A technology to achieve stable and high ammonia nitrogen removal rates for corn distillery wastewater (ethanol fuel production) treatment has been designed.The characteristics of nitrifying bacteria entrapped in a w...A technology to achieve stable and high ammonia nitrogen removal rates for corn distillery wastewater (ethanol fuel production) treatment has been designed.The characteristics of nitrifying bacteria entrapped in a waterborne polyurethane (WPU) gel carrier were evaluated after acclimation.In the acclimation period,nitrification rates of WPU-immobilized nitrobacteria were monitored and polymerase chain reaction (PCR) was also carried out to investigate the change in ammonium-oxidizing bacteria.The results showed that the pellet nitrification rates increased from 21 to 228 mg-N/(L-pellet·hr) and the quantity of the ammonia oxidation bacteria increased substantially during the acclimation.A continuous ammonia removal experiment with the anaerobic pond effluent of a distillery wastewater system was conducted with immobilized nitrifying bacteria for 30 days using an 80 L airlift reactor with pellets at a fill ratio of 15% (V/V).Under the conditions of 75 mg/L influent ammonia,hydraulic retention time (HRT) of 3.7-5.6 hr,and dissolved oxygen (DO) of 4 mg/L,the effluent ammonia concentration was lower than 10 mg/L and the ammonia removal efficiency was 90%.While the highest ammonia removal rate,162 mg-N/(L-pellet·hr),was observed when the HRT was 1.3 hr.展开更多
A slight halophilic heterotrophic nitrobacteria named gs1 was separated from the matured activated sludge. According to the morphological observation,physiological biochemical tests and sequence analysis of the 16S rD...A slight halophilic heterotrophic nitrobacteria named gs1 was separated from the matured activated sludge. According to the morphological observation,physiological biochemical tests and sequence analysis of the 16S rDNA,strain gs1 was identified to be as Pseudomonas sp. Sodium acetate and ammonium chloride were used as carbon and nitrogen sources,respectively,to investi-gate the characteristics of the bacterium. When cultured for 24 h under aerobic conditions,with the removal rates of the NH4+-N and COD being 82.2% and 74.73%,respectively,strain gs1 will have a nitrification function of producing NO2--N. When cultured for 24 h under aerobic conditions in nitrite medium,the removal rate of the NO2--N became 100%,and when cultured for 24 h under aerobic conditions in nitrate medium,the removal rate of the NO3--N became 97%. The result shows that this strain functions for either nitrification or denitrification,i.e.,it can complete the full process of biological deoxidation.展开更多
基金supported by the National Water Pollution Control and Management Technology Major Projects(No. 2008ZX07101-010-03)the National Natural Science Foundation of China (No. 50708058)+2 种基金the National High Technology Research and Development Program (863)of China (No. 2012AA062703)the Shanghai Municipal Science and Technology Commission Major Project (No.04DZ12030-2)the Shanghai Committee of Science and Technology (No.10231201800)
文摘A technology to achieve stable and high ammonia nitrogen removal rates for corn distillery wastewater (ethanol fuel production) treatment has been designed.The characteristics of nitrifying bacteria entrapped in a waterborne polyurethane (WPU) gel carrier were evaluated after acclimation.In the acclimation period,nitrification rates of WPU-immobilized nitrobacteria were monitored and polymerase chain reaction (PCR) was also carried out to investigate the change in ammonium-oxidizing bacteria.The results showed that the pellet nitrification rates increased from 21 to 228 mg-N/(L-pellet·hr) and the quantity of the ammonia oxidation bacteria increased substantially during the acclimation.A continuous ammonia removal experiment with the anaerobic pond effluent of a distillery wastewater system was conducted with immobilized nitrifying bacteria for 30 days using an 80 L airlift reactor with pellets at a fill ratio of 15% (V/V).Under the conditions of 75 mg/L influent ammonia,hydraulic retention time (HRT) of 3.7-5.6 hr,and dissolved oxygen (DO) of 4 mg/L,the effluent ammonia concentration was lower than 10 mg/L and the ammonia removal efficiency was 90%.While the highest ammonia removal rate,162 mg-N/(L-pellet·hr),was observed when the HRT was 1.3 hr.
基金Supported by the National Natural Science Foundation of China (50678085, 50878107)the Innovative Programs Foundation of Graduate Education in Shandong Province,China (SDYY07091) the Cultivate Pro-ject of Excellent Graduate Students’ Thesis of Qingdao University,China (YSPY2009014)
文摘A slight halophilic heterotrophic nitrobacteria named gs1 was separated from the matured activated sludge. According to the morphological observation,physiological biochemical tests and sequence analysis of the 16S rDNA,strain gs1 was identified to be as Pseudomonas sp. Sodium acetate and ammonium chloride were used as carbon and nitrogen sources,respectively,to investi-gate the characteristics of the bacterium. When cultured for 24 h under aerobic conditions,with the removal rates of the NH4+-N and COD being 82.2% and 74.73%,respectively,strain gs1 will have a nitrification function of producing NO2--N. When cultured for 24 h under aerobic conditions in nitrite medium,the removal rate of the NO2--N became 100%,and when cultured for 24 h under aerobic conditions in nitrate medium,the removal rate of the NO3--N became 97%. The result shows that this strain functions for either nitrification or denitrification,i.e.,it can complete the full process of biological deoxidation.