The nitrite(NO_(2)^(−))to ammonia(NH3)electroreduction reaction(NO_(2)^(−)RR)would be impeded by sluggish proton-coupled electron transfer kinetics and competitive hydrogen evolution reaction(HER).A key to improving t...The nitrite(NO_(2)^(−))to ammonia(NH3)electroreduction reaction(NO_(2)^(−)RR)would be impeded by sluggish proton-coupled electron transfer kinetics and competitive hydrogen evolution reaction(HER).A key to improving the NH_(3) selectivity is to facilitate adsorption and activation of NO_(2)^(−),which is generally undesirable in unitary species.In this work,an efficient NO_(2)^(−)RR catalyst is constructed by cooperating Pd with In2O3,in which NO_(2)^(−)could adsorb on interfacial dual-site through“Pd–N–O–In”linkage,leading to strengthened NO_(2)^(−)adsorption and easier N=O bond cleavage than that on unitary Pd or In2O3.Moreover,the Pd/In_(2)O_(3)composite exhibits moderate H^(*)adsorption,which may facilitate protonation kinetics while inhibiting competitive HER.As a result,it exhibits a fairly high NH_(3)yield rate of 622.76 mmol h^(−1)g^(−1)cat with a Faradaic efficiency(FE)of 95.72%,good selectivity of 91.96%,and cycling stability towards the NO_(2)^(−)RR,surpassing unitary In_(2)O_(3)and Pd/C electrocatalysts.Besides,computed results indicate that NH_(3)production on Pd/In_(2)O_(3)follows the deoxidation to hydrogenation pathway.This work highlights the significance of H^(*)and NO_(2)^(−)adsorption modulation and N=O activation in NO_(2)^(−)RR electrochemistry by creating synergy between a mediocre catalyst with an appropriate cooperator.展开更多
Electrochemical nitrite reduction reaction(NO_(2)^(-)RR) is a potential sustainable route for regulating the nitrogen cycle and ambient ammonia(NH_(3)) synthesis.However,it remains a challenge to precisely regulate th...Electrochemical nitrite reduction reaction(NO_(2)^(-)RR) is a potential sustainable route for regulating the nitrogen cycle and ambient ammonia(NH_(3)) synthesis.However,it remains a challenge to precisely regulate the reaction pathways and inhibit competing reactions(e.g.hydrogenolysis) for efficient and selective NH_(3) production in an aqueous solution environment.Here,we utilize the Schottky barrier-induced surface electric field to construct high-density electron-deficient Pd nanoparticles by modulating the N content in the carbon carrier to promote the enrichment and immobilization of NO_(2)^(-)on the electrode surface,which ensures the ultimate selectivity for NH_(3).With these properties,Pd@N_(0.14)C with the highest N content achieved excellent catalytic performance for the reduction of NO_(2)^(-)to NH_(3) with the 100% Faraday efficiency at-0.5 and-0.6 V vs,reversible hydrogen electrode(RHE) for NH_(3) production,which was significantly better than Pd/C and Pd@N_(x)C samples with lower N content.This study opens new avenues for rational construction of efficient electrocatalysts for nitrite removal and NH_(3) electrosynthesis.展开更多
This study aimed to evaluate the quality of water from village boreholes by measuring physicochemical parameters such as nitrates, nitrites, and total organic carbon (TOC). Forty-five (45) village pumps from the South...This study aimed to evaluate the quality of water from village boreholes by measuring physicochemical parameters such as nitrates, nitrites, and total organic carbon (TOC). Forty-five (45) village pumps from the Southern (Basse Côte) and the Northern (Korhogo) region of Cte d’Ivoire (west Africa) were sampled. Physicochemical parameters such as temperature, pH, conductivity at 25˚C, and turbidity were determined in situ, while nitrite and nitrate were analyzed according to ISO 10304-1 (2007) standard and total organic carbon (TOC) by NF EN 1484 (1997) standard. The results showed that the borehole waters of the Basse Côte and Korhogo analyzed are acidic, with an average temperature of 27.51˚C ± 0.16˚C and 29.95˚C ± 0.51˚C respectively for the Basse Côte and Korhogo regions. The borehole waters of the Basse Côtedo not contain nitrites, while those