It is urgent to develop catalysts with application potential for oxidative coupling of methane(OCM)at relatively lower temperature.Herein,three-dimensional ordered macro porous(3 DOM)La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)(...It is urgent to develop catalysts with application potential for oxidative coupling of methane(OCM)at relatively lower temperature.Herein,three-dimensional ordered macro porous(3 DOM)La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)(A_(2)B_(2)O_(7)-type)catalysts with disordered defective cubic fluorite phased structure were successfully prepared by a colloidal crystal template method.3DOM structure promotes the accessibility of the gaseous reactants(O2and CH4)to the active sites.The co-doping of Ca and Sr ions in La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts improved the formation of oxygen vacancies,thereby leading to increased density of surface-active oxygen species(O_(2)^(-))for the activation of CH4and the formation of C2products(C2H6and C2H4).3DOM La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts exhibit high catalytic activity for OCM at low temperature.3DOM La1.7Sr0.3Ce1.7Ca0.3O7-δcatalyst with the highest density of O_(2)^(-)species exhibited the highest catalytic activity for low-temperature OCM,i.e.,its CH4conversion,selectivity and yield of C2products at 650℃are 32.2%,66.1%and 21.3%,respectively.The mechanism was proposed that the increase in surface oxygen vacancies induced by the co-doping of Ca and Sr ions boosts the key step of C-H bond breaking and C-C bond coupling in catalyzing low-temperature OCM.It is meaningful for the development of the low-temperature and high-efficient catalysts for OCM reaction in practical application.展开更多
A new lithium ion battery cathode material, composite oxide LiNi y Co z Mn 1- y-z O 2, was synthesized. The structure and physical properties of the material, including composition, distribution of size, density and s...A new lithium ion battery cathode material, composite oxide LiNi y Co z Mn 1- y-z O 2, was synthesized. The structure and physical properties of the material, including composition, distribution of size, density and specific surface area, were discussed. The characteristic of charge and discharge, reversible specific capacity and cycle property were also studied. The relationship between the structure and properties of the composite oxides was explored. The results show that the composite oxide with a reasonable composition is beneficial to the improvement and enhancement of the properties.展开更多
l- ions behavior in Ag(SO_3)3-2 solution was studied. The mechanism of Ag particles formation in the solution was discussed, and factors affecting its formation were investigated.
The surface conductivity of poly [ 2-methoxy-5-(3'-methyl) butoxy]-p-phenylene vinylene (PMOMBOPV) films doped with FeCl3 and H2SO4 by chemical method and implanted by N^+ ions was studied and the comparison of ...The surface conductivity of poly [ 2-methoxy-5-(3'-methyl) butoxy]-p-phenylene vinylene (PMOMBOPV) films doped with FeCl3 and H2SO4 by chemical method and implanted by N^+ ions was studied and the comparison of environmental stability of conductive behavior was also investigated. The energy and dose of N^+ ions were in the rang 15~35 keV and 3. 8×10^15~9. 6×10^16 ions/cm^2, respectively. The conductivity of PMOMBOPV film was enhanced remarkably with the increases of the energy and dose of N^+ ions. For example, the conductivity of PMOMBOPV film was 3. 2×10^-2S/cm when ion implantation was performed with an energy of 35 keV at a dose of 9. 6 × 10^14 ions/cm^2 , which was almost seven orders of magnitude higher than that of film unimplanted. The environmental stability of conductive behavior for ionimplanted film was much better than that of chemical doped films. Moreover, the conductive activation energy of ion-implanted films was measured to be about 0.17 eV.展开更多
A novel fluorescent probe,6-(N,N-dimethylamino)-2-naphthoylacryl acid(ACADAN) was designed and synthesized as a fluorescent sensor for Cu^2+ in aqueous media.Significant amplification of fluorescence signals with...A novel fluorescent probe,6-(N,N-dimethylamino)-2-naphthoylacryl acid(ACADAN) was designed and synthesized as a fluorescent sensor for Cu^2+ in aqueous media.Significant amplification of fluorescence signals without causing any discernible change of maximum fluorescence emission wavelength(λ max) was observed upon the addition of Cu^2+.Importantly,ACADAN is capable of recognizing Cu^2+ selectively in aqueous media in the presence of various biologically relevant metal ions and the prevalent toxic metal ions in the environment with high sensitivity(detection limit was 0.1 μmol/L).展开更多
