The three-dimensional holographic vector of atomic interaction field(3D-Ho VAIF) is used to characterize the molecular structures of 45 nitroaromatic compounds.Two quantitative structure-toxicity relationship(QSAR...The three-dimensional holographic vector of atomic interaction field(3D-Ho VAIF) is used to characterize the molecular structures of 45 nitroaromatic compounds.Two quantitative structure-toxicity relationship(QSAR) models are built up by stepwise regression(SMR),multiple linear regression(MLR) and partial least-squares regression(PLS).The correlation coefficients(R) of the models are 0.960 and 0.961,respectively.Then the models are evaluated by performing the cross-validation with the leave-one-out(LOO) procedure and the correlation coefficients(RCV) are 0.949 and 0.941,respectively.The results show that the descriptors can successfully describe the structures of organic compounds.The stability and predictability of the model are satisfactory.展开更多
To further elucidate interaction of nitroaromatic compounds with mineral surface, the sorption of m-dinitrobenzene (m-DNB) and nitrobenzene to original bentonite in aqueous solution containing different electrolytes...To further elucidate interaction of nitroaromatic compounds with mineral surface, the sorption of m-dinitrobenzene (m-DNB) and nitrobenzene to original bentonite in aqueous solution containing different electrolytes (i.e., KCl, NH4Cl, CaCl2 and Tetramethylammonium bromide (TMAB)) was studied. The sorption of m-DNB was greatly enhanced with the presence of KCl and NH4Cl, while little influence was observed with CaCl2 and TMAB, following the order of KCl 〉 NH4Cl 〉〉 TMAB, CaCl2, or DI water. For nitrobenzene, sorption enhancement only occurred at high nitrobenzene concentrations in the presence of KCl, and the solute equilibrium concentration at inflexion point was lowered with increasing KCl concentration. These sorption enhancements were significantly promoted with the increase of electrolyte concentration. The salting-out effect is insufficient to account for the sorption enhancement by original bentonite with increasing KCI or NH4Cl concentration. X-ray diffraction patterns of bentonite suspensions indicated that the sorption enhancement of m-DNB was attributed to the intercalation of K^+ or NH4^+ into bentonite interlayer and then dehydration with m-DNB to form inner-sphere complexes, which caused previously expanded bentonite interlayers to collapse in aqueous suspension, thus further enhanced the interaction of phenyl with siloxane surface. In comparison, the sorption enhancement of NB is attributed to the formation of outer-sphere complexes with K^+ at high solute-loadings (〉 20(0-400 mg/kg). The sorption of m-DNB to initially modified TMA^+-bentonite and K^+-bentonite was almost the same as respective sorption to original bentonite in solution containing TMA^+ and K^+.展开更多
Nitroaromatic compounds were reductively metabolized to the corresponding amine compounds via the intermediate hydroxylamines by liver microsomes from pig,rat,chook,cattle,sheep,paralichthys olivaceus and cyprinoid in...Nitroaromatic compounds were reductively metabolized to the corresponding amine compounds via the intermediate hydroxylamines by liver microsomes from pig,rat,chook,cattle,sheep,paralichthys olivaceus and cyprinoid in varied reactivity.Similar with baker's yeast,the pig,rat and sheep liver microsomes exhibited high reactivity toward 4-nitro-1,2-dicyanbenzen(1a),while the cyprinoid liver microsomes were inefficient.Contrasted to compound 1a,monocyannitrobenzene(2a) was difficult to reduce by pig liver microsomes.In opposition to grape cells,pig liver microsomes exhibited activities toward some aromatic hydroxylamine compounds.展开更多
Quantitative structure-property relationships(QSPRs) have been developed to predict the thermal stability for a set of 22 nitroaromatic compounds by means of the theoretical descriptors derived from electrostatic po...Quantitative structure-property relationships(QSPRs) have been developed to predict the thermal stability for a set of 22 nitroaromatic compounds by means of the theoretical descriptors derived from electrostatic potentials on molecular surface. Several techniques, including partial least squares regression(PLS), least-squares support vector machine(LSSVM) and Gaussian process(GP) have been utilized to establish the relationships between the structural descriptor and the decomposition enthalpy. The nonlinear LSSVM and GP models have proven to own a better predictive ability than the linear PLS method. Moreover, owing to its ability to handle both linear- and nonlinear-hybrid relationship, GP gives a stronger fitting ability and a better predictive power than LSSVM, and therefore could be well applied to developing QSPR models for the thermal stability of nitroaromatic explosives.展开更多
