nitrate nitrogen of Ew and Es group were respectively 5.15 and 3.83 times that of Ec group. During aeration, NO2 --N accumulation in the overlying water of Ew and Es group lasted for 10 and 14 days separately, and the maximum concentrations reached 11.41 and 7.41 mg/L respectively. Nitrification process was not consistent during the two aeration conditions, that is, the rate of nitrite oxidation in Ew group was faster than that in Es group. Denitrification process was significant after aeration, and the concentration of nitrate nitrogen in Ew and Es group was 1.26 and 2.82 mg/L respectively at the end of the experiment. [ Conclusion]The research could provide scientific references for the restoration of polluted urban rivers.展开更多
A fuzzy super-twisting algorithm sliding mode controller is developed for the dissolved oxygen concentration in municipal wastewater nitrification process. First, a fuzzy neural network(FNN) model is designed to appro...A fuzzy super-twisting algorithm sliding mode controller is developed for the dissolved oxygen concentration in municipal wastewater nitrification process. First, a fuzzy neural network(FNN) model is designed to approach the oxygen dynamics with unmeasurable disturbances, then the established model consists of the nominal system model and the modelling error. Second,based on the FNN model, a super-twisting sliding mode controller is employed to stabilize the nominal system and to suppress the modelling error. Moreover, the stability of the system is investigated and an adaption law is applied to ensure the robustness of the closed-loop system. Finally, the comparison experiments on benchmark simulation model no. 2(BSM2) of wastewater treatment show the advantages of the proposed method in multiple-units oxygen concentration control.展开更多
基金Supported by Key Technology R & D Program of Science and Technology Department of Jiangsu Province,China(BE2008677)Special Foundation for Water Environment Control of Taihu Lake of Jiangsu Province(TH2010303)
文摘[Objective] The study aimed to discuss the effects of aeration on nitrification process in a polluted urban river, [Metbod] Through indoor simulation experiments, the effects of different aeration conditions (aerating water named Ew, aerating sediment named Es ) on nitrification process in a polluted urban river were studied.[ Result]The nitrification of the control group named Ec proceeded slowly, while two kinds of aeration promo- ted the process of nitrification, that is, the peak values of nitrate nitrogen of Ew and Es group were respectively 5.15 and 3.83 times that of Ec group. During aeration, NO2 --N accumulation in the overlying water of Ew and Es group lasted for 10 and 14 days separately, and the maximum concentrations reached 11.41 and 7.41 mg/L respectively. Nitrification process was not consistent during the two aeration conditions, that is, the rate of nitrite oxidation in Ew group was faster than that in Es group. Denitrification process was significant after aeration, and the concentration of nitrate nitrogen in Ew and Es group was 1.26 and 2.82 mg/L respectively at the end of the experiment. [ Conclusion]The research could provide scientific references for the restoration of polluted urban rivers.
基金supported by the National Nutural Science Foundation of China (Grant Nos. 61890930-5, 61903010, 62021003 and 62125301)the National Key Research and Development Project (Grant No.2018YFC1900800-5)+3 种基金Beijing Outstanding Young Scientist Program (Grant No. BJJWZYJH01201910005020)Beijing Natural Science Foundation(Grant No. KZ202110005009)CAAI-Huawei MindSpore Open Fund(Grant No. CAAIXSJLJJ-2021-017A)Beijing Postdoctoral Research Foundation
文摘A fuzzy super-twisting algorithm sliding mode controller is developed for the dissolved oxygen concentration in municipal wastewater nitrification process. First, a fuzzy neural network(FNN) model is designed to approach the oxygen dynamics with unmeasurable disturbances, then the established model consists of the nominal system model and the modelling error. Second,based on the FNN model, a super-twisting sliding mode controller is employed to stabilize the nominal system and to suppress the modelling error. Moreover, the stability of the system is investigated and an adaption law is applied to ensure the robustness of the closed-loop system. Finally, the comparison experiments on benchmark simulation model no. 2(BSM2) of wastewater treatment show the advantages of the proposed method in multiple-units oxygen concentration control.