of Korhogo have average nitrite contents of 0.32 mg/l. The average nitrate rate in the waters of the Basse Côte and Korhogo are 12.08 ± 2.11 mg/l and 11.03 ± 3.18 mg/l respectively. The average TOC concentration of the waters of the Basse Côte is 1.28 ± 0.32 mg/l and that of Korhogo is 0.56 ± 0.09 mg/L. The study showed that the borehole waters of the Basse Côte and Korhogo have average temperatures between 27.4˚C and 29.95˚C with a slightly acidic pH value and acceptable salinity. The TOC concentrations obtained at the different sampling points were all below the French standard (2 mg/L) except for certains pumps of the Basse Côte. The water samples from the Basse Côte were devoid of nitrite. On the other hand, those from Korhogo revealed the presence of nitrite. Also, the borehole waters of the regions of the Basse Côte and Korhogo contain relatively high nitrate contents, presumably due to anthropometric activity. Overall, our study on the quality of drinking water showed that the waters analyzed are in compliance with international standards and safe for consumption.展开更多
Ammonia(NH_(3))is a multifunctional compound that is an important feedstock for the agricultural and pharmaceutical industries and attractive energy storage medium.At present,NH_(3)synthesis is highly dependent on the...Ammonia(NH_(3))is a multifunctional compound that is an important feedstock for the agricultural and pharmaceutical industries and attractive energy storage medium.At present,NH_(3)synthesis is highly dependent on the conventional Haber–Bosch process that operates under harsh conditions,which consumes large quantities of fossil fuels and releases a large amount of carbon dioxide.As an alternative,electrosynthesis is a prospective method for producing NH_(3)under normal temperature and pressure conditions.Although electrocatalytic nitrogen reduction to ammonia has attracted considerable attentions,the low solubility of N_(2)and high N≡N cracking energy render the achievements of high NH_(3) yield rate and Faradaic efficiency difficult.Nitrate and nitrite(NO_(x)^(-))are common N-containing pollutants.Due to their high solubilities and low dissociation energy of N=O,NO_(x)^(-)−are ideal raw materials for NH_(3) production.Therefore,electrocatalytic NO_(x)^(-)−reduction to NH_(3)(eNO_(x)RR)is a prospective strategy to simultaneously realise environmental protection and NH_(3) synthesis.This review offers a comprehensive understanding of the thriving eNO_(x)RR under ambient conditions.At first,the popular theory and mechanism of eNO_(x)RR and a summary of the measurement system and evaluation criteria are introduced.Thereafter,various strategies for developing NO_(x)−reduction catalysts are systematically presented and discussed.Finally,the challenges and possible prospects of electrocatalytic NO_(x)^(-1) reduction are outlined to facilitate energy-saving and environmentally friendly large-scale synthesis of NH_(3) in the future.展开更多
Objective: To analyze the possible mechanism of Pueraria isoflavones inhibiting XOD and GLUT9 to reduce uric acid production and promote uric acid excretion. Methods: August 2021-April 2022, a total of forty SPF male ...Objective: To analyze the possible mechanism of Pueraria isoflavones inhibiting XOD and GLUT9 to reduce uric acid production and promote uric acid excretion. Methods: August 2021-April 2022, a total of forty SPF male Kunming mice were divided into the healthy group (carboxymethylcellulose sodium at a dose of 250 mg/kg), the model group (HUA mice were given carboxymethylcellulose sodium at a dose of 250 mg/kg), the low group (HUA mice were given pueraria isoflavone at a dose of 125 mg/kg), HUA mice were given pueraria isoflavones at a dose of 250 mg/kg once d frequency)and the high group (HUA mice were given pueraria isoflavones at a dose of 500 mg/kg once d frequency) dosage groups, with 8 mice in each group. The contents of uric acid (SUA), urea nitrogen (BUN) and creatinine (SCr) in serum and urine of each group were compared before and after