A treatability study of industrial wastewater containing chlorinated nitroaromatic compounds (CNACs) by a catalytic ozonation process (COP) with a modified Mn/Co ceramic catalyst and an aerobic sequencing batch re...A treatability study of industrial wastewater containing chlorinated nitroaromatic compounds (CNACs) by a catalytic ozonation process (COP) with a modified Mn/Co ceramic catalyst and an aerobic sequencing batch reactor (SBR) was investigated. A preliminary attempt to treat the diluted wastewater with a single SBR resulted in ineffective removal of the color, ammonia, total organic carbon (TOC) and chemical oxygen demand (COD). Next, COP was applied as a pretreatment in order to obtain a bio-compatible wastewater for SBR treatment in a second step. The effectiveness of the COP pretreatment was assessed by evaluating wastewater biodegradability enhancement (the ratio of biology oxygen demand after 5 d (BOD5) to COD), as well as monitoring the evolution of TOC, carbon oxidation state (COS), average oxidation state (AOS), color, and major pollutant concentrations with reaction time. In the COP, the catalyst preserved its catalytic properties even after 70 reuse cycles, exhibiting good durability and stability. The performance of SBR to treat COP effluent was also examined. At an organic loading rate of 2.0 kg COD/(m^3.d), with hydraulic retention time (HRT)=10 h and temperature (30±2) ℃, the average removal efficiencies of NH3-N, COD, BOD5, TOC, and color in a coupled COP/SBR process were about 80%, 95.8%, 93.8%, 97.6% and 99.3%, respectively, with average effluent concentrations of 10 mg/L, 128 mg/L, 27.5 mg/L, 25.0 mg/L, and 20 multiples, respectively, which were all consistent with the national standards for secondary discharge of industrial wastewater into a public sewerage system (GB 8978-1996). The results indicated that the coupling of COP with a biological process was proved to be a technically and economically effective method for treating industrial wastewater containing recalcitrant CNACs.展开更多
Ti3C2Tx has been emerging as an attractive platform to prepare composite catalysts,and their assembly into integrated catalytic mate rials repre sents a key step forward toward practical applications.Howeve r,the swel...Ti3C2Tx has been emerging as an attractive platform to prepare composite catalysts,and their assembly into integrated catalytic mate rials repre sents a key step forward toward practical applications.Howeve r,the swelling behavior of Ti3C2Tx leads to significant structure change,which challenges the stability of Ti3C2Tx-based integrated functional materials for catalytic applications.Here we report a facile synthesis of Pd/Ti3C2Tx■graphene hydrogels in which Pd/Ti3C2Tx are spatially encapsulated in the 3 D porous graphene framework.The porous interconnected structure not only affords efficient mass transfer and desirable functional accessibility to catalytic active sites,but also effectively buffers the swelling behavior of Ti3C2Tx.When applied for catalytic hydrogenation of nitroaromatic compounds,the mechanically robust Pd/Ti3C2Tx■graphene hydrogels exhibit efficient activities,easy separability,and good cyclability.This work is expected to promote the application of Ti3C2Tx-based functional materials for practical applications involving interactions with salt solutions,such as supercapacitors,catalysis,and water purification.展开更多