The role of NH4^+ ion confinement in the catalytic etherification of HMF(5-hydroxymethylfurfural) with ethanol to biodiesel additives was evidenced by studying the catalytic behavior of NH4^+-Beta zeolites with SiO2/A...The role of NH4^+ ion confinement in the catalytic etherification of HMF(5-hydroxymethylfurfural) with ethanol to biodiesel additives was evidenced by studying the catalytic behavior of NH4^+-Beta zeolites with SiO2/Al2O3 ratios of 25 and 75.In order to affect the strength and distribution of the acidic sites, as well as the mobility of NH4^+ ions in the zeolites cages, a secondary level of porosity was introduced in the NH4^+-Beta, presenting a different stability versus alkaline treatment, by using a thermal or an ultrasound assisted method.By analyzing the catalytic behavior in these two series of samples with respect to the changes in porosity by nonlocal density functional theory, structure by XRD, amount of acid sites by FT-IR and mobility of NH4^+ cations by measurements of reversible NH4^+ exchange capacity, was evidenced a decrease in catalytic performances both in terms of rate of HMF depletion and productivity to the main products, when confinement of the ammonium ions is lost due to the introduction of mesoporosity.The high capability of ammonium ions release, associated to the mono-dentate configuration,and the minor confinement effect inside the zeolite pore system, due to the more opened pores structure of mesoporous zeolites, hinders both the direct etherification of HMF to EMF [5-(ethoxymethyl)furan-2-carbaldehyde] and the parallel reaction pathway via acetalization, favoring the rapid desorption of the HMFDEA [5-(hydroxymethyl)furfural diethyl acetal] product out of the crystal and the consequent inhibition of the consecutive reactions to EMFDEA [5-(ethoxymethyl)furfural diethyl acetal] and EMF.展开更多
Add the masking agent and biscyclohexanoneoxalyldihydraone into the diluted clarificd liquid of the landfill leachate which was treatmented by digestion and centrifugal filtration to complexate all heavy metal ion in ...Add the masking agent and biscyclohexanoneoxalyldihydraone into the diluted clarificd liquid of the landfill leachate which was treatmented by digestion and centrifugal filtration to complexate all heavy metal ion in the trcatmented liquid, and extracted using CHCl3 many time, then it were demasking and decomposing respectively, and adjusted different pH and formed Me^n+-PAN coordination compound when these metal ion reaction with PAN. The Fluoresence quenching of Rh6G (λex/λem=543mn/558nm) when the metal ion coordination compound was add into the Rh6G solution step by step, the quenching intensity was directly proportional to the concentration of the metal ion in the certain range. So a new method of fast and simple for determination of trace metal ion in landfill lcachate was established to determine metal ion in sample of different landfill leachate in Three Gorge Water Reservoir, and comparison the classic assay method with satisfactory results.展开更多
Main observation and conclusion A facile and efficient strategy for the synthesis of 5-aryl-2-(quinolin-2-yl)oxazoles via rhodium-catalyzed formal[3+2]cyclization of 4-aryl-1-tosyl-1H-1,2,3-triazoles with quinoline-2-...Main observation and conclusion A facile and efficient strategy for the synthesis of 5-aryl-2-(quinolin-2-yl)oxazoles via rhodium-catalyzed formal[3+2]cyclization of 4-aryl-1-tosyl-1H-1,2,3-triazoles with quinoline-2-carbaldehydes has been described.The protocol employs mild conditions and offers good yields of diverse 2,5-aryloxazole derivatives with a broad reaction scope.It is amenable to gram-scale synthesis and easily transformation.Moreover,this 5-aryl-2-(quinolin-2-yl)oxazole skeleton is indeed a new fluorophore and its applications in metal ions probes are also investigated and showed fluorescent responses to mercury ion.展开更多