intervention (30 d). Statistical differences of xanthine oxidase (XOD) and human glucose transporter 9(GLUT9), cy- clooxygenase- 2(COX-2), tumor necrosis factor (TNF-α) and interleukin-1 (IL-1β) contents in renal tissues of each group after intervention (30 d) were compared. Results: After intervention, kidney inflammatory factors (COX-2, TNF-α and IL-1β) in the model group were compared. Blood and urine indexes (SUA, BUN, SCr);The contents of XOD and GLUT9 were higher than those of healthy group(P<0.05). Renal inflammatory cytokines (COX-2, TNF-α and IL-1β) in low, medium and high dose groups;Blood and urine indexes (SUA, BUN, SCr);The contents of XOD and GLUT9 were lower than those of model group, and there were low > medium > high dose groups, the comparison between the two groups had statistical significance(P< 0.05). After intervention, the contents of 3 indicators in blood or urine(COX-2, TNF-α and IL-1β) all decreased compared with before intervention, and the differences in intra-group comparison were statistically significant (P<0.05). Conclusion: Pueraria isoflavones can treat HUA mice by inhibiting the expression of XOD and GLUT9, and then play a role in reducing uric acid pro- duction and promoting uric acid excretion, as well as alleviating the degree of disease inflammation.展开更多
BACKGROUND The common cause of sodium nitrite poisoning has shifted from previous accidental intoxication by exposure or ingestion of contaminated water and food to recent alarming intentional intoxication as an emplo...BACKGROUND The common cause of sodium nitrite poisoning has shifted from previous accidental intoxication by exposure or ingestion of contaminated water and food to recent alarming intentional intoxication as an employed method of suicide/exit.The subsequent formation of methemoglobin(MetHb)restricts oxygen transport and utilization in the body,resulting in functional hypoxia at the tissue level.In clinical practice,a mismatch of cyanotic appearance and oxygen partial pressure usually contributes to the identification of methemoglobinemia.Prompt recognition of characteristic mismatch and accurate diagnosis of sodium nitrite poisoning are prerequisites for the implementation of standardized systemic interventions.CASE SUMMARY A pregnant woman was admitted to the Department of Critical Care Medicine at the First Affiliated Hospital of Harbin Medical University due to consciousness disorders and drowsiness 2 h before admission.Subsequently,she developed vomiting and cyanotic skin.The woman underwent orotracheal intubation,invasive mechanical ventilation(IMV),and correction of internal environment disturbance in the ICU.Her premature infant was born with a higher-than-normal MetHb level of 3.3%,and received detoxification with methylene blue and vitamin C,supplemental vitamin K1,an infusion of fresh frozen plasma,as well as respiratory support via orotracheal intubation and IMV.On day 3 after admission,the puerpera regained consciousness,evacuated the IMV,and resumed enteral nutrition.She was then transferred to the maternity ward 24 h later.On day 7 after admission,the woman recovered and was discharged without any sequelae.CONCLUSION MetHb can cross through the placental barrier.Level of MetHb both reflects severity of the sodium nitrite poisoning and serves as feedback on therapeutic effectiveness.展开更多
Food safety problems caused by excessive nitrite addition have been frequently reported and the detection of nitrite in food is particularly important. The standing time during the pretreatment of primary sample has a...Food safety problems caused by excessive nitrite addition have been frequently reported and the detection of nitrite in food is particularly important. The standing time during the pretreatment of primary sample has a great influence on the concentration of nitrite tested by spectrophotometric method. In this context, three kinds of food samples are prepared, including canned mustard, canned fish and home-made pickled water. A series of standing times are placed during the sample pretreatments and the corresponding nitrite contents in these samples are detected by spectrophotometric method based on N-ethylenediamine dihydrochloride. This study aims to find out a reasonable standing time during the pretreatment of food sample, providing influence factor for precise detection of nitrite.展开更多