Aromatic compounds (ACs) in soil can induce competitive inhibition for soil NH3 oxidation, and nitrification inhibitors can be used to this end. A laboratory incubation experiment was performed with 12 nitroaromatic c...Aromatic compounds (ACs) in soil can induce competitive inhibition for soil NH3 oxidation, and nitrification inhibitors can be used to this end. A laboratory incubation experiment was performed with 12 nitroaromatic compounds (NACs), 15 amidoaromatic compounds (AACs) and 20 hydroxyaromatic compounds (HACs) to assess the inhibitory effects of ACs on soil nitrification. Based on these results, the critical and optimal concentrations of ACs were determined for better inhibitory effects. Most of the test ACs were able to inhibit soil nitrification; the effectiveness differed with soil type. Among the ACs, the NACs with m-nitryl, amino or hydroxyl and the AACs with a nitro group or a chlorine atom on aromatic ring or with a p-hydroxyl were more effective. 3-nitroaniline, 4-aminophenol and 3-nitrophenol showed the greatest potential as nitrification inhibitors. The critical concentration of these compounds in brown soil and cinnamon soil was found to be 0.5 mg kg-1 soil. Due to the toxicity, carcinogenicity and mutagenicity of ACs, further toxicological and ecotoxicological research is necessary before ACs are used as nitrification inhibitors in agricultural and horticultural practices.展开更多
In the present study,geometrical optimization and electrostatic potential calcula-tions have been performed for 22 nitroaromatic compounds at the HF/6-31G level of theory.A number of statistically based parameters hav...In the present study,geometrical optimization and electrostatic potential calcula-tions have been performed for 22 nitroaromatic compounds at the HF/6-31G level of theory.A number of statistically based parameters have been obtained.Linear relationship between the decomposition enthalpy(taken as a macroscopic property related to explosibility) of nitroaromatic compounds and the structural descriptors have been established by multiple regression method.The result shows that the quantities derived from electrostatic potentialsΣ V sind+,,Vsind- and Vs,max can be well used to express the quantitative structure-decomposition enthalpy relationship of nitroa-romatic compounds,which proves the general applicability of this parameter set to a great extent.Good predictive capabilities have also been demonstrated.展开更多
The IC 50 values of 20 nitroaromatics were determined by the activity of ATPase of carp ( Cyprinus carpio ) kidney in vitro, and used to develop the quantitative structure activity relationship (QSAR) wi...The IC 50 values of 20 nitroaromatics were determined by the activity of ATPase of carp ( Cyprinus carpio ) kidney in vitro, and used to develop the quantitative structure activity relationship (QSAR) with 6 descriptors of 1 X v, Σσ -, I , 1 Ka , E LUMO , log P . A best equation was obtained by multiple regression analysis -log IC 50 =1 306 Σσ -+0 657 I +0 584E LUMO +2 852( r =0 925). Σσ - is the sum of substituent constants. I is the indicator variable. E LUMO is the energy of the lowest unoccupied orbital. Results showed that the Σσ -, I and E LUMO were closely correlated with toxicity of nitroaromatics. Some toxicity mechanisms by nitroaromatics are also discussed in this paper.展开更多
Herein,we report a new metal-organic framework with an AIE ligand (H_(4)TCPP=2,3,5,6-tetra-(4-carboxyphenyl)pyrazine) and Mg^(2+) ions,that is,[Mg_(2)(H_(2)O)_(4)TCPP]·DMF·5CH_(3)CN (Mg-TCPP,TCPP=tetra-(4-ca...Herein,we report a new metal-organic framework with an AIE ligand (H_(4)TCPP=2,3,5,6-tetra-(4-carboxyphenyl)pyrazine) and Mg^(2+) ions,that is,[Mg_(2)(H_(2)O)_(4)TCPP]·DMF·5CH_(3)CN (Mg-TCPP,TCPP=tetra-(4-carboxyphenyl)pyrazine) for detection of nitroaromatic explosives.Due to the coordination effect and restricted intramolecular rotation,Mg-TCPP exhibits bright blue light.As a fluorescent sensor,Mg-TCPP exhibits high selectivity and sensitivity for sensing 2,4,6-trinitrophenol (TNP) by quenching behaviors with the Stern-Volmer quenching constant (K_(SV)) of 3.63×10^(5)L/mol and achieves the low limit of detection of 25.6 ppb,which is beyond most of the previously reported fluorescent materials.Notably,the portable Mg-TCPP films are prepared and it can be used for rapid and sensitive TNP detection in a variety of environments including organic solvent and aqueous solution.Moreover,TNP vapor can be detected within 3 min by naked eye and the film could be regenerated under simple solvent cleaning.展开更多