Chemical reduction of nitrate using metal nanoparticles has received increasing interest due to over-dependence on groundwater and consequence health hazard of the nitrate ion. One major drawback of this technique is ...Chemical reduction of nitrate using metal nanoparticles has received increasing interest due to over-dependence on groundwater and consequence health hazard of the nitrate ion. One major drawback of this technique is the agglomeration of nanoparticles leading to the formation of large floes. A low cost biopolymeric material, poly [β-(1-4)-2-amino-2-deoxy-D-glucopyranose] (β-PADG) obtained from deacetylated chitin was used as stabilizer to synthesize zero valent nickel (ZVNi) nanoparticles. The β-PADG-ZVNi nanocomposite was characterized using infra red (IR), UV-Vis spectrophotometric techniques and Scanning Electron Microscope (SEM). The morphology of the composite showed that β-PADG stabilized-ZVNi nanoparticles were present as discrete particles. The mean particle size was estimated to be (7.76 ± 2.98) nm and surface area of 87.10 m2/g. The stabilized-ZVNi nanoparticles exhibited markedly greater reactivity for reduction of nitrate in water with 100% conversion within 2 hr contact owing to less agglomeration. Varying the β-PADG-to-ZVNi ratio and the ZVNi-to-nitrate molar ratio generally led to a faster nitrate reduction. About 3.4-fold difference in the specific reaction rate constant suggests that the application of the β-PADG-stabilizer not only increased the specific surface area of the resultant nanoparticles, but also greatly enhanced the surface reactivity of the nanoparticles per unit area.展开更多
According to the ion and molecule coexistence theory, the activity model of Al2O3- BaO-B2O3 ternary slag system was established, and the influences of BaO/Al2O3 molar ratio, B2O3 mole fraction and temperature on the a...According to the ion and molecule coexistence theory, the activity model of Al2O3- BaO-B2O3 ternary slag system was established, and the influences of BaO/Al2O3 molar ratio, B2O3 mole fraction and temperature on the activity of the slag system were investigated. Finally, the equal activity curves were drawn with the model results. The results show that with the increase of BaO/Al2O3 ratio, the activity of Al2O3 is significantly reduced, the activi- ty of BaO3-Al2O3 is increased obviously, and the activity of 2Al2O3· B2O3 is also decreased. With the increase of B2O3 mole fraction, the activity of BaO · Al2O3 decreased significantly, while the activities of BaO·B2O3 and 2Al2O3·B2O3 increased. In addition, the influence of temperature on the activities of different components is com paratively smaller than the influence of BaO/Al2O3 ratio and B2O3 mole fraction.展开更多
A synthetic cationic surfactant, 5,5-ditetradecyl-2-(2-trimethyl-ammonioethyl)-1,3-dioxane bromide (DTDB), was used to construct a supported bilayer lipid membrane (s-BLM) coated on an underlying glassy carbon electro...A synthetic cationic surfactant, 5,5-ditetradecyl-2-(2-trimethyl-ammonioethyl)-1,3-dioxane bromide (DTDB), was used to construct a supported bilayer lipid membrane (s-BLM) coated on an underlying glassy carbon electrode (GCE). Electrochemical impedance spectroscopy (EIS), small-angle X-ray diffraction (SAXD) and cyclic voltammetry were used to characterize the s-BLM. Both EIS and SAXD data indicated that the synthetic lipid exists as a well-oriented bilayer in the membrane. The voltammetric study showed that the lipid membrane can open ion channels in the presence of C1O4- stimulant with Ru(bpy)32+ as marker ions and give distinct channel currents. The channels can be closed and open up again many times by removing or introducing ClO4- anions.展开更多
Membrane based optical chemical sensor (optode) for Cd(II) was developed by the immobilization of a dye 1-(2-Pyridylazo)-2-Napthol (PAN) in the Tri-(2-Ethylhexyl) Phosphate (TEHP) plasticized Cellulose Triacetate (CTA...Membrane based optical chemical sensor (optode) for Cd(II) was developed by the immobilization of a dye 1-(2-Pyridylazo)-2-Napthol (PAN) in the Tri-(2-Ethylhexyl) Phosphate (TEHP) plasticized Cellulose Triacetate (CTA) matrix. Various combinations of PAN immobilized in the cellulose triacetate CTA and Polystyrene (PS) matrices plasticized with Tri-(2-Ethylhexyl) Phosphate TEHP, 2-Nitrophenyl Octyl Ether (NPOE) and Dioctyl Phthalate (DOP) were studied to arrive a suitable composition and found that the optode does not require any extractant to produce a distinct colour change on complexation with Cd(II). On sorption of Cd(II) in the optode matrix, PAN changes color of the optode from golden yellow to violet red having a maximum absorbance (lmax = 553 nm) within 150 min of total equilibration time at pH = 7.5. The optode developed in the present