Biofouling is a particular problem in the pearl oyster culture. It may reduce the growth and survival rates of the cultured species. Foulers are often themselves filter feeders, and are therefore potential competitors...Biofouling is a particular problem in the pearl oyster culture. It may reduce the growth and survival rates of the cultured species. Foulers are often themselves filter feeders, and are therefore potential competitors for food resource with the cultured species. Fouling organisms may also reduce the oxygen supply. A study was conducted to measure the impact of foulers on feeding oxygen consumption, and waste excretion. POM, ammonia, phosphate and oxygen concentration were measured in various treatments (cultured species, foulers). This study showed that fouling organisms had significant effect on food uptake, oxygen consumption and waste excretion. The clearance rate, ammonia and phosphate release rate, oxygen consumption rate of the fouled pearl oyster were greater than those of the clean pearl oysters. Other foulers that settled on cages or buoys also contributed much to phytoplankton depletion, oxygen consumption and concentration increase of ammonia and phosphate in water. Therefore, this study showed us that foulers were important competitors in the pearl oyster cultivation of Daya Bay in November 2005.展开更多
[目的]为进一步拓展单原子催化剂在亚硝酸盐还原制氨领域的应用,提出了一种铁-氮-碳(Fe-N-C)单原子催化剂电催化亚硝酸盐还原制氨的新体系.[方法]以二氧化硅为硬模板,2,6-二氨基吡啶为碳氮前驱体,硝酸铁为金属盐,通过“热解-刻蚀”策略...[目的]为进一步拓展单原子催化剂在亚硝酸盐还原制氨领域的应用,提出了一种铁-氮-碳(Fe-N-C)单原子催化剂电催化亚硝酸盐还原制氨的新体系.[方法]以二氧化硅为硬模板,2,6-二氨基吡啶为碳氮前驱体,硝酸铁为金属盐,通过“热解-刻蚀”策略制备了Fe-N-C单原子催化剂,并将其应用于亚硝酸盐制氨反应.[结果]多种结构表征结果显示,Fe-N-C催化剂表面的Fe物种呈现高度分散特征并以单原子形式存在.此外,Fe物种的化学环境主要是+2和+3价混合态,且通过与4个吡啶氮配位而稳定存在,即Fe-N-C催化剂的金属中心微观配位环境为Fe-N4结构.与纯氮碳(N-C)载体相比,本研究制备的Fe-N-C催化剂具有优异的亚硝酸盐还原性能,不仅表现出更高的起始还原电位(0 V vs可逆氢电极),具有接近100%的产氨法拉第效率和高的氨产率[8.4 mg/(h·cm^(2))],并且在连续20次催化循环测试中显示出优异的催化稳定性.[结论]本研究制备的Fe-N-C单原子催化剂对亚硝酸盐还原制氨具有优异的电催化活性,其高活性可能来源于对NO_(2)-的显著吸附,并进一步促进活性氢参与脱氧加氢过程.该Fe-N-C单原子催化亚硝酸盐还原体系可为后续合成氨的活性中心设计提供指导方向.展开更多
基金supported by the National Key R&D Program of China(Nos.2022YFA1503104 and 2022YFA1503102)the Natural Science Foundation of Shandong Province(No.2022HWYQ-009)+2 种基金the Natural Science Foundation of Jiangsu Province(No.BK20230243)Taishan Scholars Project(No.tspd20230601)Qilu Young Scholars Program of Shandong University.
文摘The nitrite(NO_(2)^(−))to ammonia(NH3)electroreduction reaction(NO_(2)^(−)RR)would be impeded by sluggish proton-coupled electron transfer kinetics and competitive hydrogen evolution reaction(HER).A key to improving the NH_(3) selectivity is to facilitate adsorption and activation of NO_(2)^(−),which is generally undesirable in unitary species.In this work,an efficient NO_(2)^(−)RR catalyst is constructed by cooperating Pd with In2O3,in which NO_(2)^(−)could adsorb on interfacial dual-site through“Pd–N–O–In”linkage,leading to strengthened NO_(2)^(−)adsorption and easier N=O bond cleavage than that on unitary Pd or In2O3.Moreover,the Pd/In_(2)O_(3)composite exhibits moderate H^(*)adsorption,which may facilitate protonation kinetics while inhibiting competitive HER.As a result,it exhibits a fairly high NH_(3)yield rate of 622.76 mmol h^(−1)g^(−1)cat with a Faradaic efficiency(FE)of 95.72%,good selectivity of 91.96%,and cycling stability towards the NO_(2)^(−)RR,surpassing unitary In_(2)O_(3)and Pd/C electrocatalysts.Besides,computed results indicate that NH_(3)production on Pd/In_(2)O_(3)follows the deoxidation to hydrogenation pathway.This work highlights the significance of H^(*)and NO_(2)^(−)adsorption modulation and N=O activation in NO_(2)^(−)RR electrochemistry by creating synergy between a mediocre catalyst with an appropriate cooperator.