The single cell gel electrophoresis (SCGE) technique was used to detect DNA damage in germ cells of rats, which was induced by five tested nitroaromatic compounds. Mixed cultures of Sertoli and germ cells were prepa...The single cell gel electrophoresis (SCGE) technique was used to detect DNA damage in germ cells of rats, which was induced by five tested nitroaromatic compounds. Mixed cultures of Sertoli and germ cells were prepared from the rats testis and their responses to rn-dinitrobenzene ( m-DNB), 2,4-dinitrotoluene ( 2,4-DNT), 2,6-dinitroto-luene(2,6-DNT), 4-nitrotoluene(4-NT) and 2,4-dinitroaniline(2,4-DNAn) were studied. The results show that all the five chemicals have a reproductive toxicity. Each dose group and the control group were significantly different ( P 〈 0. 01 ). All of them can lead to the damage to DNA in the germ cells of Kunming male rats in the definite range of concentration(m-DNB : 0. 04-25μmol/L; 2,4-DNT, 2,6-DNT and 4-NT: 0. 032-500μmol/L; 2,4-DNAn :0. 8-20μmol/L). When the concentration increases, the damage rate will become higher, which shows an evident logarithm dose-effect relationship.展开更多
We report a rapid method of green chemistry approach for synthesis of gold nanoparticles(AuNPs)using Lagerstroemia speciosa leaf extract(LSE). L. speciosa plant extract is known for its effective treatment of diab...We report a rapid method of green chemistry approach for synthesis of gold nanoparticles(AuNPs)using Lagerstroemia speciosa leaf extract(LSE). L. speciosa plant extract is known for its effective treatment of diabetes and kidney related problems. The green synthesis of Au NPs was complete within 30 min at 25°C. The same could also be achieved within 2 min at a higher reaction temperature(80°C). Both UV–visible spectroscopy and transmission electron microscopy results suggest that the morphology and size distribution of Au NPs are dependent on the pH of gold solution,gold concentration,volume of LSE,and reaction time and temperature. Comparison between Fourier transform infrared spectroscopy(FT-IR)spectra of LSE and the synthesized Au NPs indicate an active role of polyphenolic functional groups(from gallotannins,lagerstroemin,and corosolic acid)in the green synthesis and capping of Au NPs. The green route synthesized Au NPs show strong photocatalytic activity in the reduction of dyes viz.,methylene blue,methyl orange,bromophenol blue and bromocresol green,and 4-nitrophenol under visible light in the presence of Na BH4. The non-toxic and cost effective LSE mediated Au NPs synthesis proposed in this study is extremely rapid compared to the other reported methods that require hours to days for complete synthesis of Au NPs using various plant extracts. Strong and stable photocatalytic behavior makes Au NPs attractive in environmental applications,particularly in the reduction of organic pollutants in wastewater.展开更多
Mg-MOF-74 has adsorption capacity while less research is about its luminescent properties. In this work, the fluorescent properties of Mg-MOF-74 were studied and characterized. The results show that Mg-MOF-74 exhibits...Mg-MOF-74 has adsorption capacity while less research is about its luminescent properties. In this work, the fluorescent properties of Mg-MOF-74 were studied and characterized. The results show that Mg-MOF-74 exhibits excellent fluorescent properties and, most strikingly, selective sensing detection for nitroaromatic compounds(NACs), 2,4,6-trinitrophenol(PA) in particular, making it a promising PA-selective luminescent probe. This work demonstrates the application of MOFs in the detection of NACs with good selectivity.展开更多
基金supported by the Youth Foundation of Education Bureau,Sichuan Province(13ZB0003)
文摘The three-dimensional holographic vector of atomic interaction field(3D-Ho VAIF) is used to characterize the molecular structures of 45 nitroaromatic compounds.Two quantitative structure-toxicity relationship(QSAR) models are built up by stepwise regression(SMR),multiple linear regression(MLR) and partial least-squares regression(PLS).The correlation coefficients(R) of the models are 0.960 and 0.961,respectively.Then the models are evaluated by performing the cross-validation with the leave-one-out(LOO) procedure and the correlation coefficients(RCV) are 0.949 and 0.941,respectively.The results show that the descriptors can successfully describe the structures of organic compounds.The stability and predictability of the model are satisfactory.