work was studied for its analytical application for Cd(II) in the aqueous samples by spectrophotometry and as well as Flame Atomic Absorption Spectrophotometry (FAAS). This preconcentrated optode showed a linear response by UV-visible spectrophotometry at λmax = 553 nm over a concentration range of 10 ng/mL–1 to 500 ng/mL–1 of Cd(II) ions. Where as the aqueous solutions was also subjected to FAAS before and after equilibration of the optode and found to be linear in the concentration range of 250 ng/mL–1 to 5000 ng/mL–1 of Cd(II) ions. The optode found to be reversible and can be desorbed by equilibrating it with 0.01 mol/L–1 HNO3. The applicability of the developed optode in real samples was studied by determining cadmium in the natural waters spiked with a known amount of Cd(II) ions.展开更多
基金supported by the National Key Research and Development Program of China(Nos.2022YFB3504100,2022YFB3506200)the National Natural Science Foundation of China(Nos.22208373,22376217)+1 种基金the Beijing Nova Program(No.20220484215)the Science Foundation of China University of Petroleum,Beijing(No.2462023YJRC030)。
文摘It is urgent to develop catalysts with application potential for oxidative coupling of methane(OCM)at relatively lower temperature.Herein,three-dimensional ordered macro porous(3 DOM)La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)(A_(2)B_(2)O_(7)-type)catalysts with disordered defective cubic fluorite phased structure were successfully prepared by a colloidal crystal template method.3DOM structure promotes the accessibility of the gaseous reactants(O2and CH4)to the active sites.The co-doping of Ca and Sr ions in La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts improved the formation of oxygen vacancies,thereby leading to increased density of surface-active oxygen species(O_(2)^(-))for the activation of CH4and the formation of C2products(C2H6and C2H4).3DOM La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts exhibit high catalytic activity for OCM at low temperature.3DOM La1.7Sr0.3Ce1.7Ca0.3O7-δcatalyst with the highest density of O_(2)^(-)species exhibited the highest catalytic activity for low-temperature OCM,i.e.,its CH4conversion,selectivity and yield of C2products at 650℃are 32.2%,66.1%and 21.3%,respectively.The mechanism was proposed that the increase in surface oxygen vacancies induced by the co-doping of Ca and Sr ions boosts the key step of C-H bond breaking and C-C bond coupling in catalyzing low-temperature OCM.It is meaningful for the development of the low-temperature and high-efficient catalysts for OCM reaction in practical application.
文摘A new lithium ion battery cathode material, composite oxide LiNi y Co z Mn 1- y-z O 2, was synthesized. The structure and physical properties of the material, including composition, distribution of size, density and specific surface area, were discussed. The characteristic of charge and discharge, reversible specific capacity and cycle property were also studied. The relationship between the structure and properties of the composite oxides was explored. The results show that the composite oxide with a reasonable composition is beneficial to the improvement and enhancement of the properties.
文摘l- ions behavior in Ag(SO_3)3-2 solution was studied. The mechanism of Ag particles formation in the solution was discussed, and factors affecting its formation were investigated.
基金National Natural Science Foundation of China (60277002) Scientific Research Foundation of Xi’an JiaotongUniversity
文摘The surface conductivity of poly [ 2-methoxy-5-(3'-methyl) butoxy]-p-phenylene vinylene (PMOMBOPV) films doped with FeCl3 and H2SO4 by chemical method and implanted by N^+ ions was studied and the comparison of environmental stability of conductive behavior was also investigated. The energy and dose of N^+ ions were in the rang 15~35 keV and 3. 8×10^15~9. 6×10^16 ions/cm^2, respectively. The conductivity of PMOMBOPV film was enhanced remarkably with the increases of the energy and dose of N^+ ions. For example, the conductivity of PMOMBOPV film was 3. 2×10^-2S/cm when ion implantation was performed with an energy of 35 keV at a dose of 9. 6 × 10^14 ions/cm^2 , which was almost seven orders of magnitude higher than that of film unimplanted. The environmental stability of conductive behavior for ionimplanted film was much better than that of chemical doped films. Moreover, the conductive activation energy of ion-implanted films was measured to be about 0.17 eV.