文摘Electrochemical nitrite reduction reaction(NO_(2)^(-)RR) is a potential sustainable route for regulating the nitrogen cycle and ambient ammonia(NH_(3)) synthesis.However,it remains a challenge to precisely regulate the reaction pathways and inhibit competing reactions(e.g.hydrogenolysis) for efficient and selective NH_(3) production in an aqueous solution environment.Here,we utilize the Schottky barrier-induced surface electric field to construct high-density electron-deficient Pd nanoparticles by modulating the N content in the carbon carrier to promote the enrichment and immobilization of NO_(2)^(-)on the electrode surface,which ensures the ultimate selectivity for NH_(3).With these properties,Pd@N_(0.14)C with the highest N content achieved excellent catalytic performance for the reduction of NO_(2)^(-)to NH_(3) with the 100% Faraday efficiency at-0.5 and-0.6 V vs,reversible hydrogen electrode(RHE) for NH_(3) production,which was significantly better than Pd/C and Pd@N_(x)C samples with lower N content.This study opens new avenues for rational construction of efficient electrocatalysts for nitrite removal and NH_(3) electrosynthesis.
文摘This study aimed to evaluate the quality of water from village boreholes by measuring physicochemical parameters such as nitrates, nitrites, and total organic carbon (TOC). Forty-five (45) village pumps from the Southern (Basse Côte) and the Northern (Korhogo) region of Cte d’Ivoire (west Africa) were sampled. Physicochemical parameters such as temperature, pH, conductivity at 25˚C, and turbidity were determined in situ, while nitrite and nitrate were analyzed according to ISO 10304-1 (2007) standard and total organic carbon (TOC) by NF EN 1484 (1997) standard. The results showed that the borehole waters of the Basse Côte and Korhogo analyzed are acidic, with an average temperature of 27.51˚C ± 0.16˚C and 29.95˚C ± 0.51˚C respectively for the Basse Côte and Korhogo regions. The borehole waters of the Basse Côtedo not contain nitrites, while those of Korhogo have average nitrite contents of 0.32 mg/l. The average nitrate rate in the waters of the Basse Côte and Korhogo are 12.08 ± 2.11 mg/l and 11.03 ± 3.18 mg/l respectively. The average TOC concentration of the waters of the Basse Côte is 1.28 ± 0.32 mg/l and that of Korhogo is 0.56 ± 0.09 mg/L. The study showed that the borehole waters of the Basse Côte and Korhogo have average temperatures between 27.4˚C and 29.95˚C with a slightly acidic pH value and acceptable salinity. The TOC concentrations obtained at the different sampling points were all below the French standard (2 mg/L) except for certains pumps of the Basse Côte. The water samples from the Basse Côte were devoid of nitrite. On the other hand, those from Korhogo revealed the presence of nitrite. Also, the borehole waters of the regions of the Basse Côte and Korhogo contain relatively high nitrate contents, presumably due to anthropometric activity. Overall, our study on the quality of drinking water showed that the waters analyzed are in compliance with international standards and safe for consumption.
基金supported by the National Natural Science Foundation of China[Nos.U21A20332,52103226,52202275,52203314,and 12204253]the Distinguished Young Scholars Fund of Jiangsu Province[No.BK20220061]the Fellowship of China Postdoctoral Science Foundation[No.2021M702382]。
文摘Ammonia(NH_(3))is a multifunctional compound that is an important feedstock for the agricultural and pharmaceutical industries and attractive energy storage medium.At present,NH_(3)synthesis is highly dependent on the conventional Haber–Bosch process that operates under harsh conditions,which consumes large quantities of fossil fuels and releases a large amount of carbon dioxide.As an alternative,electrosynthesis is a prospective method for producing NH_(3)under normal temperature and pressure conditions.Although electrocatalytic nitrogen reduction to ammonia has attracted considerable attentions,the low solubility of N_(2)and high N≡N cracking energy render the achievements of high NH_(3) yield rate and Faradaic efficiency difficult.Nitrate and nitrite(NO_(x)^(-))are common N-containing pollutants.Due to their high solubilities and low dissociation energy of N=O,NO_(x)^(-)−are ideal raw materials for NH_(3) production.Therefore,electrocatalytic NO_(x)^(-)−reduction to NH_(3)(eNO_(x)RR)is a prospective strategy to simultaneously realise environmental protection and NH_(3) synthesis.This review offers a comprehensive understanding of the thriving eNO_(x)RR under ambient conditions.At first,the popular theory and mechanism of eNO_(x)RR and a summary of the measurement system and evaluation criteria are introduced.Thereafter,various strategies for developing NO_(x)−reduction catalysts are systematically presented and discussed.Finally,the challenges and possible prospects of electrocatalytic NO_(x)^(-1) reduction are outlined to facilitate energy-saving and environmentally friendly large-scale synthesis of NH_(3) in the future.