基金supported by the National Natural Science Foundation of China (No. 20577041)the New Century Educational Talents Plan of Chinese Education Ministry (No. NCET-05-0525)+1 种基金the Foundation for the Author of National Excellent Doctoral Dissertation of PR China(No.200765)the Program of Provincial Science and Technology of Zhejiang (No. 2006C33050)
文摘To further elucidate interaction of nitroaromatic compounds with mineral surface, the sorption of m-dinitrobenzene (m-DNB) and nitrobenzene to original bentonite in aqueous solution containing different electrolytes (i.e., KCl, NH4Cl, CaCl2 and Tetramethylammonium bromide (TMAB)) was studied. The sorption of m-DNB was greatly enhanced with the presence of KCl and NH4Cl, while little influence was observed with CaCl2 and TMAB, following the order of KCl 〉 NH4Cl 〉〉 TMAB, CaCl2, or DI water. For nitrobenzene, sorption enhancement only occurred at high nitrobenzene concentrations in the presence of KCl, and the solute equilibrium concentration at inflexion point was lowered with increasing KCl concentration. These sorption enhancements were significantly promoted with the increase of electrolyte concentration. The salting-out effect is insufficient to account for the sorption enhancement by original bentonite with increasing KCI or NH4Cl concentration. X-ray diffraction patterns of bentonite suspensions indicated that the sorption enhancement of m-DNB was attributed to the intercalation of K^+ or NH4^+ into bentonite interlayer and then dehydration with m-DNB to form inner-sphere complexes, which caused previously expanded bentonite interlayers to collapse in aqueous suspension, thus further enhanced the interaction of phenyl with siloxane surface. In comparison, the sorption enhancement of NB is attributed to the formation of outer-sphere complexes with K^+ at high solute-loadings (〉 20(0-400 mg/kg). The sorption of m-DNB to initially modified TMA^+-bentonite and K^+-bentonite was almost the same as respective sorption to original bentonite in solution containing TMA^+ and K^+.
基金Supported by the National Basic Research Program of China(No.2009CB724706)the National Natural Science Foundation of China(No.20876025)
文摘Nitroaromatic compounds were reductively metabolized to the corresponding amine compounds via the intermediate hydroxylamines by liver microsomes from pig,rat,chook,cattle,sheep,paralichthys olivaceus and cyprinoid in varied reactivity.Similar with baker's yeast,the pig,rat and sheep liver microsomes exhibited high reactivity toward 4-nitro-1,2-dicyanbenzen(1a),while the cyprinoid liver microsomes were inefficient.Contrasted to compound 1a,monocyannitrobenzene(2a) was difficult to reduce by pig liver microsomes.In opposition to grape cells,pig liver microsomes exhibited activities toward some aromatic hydroxylamine compounds.
基金Supported by the National Natural Science Foundation of China(No.20502022)
文摘Quantitative structure-property relationships(QSPRs) have been developed to predict the thermal stability for a set of 22 nitroaromatic compounds by means of the theoretical descriptors derived from electrostatic potentials on molecular surface. Several techniques, including partial least squares regression(PLS), least-squares support vector machine(LSSVM) and Gaussian process(GP) have been utilized to establish the relationships between the structural descriptor and the decomposition enthalpy. The nonlinear LSSVM and GP models have proven to own a better predictive ability than the linear PLS method. Moreover, owing to its ability to handle both linear- and nonlinear-hybrid relationship, GP gives a stronger fitting ability and a better predictive power than LSSVM, and therefore could be well applied to developing QSPR models for the thermal stability of nitroaromatic explosives.
基金Project supported by the National Natural Science Foundation of China (No.50378082)the Key Project of Science and Technology Plan of Zhejiang Province (No.2004C23021),China
文摘A treatability study of industrial wastewater containing chlorinated nitroaromatic compounds (CNACs) by a catalytic ozonation process (COP) with a modified Mn/Co ceramic catalyst and an aerobic sequencing batch reactor (SBR) was investigated. A preliminary attempt to treat the diluted wastewater with a single SBR resulted in ineffective removal of the color, ammonia, total organic carbon (TOC) and chemical oxygen demand (COD). Next, COP was applied as a pretreatment in order to obtain a bio-compatible wastewater for SBR treatment in a second step. The effectiveness of the COP pretreatment was assessed by evaluating wastewater biodegradability enhancement (the ratio of biology oxygen demand after 5 d (BOD5) to COD), as well as monitoring the evolution of TOC, carbon oxidation state (COS), average oxidation state (AOS), color, and major pollutant concentrations with reaction time. In the COP, the catalyst preserved its catalytic properties even after 70 reuse cycles, exhibiting good durability and stability. The performance of SBR to treat COP effluent was also examined. At an organic loading rate of 2.0 kg COD/(m^3.d), with hydraulic retention time (HRT)=10 h and temperature (30±2) ℃, the average removal efficiencies of NH3-N, COD, BOD5, TOC, and color in a coupled COP/SBR process were about 80%, 95.8%, 93.8%, 97.6% and 99.3%, respectively, with average effluent concentrations of 10 mg/L, 128 mg/L, 27.5 mg/L, 25.0 mg/L, and 20 multiples, respectively, which were all consistent with the national standards for secondary discharge of industrial wastewater into a public sewerage system (GB 8978-1996). The results indicated that the coupling of COP with a biological process was proved to be a technically and economically effective method for treating industrial wastewater containing recalcitrant CNACs.