基金Supported by the National Natural Science Foundation of China(Nos.30672560,81172982)the Accented Project for Natural Scientific Research of Universities in Guangdong Province,China(No.05Z012)
文摘A novel fluorescent probe,6-(N,N-dimethylamino)-2-naphthoylacryl acid(ACADAN) was designed and synthesized as a fluorescent sensor for Cu^2+ in aqueous media.Significant amplification of fluorescence signals without causing any discernible change of maximum fluorescence emission wavelength(λ max) was observed upon the addition of Cu^2+.Importantly,ACADAN is capable of recognizing Cu^2+ selectively in aqueous media in the presence of various biologically relevant metal ions and the prevalent toxic metal ions in the environment with high sensitivity(detection limit was 0.1 μmol/L).
文摘The role of NH4^+ ion confinement in the catalytic etherification of HMF(5-hydroxymethylfurfural) with ethanol to biodiesel additives was evidenced by studying the catalytic behavior of NH4^+-Beta zeolites with SiO2/Al2O3 ratios of 25 and 75.In order to affect the strength and distribution of the acidic sites, as well as the mobility of NH4^+ ions in the zeolites cages, a secondary level of porosity was introduced in the NH4^+-Beta, presenting a different stability versus alkaline treatment, by using a thermal or an ultrasound assisted method.By analyzing the catalytic behavior in these two series of samples with respect to the changes in porosity by nonlocal density functional theory, structure by XRD, amount of acid sites by FT-IR and mobility of NH4^+ cations by measurements of reversible NH4^+ exchange capacity, was evidenced a decrease in catalytic performances both in terms of rate of HMF depletion and productivity to the main products, when confinement of the ammonium ions is lost due to the introduction of mesoporosity.The high capability of ammonium ions release, associated to the mono-dentate configuration,and the minor confinement effect inside the zeolite pore system, due to the more opened pores structure of mesoporous zeolites, hinders both the direct etherification of HMF to EMF [5-(ethoxymethyl)furan-2-carbaldehyde] and the parallel reaction pathway via acetalization, favoring the rapid desorption of the HMFDEA [5-(hydroxymethyl)furfural diethyl acetal] product out of the crystal and the consequent inhibition of the consecutive reactions to EMFDEA [5-(ethoxymethyl)furfural diethyl acetal] and EMF.
文摘Add the masking agent and biscyclohexanoneoxalyldihydraone into the diluted clarificd liquid of the landfill leachate which was treatmented by digestion and centrifugal filtration to complexate all heavy metal ion in the trcatmented liquid, and extracted using CHCl3 many time, then it were demasking and decomposing respectively, and adjusted different pH and formed Me^n+-PAN coordination compound when these metal ion reaction with PAN. The Fluoresence quenching of Rh6G (λex/λem=543mn/558nm) when the metal ion coordination compound was add into the Rh6G solution step by step, the quenching intensity was directly proportional to the concentration of the metal ion in the certain range. So a new method of fast and simple for determination of trace metal ion in landfill lcachate was established to determine metal ion in sample of different landfill leachate in Three Gorge Water Reservoir, and comparison the classic assay method with satisfactory results.
基金the National Natural Sci-ence Foundation of China(No.21772001)the Anhui Provincial Natural Science Foundation(No.1808085MB41)the Cultiva-tion Project for University Outstanding Talents of Anhui Province(2019).
文摘Main observation and conclusion A facile and efficient strategy for the synthesis of 5-aryl-2-(quinolin-2-yl)oxazoles via rhodium-catalyzed formal[3+2]cyclization of 4-aryl-1-tosyl-1H-1,2,3-triazoles with quinoline-2-carbaldehydes has been described.The protocol employs mild conditions and offers good yields of diverse 2,5-aryloxazole derivatives with a broad reaction scope.It is amenable to gram-scale synthesis and easily transformation.Moreover,this 5-aryl-2-(quinolin-2-yl)oxazole skeleton is indeed a new fluorophore and its applications in metal ions probes are also investigated and showed fluorescent responses to mercury ion.