基金National Innovation and Entrepreneurship Training Program for College Students(No.S202010823014)Hunan Provincial College Student Innovation Training Project,No.(2021)199(S202110823045)。
文摘Objective: To analyze the possible mechanism of Pueraria isoflavones inhibiting XOD and GLUT9 to reduce uric acid production and promote uric acid excretion. Methods: August 2021-April 2022, a total of forty SPF male Kunming mice were divided into the healthy group (carboxymethylcellulose sodium at a dose of 250 mg/kg), the model group (HUA mice were given carboxymethylcellulose sodium at a dose of 250 mg/kg), the low group (HUA mice were given pueraria isoflavone at a dose of 125 mg/kg), HUA mice were given pueraria isoflavones at a dose of 250 mg/kg once d frequency)and the high group (HUA mice were given pueraria isoflavones at a dose of 500 mg/kg once d frequency) dosage groups, with 8 mice in each group. The contents of uric acid (SUA), urea nitrogen (BUN) and creatinine (SCr) in serum and urine of each group were compared before and after intervention (30 d). Statistical differences of xanthine oxidase (XOD) and human glucose transporter 9(GLUT9), cy- clooxygenase- 2(COX-2), tumor necrosis factor (TNF-α) and interleukin-1 (IL-1β) contents in renal tissues of each group after intervention (30 d) were compared. Results: After intervention, kidney inflammatory factors (COX-2, TNF-α and IL-1β) in the model group were compared. Blood and urine indexes (SUA, BUN, SCr);The contents of XOD and GLUT9 were higher than those of healthy group(P<0.05). Renal inflammatory cytokines (COX-2, TNF-α and IL-1β) in low, medium and high dose groups;Blood and urine indexes (SUA, BUN, SCr);The contents of XOD and GLUT9 were lower than those of model group, and there were low > medium > high dose groups, the comparison between the two groups had statistical significance(P< 0.05). After intervention, the contents of 3 indicators in blood or urine(COX-2, TNF-α and IL-1β) all decreased compared with before intervention, and the differences in intra-group comparison were statistically significant (P<0.05). Conclusion: Pueraria isoflavones can treat HUA mice by inhibiting the expression of XOD and GLUT9, and then play a role in reducing uric acid pro- duction and promoting uric acid excretion, as well as alleviating the degree of disease inflammation.
基金Supported by the National Natural Science Foundation of China,No.82372172the Key Research and Development Plan Project of Heilongjiang Province,No.GA23C007+3 种基金the Heilongjiang Province Postdoctoral Start-up Fund,No.LBH-Q20037the Research Project of Heilongjiang Provincial Health Commission,No.20231717010461the Special Fund for Clinical Research of Wu Jie-ping Medical Foundation,No.320.6750.2022-02-16the Scientific Research Innovation Fund of the First Affiliated Hospital of Harbin Medical University,No.2021M08.