基金support from the National Natural Science Foundation of China(Nos.51802040,51977071 and 21802020)Key Laboratory of Coal to Ethylene Glycol and Its Related Technology,Chinese Academy of Sciences(No.201901)+1 种基金Natural Science Foundation of Hunan Prvoince(No.2017JJ2040)the Fundamental Research Funds for the Central Universities。
文摘Ti3C2Tx has been emerging as an attractive platform to prepare composite catalysts,and their assembly into integrated catalytic mate rials repre sents a key step forward toward practical applications.Howeve r,the swelling behavior of Ti3C2Tx leads to significant structure change,which challenges the stability of Ti3C2Tx-based integrated functional materials for catalytic applications.Here we report a facile synthesis of Pd/Ti3C2Tx■graphene hydrogels in which Pd/Ti3C2Tx are spatially encapsulated in the 3 D porous graphene framework.The porous interconnected structure not only affords efficient mass transfer and desirable functional accessibility to catalytic active sites,but also effectively buffers the swelling behavior of Ti3C2Tx.When applied for catalytic hydrogenation of nitroaromatic compounds,the mechanically robust Pd/Ti3C2Tx■graphene hydrogels exhibit efficient activities,easy separability,and good cyclability.This work is expected to promote the application of Ti3C2Tx-based functional materials for practical applications involving interactions with salt solutions,such as supercapacitors,catalysis,and water purification.
基金Supported by the National Basic Research Program (973 Program) of China (No.2007CB109307)the National Science & Technology Pillar Program (No.2006BAD10B01)
文摘Aromatic compounds (ACs) in soil can induce competitive inhibition for soil NH3 oxidation, and nitrification inhibitors can be used to this end. A laboratory incubation experiment was performed with 12 nitroaromatic compounds (NACs), 15 amidoaromatic compounds (AACs) and 20 hydroxyaromatic compounds (HACs) to assess the inhibitory effects of ACs on soil nitrification. Based on these results, the critical and optimal concentrations of ACs were determined for better inhibitory effects. Most of the test ACs were able to inhibit soil nitrification; the effectiveness differed with soil type. Among the ACs, the NACs with m-nitryl, amino or hydroxyl and the AACs with a nitro group or a chlorine atom on aromatic ring or with a p-hydroxyl were more effective. 3-nitroaniline, 4-aminophenol and 3-nitrophenol showed the greatest potential as nitrification inhibitors. The critical concentration of these compounds in brown soil and cinnamon soil was found to be 0.5 mg kg-1 soil. Due to the toxicity, carcinogenicity and mutagenicity of ACs, further toxicological and ecotoxicological research is necessary before ACs are used as nitrification inhibitors in agricultural and horticultural practices.
基金Supported by the National Natural Science Foundation of China(No.20502022)the Natural Science Foundation of Ningbo (No.2004A610010)
文摘In the present study,geometrical optimization and electrostatic potential calcula-tions have been performed for 22 nitroaromatic compounds at the HF/6-31G level of theory.A number of statistically based parameters have been obtained.Linear relationship between the decomposition enthalpy(taken as a macroscopic property related to explosibility) of nitroaromatic compounds and the structural descriptors have been established by multiple regression method.The result shows that the quantities derived from electrostatic potentialsΣ V sind+,,Vsind- and Vs,max can be well used to express the quantitative structure-decomposition enthalpy relationship of nitroa-romatic compounds,which proves the general applicability of this parameter set to a great extent.Good predictive capabilities have also been demonstrated.
文摘The IC 50 values of 20 nitroaromatics were determined by the activity of ATPase of carp ( Cyprinus carpio ) kidney in vitro, and used to develop the quantitative structure activity relationship (QSAR) with 6 descriptors of 1 X v, Σσ -, I , 1 Ka , E LUMO , log P . A best equation was obtained by multiple regression analysis -log IC 50 =1 306 Σσ -+0 657 I +0 584E LUMO +2 852( r =0 925). Σσ - is the sum of substituent constants. I is the indicator variable. E LUMO is the energy of the lowest unoccupied orbital. Results showed that the Σσ -, I and E LUMO were closely correlated with toxicity of nitroaromatics. Some toxicity mechanisms by nitroaromatics are also discussed in this paper.