文摘Chemical reduction of nitrate using metal nanoparticles has received increasing interest due to over-dependence on groundwater and consequence health hazard of the nitrate ion. One major drawback of this technique is the agglomeration of nanoparticles leading to the formation of large floes. A low cost biopolymeric material, poly [β-(1-4)-2-amino-2-deoxy-D-glucopyranose] (β-PADG) obtained from deacetylated chitin was used as stabilizer to synthesize zero valent nickel (ZVNi) nanoparticles. The β-PADG-ZVNi nanocomposite was characterized using infra red (IR), UV-Vis spectrophotometric techniques and Scanning Electron Microscope (SEM). The morphology of the composite showed that β-PADG stabilized-ZVNi nanoparticles were present as discrete particles. The mean particle size was estimated to be (7.76 ± 2.98) nm and surface area of 87.10 m2/g. The stabilized-ZVNi nanoparticles exhibited markedly greater reactivity for reduction of nitrate in water with 100% conversion within 2 hr contact owing to less agglomeration. Varying the β-PADG-to-ZVNi ratio and the ZVNi-to-nitrate molar ratio generally led to a faster nitrate reduction. About 3.4-fold difference in the specific reaction rate constant suggests that the application of the β-PADG-stabilizer not only increased the specific surface area of the resultant nanoparticles, but also greatly enhanced the surface reactivity of the nanoparticles per unit area.
文摘According to the ion and molecule coexistence theory, the activity model of Al2O3- BaO-B2O3 ternary slag system was established, and the influences of BaO/Al2O3 molar ratio, B2O3 mole fraction and temperature on the activity of the slag system were investigated. Finally, the equal activity curves were drawn with the model results. The results show that with the increase of BaO/Al2O3 ratio, the activity of Al2O3 is significantly reduced, the activi- ty of BaO3-Al2O3 is increased obviously, and the activity of 2Al2O3· B2O3 is also decreased. With the increase of B2O3 mole fraction, the activity of BaO · Al2O3 decreased significantly, while the activities of BaO·B2O3 and 2Al2O3·B2O3 increased. In addition, the influence of temperature on the activities of different components is com paratively smaller than the influence of BaO/Al2O3 ratio and B2O3 mole fraction.
基金Project supported by University of Science and Technology of China(Nos.ky1212 and ky2216).
文摘A synthetic cationic surfactant, 5,5-ditetradecyl-2-(2-trimethyl-ammonioethyl)-1,3-dioxane bromide (DTDB), was used to construct a supported bilayer lipid membrane (s-BLM) coated on an underlying glassy carbon electrode (GCE). Electrochemical impedance spectroscopy (EIS), small-angle X-ray diffraction (SAXD) and cyclic voltammetry were used to characterize the s-BLM. Both EIS and SAXD data indicated that the synthetic lipid exists as a well-oriented bilayer in the membrane. The voltammetric study showed that the lipid membrane can open ion channels in the presence of C1O4- stimulant with Ru(bpy)32+ as marker ions and give distinct channel currents. The channels can be closed and open up again many times by removing or introducing ClO4- anions.
文摘Membrane based optical chemical sensor (optode) for Cd(II) was developed by the immobilization of a dye 1-(2-Pyridylazo)-2-Napthol (PAN) in the Tri-(2-Ethylhexyl) Phosphate (TEHP) plasticized Cellulose Triacetate (CTA) matrix. Various combinations of PAN immobilized in the cellulose triacetate CTA and Polystyrene (PS) matrices plasticized with Tri-(2-Ethylhexyl) Phosphate TEHP, 2-Nitrophenyl Octyl Ether (NPOE) and Dioctyl Phthalate (DOP) were studied to arrive a suitable composition and found that the optode does not require any extractant to produce a distinct colour change on complexation with Cd(II). On sorption of Cd(II) in the optode matrix, PAN changes color of the optode from golden yellow to violet red having a maximum absorbance (lmax = 553 nm) within 150 min of total equilibration time at pH = 7.5. The optode developed in the present work was studied for its analytical application for Cd(II) in the aqueous samples by spectrophotometry and as well as Flame Atomic Absorption Spectrophotometry (FAAS). This preconcentrated optode showed a linear response by UV-visible spectrophotometry at λmax = 553 nm over a concentration range of 10 ng/mL–1 to 500 ng/mL–1 of Cd(II) ions. Where as the aqueous solutions was also subjected to FAAS before and after equilibration of the optode and found to be linear in the concentration range of 250 ng/mL–1 to 5000 ng/mL–1 of Cd(II) ions. The optode found to be reversible and can be desorbed by equilibrating it with 0.01 mol/L–1 HNO3. The applicability of the developed optode in real samples was studied by determining cadmium in the natural waters spiked with a known amount of Cd(II) ions.