文摘BACKGROUND The common cause of sodium nitrite poisoning has shifted from previous accidental intoxication by exposure or ingestion of contaminated water and food to recent alarming intentional intoxication as an employed method of suicide/exit.The subsequent formation of methemoglobin(MetHb)restricts oxygen transport and utilization in the body,resulting in functional hypoxia at the tissue level.In clinical practice,a mismatch of cyanotic appearance and oxygen partial pressure usually contributes to the identification of methemoglobinemia.Prompt recognition of characteristic mismatch and accurate diagnosis of sodium nitrite poisoning are prerequisites for the implementation of standardized systemic interventions.CASE SUMMARY A pregnant woman was admitted to the Department of Critical Care Medicine at the First Affiliated Hospital of Harbin Medical University due to consciousness disorders and drowsiness 2 h before admission.Subsequently,she developed vomiting and cyanotic skin.The woman underwent orotracheal intubation,invasive mechanical ventilation(IMV),and correction of internal environment disturbance in the ICU.Her premature infant was born with a higher-than-normal MetHb level of 3.3%,and received detoxification with methylene blue and vitamin C,supplemental vitamin K1,an infusion of fresh frozen plasma,as well as respiratory support via orotracheal intubation and IMV.On day 3 after admission,the puerpera regained consciousness,evacuated the IMV,and resumed enteral nutrition.She was then transferred to the maternity ward 24 h later.On day 7 after admission,the woman recovered and was discharged without any sequelae.CONCLUSION MetHb can cross through the placental barrier.Level of MetHb both reflects severity of the sodium nitrite poisoning and serves as feedback on therapeutic effectiveness.
文摘Food safety problems caused by excessive nitrite addition have been frequently reported and the detection of nitrite in food is particularly important. The standing time during the pretreatment of primary sample has a great influence on the concentration of nitrite tested by spectrophotometric method. In this context, three kinds of food samples are prepared, including canned mustard, canned fish and home-made pickled water. A series of standing times are placed during the sample pretreatments and the corresponding nitrite contents in these samples are detected by spectrophotometric method based on N-ethylenediamine dihydrochloride. This study aims to find out a reasonable standing time during the pretreatment of food sample, providing influence factor for precise detection of nitrite.
文摘Biofouling is a particular problem in the pearl oyster culture. It may reduce the growth and survival rates of the cultured species. Foulers are often themselves filter feeders, and are therefore potential competitors for food resource with the cultured species. Fouling organisms may also reduce the oxygen supply. A study was conducted to measure the impact of foulers on feeding oxygen consumption, and waste excretion. POM, ammonia, phosphate and oxygen concentration were measured in various treatments (cultured species, foulers). This study showed that fouling organisms had significant effect on food uptake, oxygen consumption and waste excretion. The clearance rate, ammonia and phosphate release rate, oxygen consumption rate of the fouled pearl oyster were greater than those of the clean pearl oysters. Other foulers that settled on cages or buoys also contributed much to phytoplankton depletion, oxygen consumption and concentration increase of ammonia and phosphate in water. Therefore, this study showed us that foulers were important competitors in the pearl oyster cultivation of Daya Bay in November 2005.
文摘[目的]为进一步拓展单原子催化剂在亚硝酸盐还原制氨领域的应用,提出了一种铁-氮-碳(Fe-N-C)单原子催化剂电催化亚硝酸盐还原制氨的新体系.[方法]以二氧化硅为硬模板,2,6-二氨基吡啶为碳氮前驱体,硝酸铁为金属盐,通过“热解-刻蚀”策略制备了Fe-N-C单原子催化剂,并将其应用于亚硝酸盐制氨反应.[结果]多种结构表征结果显示,Fe-N-C催化剂表面的Fe物种呈现高度分散特征并以单原子形式存在.此外,Fe物种的化学环境主要是+2和+3价混合态,且通过与4个吡啶氮配位而稳定存在,即Fe-N-C催化剂的金属中心微观配位环境为Fe-N4结构.与纯氮碳(N-C)载体相比,本研究制备的Fe-N-C催化剂具有优异的亚硝酸盐还原性能,不仅表现出更高的起始还原电位(0 V vs可逆氢电极),具有接近100%的产氨法拉第效率和高的氨产率[8.4 mg/(h·cm^(2))],并且在连续20次催化循环测试中显示出优异的催化稳定性.[结论]本研究制备的Fe-N-C单原子催化剂对亚硝酸盐还原制氨具有优异的电催化活性,其高活性可能来源于对NO_(2)-的显著吸附,并进一步促进活性氢参与脱氧加氢过程.该Fe-N-C单原子催化亚硝酸盐还原体系可为后续合成氨的活性中心设计提供指导方向.