基金supported by the National Natural Science Foundation of China(No.22175033)Science and Technology Development Plan of Jilin Province(Nos.YDZJ202101ZYTS063,20210508022RQ)Research Foundation of Education Department of Shaanxi Province(No.18JS009)。
文摘Herein,we report a new metal-organic framework with an AIE ligand (H_(4)TCPP=2,3,5,6-tetra-(4-carboxyphenyl)pyrazine) and Mg^(2+) ions,that is,[Mg_(2)(H_(2)O)_(4)TCPP]·DMF·5CH_(3)CN (Mg-TCPP,TCPP=tetra-(4-carboxyphenyl)pyrazine) for detection of nitroaromatic explosives.Due to the coordination effect and restricted intramolecular rotation,Mg-TCPP exhibits bright blue light.As a fluorescent sensor,Mg-TCPP exhibits high selectivity and sensitivity for sensing 2,4,6-trinitrophenol (TNP) by quenching behaviors with the Stern-Volmer quenching constant (K_(SV)) of 3.63×10^(5)L/mol and achieves the low limit of detection of 25.6 ppb,which is beyond most of the previously reported fluorescent materials.Notably,the portable Mg-TCPP films are prepared and it can be used for rapid and sensitive TNP detection in a variety of environments including organic solvent and aqueous solution.Moreover,TNP vapor can be detected within 3 min by naked eye and the film could be regenerated under simple solvent cleaning.
文摘The single cell gel electrophoresis (SCGE) technique was used to detect DNA damage in germ cells of rats, which was induced by five tested nitroaromatic compounds. Mixed cultures of Sertoli and germ cells were prepared from the rats testis and their responses to rn-dinitrobenzene ( m-DNB), 2,4-dinitrotoluene ( 2,4-DNT), 2,6-dinitroto-luene(2,6-DNT), 4-nitrotoluene(4-NT) and 2,4-dinitroaniline(2,4-DNAn) were studied. The results show that all the five chemicals have a reproductive toxicity. Each dose group and the control group were significantly different ( P 〈 0. 01 ). All of them can lead to the damage to DNA in the germ cells of Kunming male rats in the definite range of concentration(m-DNB : 0. 04-25μmol/L; 2,4-DNT, 2,6-DNT and 4-NT: 0. 032-500μmol/L; 2,4-DNAn :0. 8-20μmol/L). When the concentration increases, the damage rate will become higher, which shows an evident logarithm dose-effect relationship.
文摘We report a rapid method of green chemistry approach for synthesis of gold nanoparticles(AuNPs)using Lagerstroemia speciosa leaf extract(LSE). L. speciosa plant extract is known for its effective treatment of diabetes and kidney related problems. The green synthesis of Au NPs was complete within 30 min at 25°C. The same could also be achieved within 2 min at a higher reaction temperature(80°C). Both UV–visible spectroscopy and transmission electron microscopy results suggest that the morphology and size distribution of Au NPs are dependent on the pH of gold solution,gold concentration,volume of LSE,and reaction time and temperature. Comparison between Fourier transform infrared spectroscopy(FT-IR)spectra of LSE and the synthesized Au NPs indicate an active role of polyphenolic functional groups(from gallotannins,lagerstroemin,and corosolic acid)in the green synthesis and capping of Au NPs. The green route synthesized Au NPs show strong photocatalytic activity in the reduction of dyes viz.,methylene blue,methyl orange,bromophenol blue and bromocresol green,and 4-nitrophenol under visible light in the presence of Na BH4. The non-toxic and cost effective LSE mediated Au NPs synthesis proposed in this study is extremely rapid compared to the other reported methods that require hours to days for complete synthesis of Au NPs using various plant extracts. Strong and stable photocatalytic behavior makes Au NPs attractive in environmental applications,particularly in the reduction of organic pollutants in wastewater.
文摘Mg-MOF-74 has adsorption capacity while less research is about its luminescent properties. In this work, the fluorescent properties of Mg-MOF-74 were studied and characterized. The results show that Mg-MOF-74 exhibits excellent fluorescent properties and, most strikingly, selective sensing detection for nitroaromatic compounds(NACs), 2,4,6-trinitrophenol(PA) in particular, making it a promising PA-selective luminescent probe. This work demonstrates the application of MOFs in the detection of NACs with good selectivity.