期刊文献+
共找到2,505篇文章
< 1 2 126 >
每页显示 20 50 100
Studies on the Characteristics of Nitrogen and Phosphorus Pollution of Natural Outcrop Springs in Wudalianchi
1
作者 魏晓雪 李月兴 +4 位作者 王菁华 方振兴 潘虹 曾颖 杨臣 《Agricultural Science & Technology》 CAS 2015年第5期1019-1022,共4页
Objective] The research aimed to study the characteristics of nitrogen and phosphorus pollution of 30 natural outcrop springs in Wudalianchi, which provides a theoretical basis for the sustainable development and util... Objective] The research aimed to study the characteristics of nitrogen and phosphorus pollution of 30 natural outcrop springs in Wudalianchi, which provides a theoretical basis for the sustainable development and utilization and protection of Wudalianchi natural mineral resources. [Method] Choosing the 30 natural outcrop spring representatives in different regions, samples were collected in low water period, normal water period, wet period respectively, and the content of nitrogen, phosphorus and other contaminants in the samples were determined. Besides, the pollution characteristics of nitrogen and phosphorus in Wudalianchi natural outcrop spring were analyzed. [Result] The 30 natural outcrop spring in Wudalianchi area were seriously polluted by nitrogen. Total nitrogen and nitrate nitrogen were the main forms of nitrogen pollution. The content of total phosphorus and ammonia nitrogen were low. [Conclusion] The natural outcrop spring is mainly caused by agricultural non-point source pollution. 展开更多
关键词 WUDALIANCHI SPRINGS nitrogen and phosphorus pollution
下载PDF
Assessment on the pollution of nitrogen and phosphorus of Beijing surface water based on GIS system and multivariate statistical approaches 被引量:3
2
作者 LILian-fang LIGuo-xue LIAOXiao-yong 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第6期981-986,共6页
This paper presented the characteristics of nitrogen and phosphorus pollution in Beijing surface water during the survey. A significant difference was found out in concentration distribution of various parameters of n... This paper presented the characteristics of nitrogen and phosphorus pollution in Beijing surface water during the survey. A significant difference was found out in concentration distribution of various parameters of nitrogen and phosphorus. Most water bodies in five water systems were polluted by total nitrogen with the content even up to 120 mg/L which was higher than exceeded the fifth class standard of national surface water quality standard GB3838-2002 except for several segments of Chaobaihe and Yongdinghe. Ammonia and phosphorus showed a similar tendency of distribution with higher content in Daqinghe, Beiyunhe and Jiyunhe water systems, but with relatively low concentrations in Chaobaihe and Yongdinghe water systems. Meanwhile, nitrate was found at comparatively low content(mostly less than 10 mg/L) and could fit for corresponding water quality requirements. Totally, the water quality of Daqinghe, Jiyunhe and Beiyunhe river systems as well as the lower reaches of Yongdinghe and Chaobaihe was contaminated seriously with high content of total nitrogen and phosphorus. Through multivariate statistical approaches, it can be concluded that total nitrogen, ammonia and total phosphorus was highly correlated to chemical oxygen demand, biochemical oxygen demand, dissolved oxygen and electrical conductivity, which explained the same pollution source from anthropogenic activities. 展开更多
关键词 surface water nitrogen phosphorus ASSESSMENT GIS
下载PDF
Identifying Nonpoint Sources of Phosphorus and Nitrogen: A Case Study of Pollution That Enters a Freshwater Wetland (Laguna Cartagena, Puerto Rico) 被引量:1
3
作者 Yashira Marie Sánchez-Colón Fred Charles Schaffner 《Journal of Water Resource and Protection》 2021年第8期588-604,共17页
Point and nonpoint sources of phosphorus (P) and nitrogen (N) can cause reductions in water quality, including eutrophication. Nonpoint pollution represents a special challenge because of dispersed not easily identifi... Point and nonpoint sources of phosphorus (P) and nitrogen (N) can cause reductions in water quality, including eutrophication. Nonpoint pollution represents a special challenge because of dispersed not easily identifiable sources such as the runoff from soil, nutrients, and other chemicals from agricultural fields and residential areas. Laguna Cartagena is a tropical freshwater wetland, situated in southwestern Puerto Rico. It is a eutrophic ecosystem, and its eutrophication is caused by both external nutrient loading and internal, mainly by phosphorus. This wetland has been affected by phosphorus loading from inorganic agricultural fertilizer in this historically oligotrophic wetland system until the end of subsidized fertilizer use and sugar cane cultivation in the late 1990s. This study identifies: 1) nonpoint sources of phosphorus (SRP, Soluble Reactive Phosphorus and TP, Total Phosphorus) and nitrogen (nitrate, nitrite, and ammonia) that enter Laguna Cartagena;and 2) the role of precipitation events on the contributions of phosphorus and nitrogen loading to ecosystems. Herein we assess water samples from five channelized external sources of P and N that enter Laguna Cartagena at two-week intervals from October 2013 through November 2014. Rainfall data were obtained weekly from a rain gauge. Standard methods were used for all chemical analyses. Results showed that the channelized waterways that carry water to the lagoon can be classified as hypereutrophic (>100 μg/L) for TP concentrations and oligotrophic (<200 μg/L) for nitrogen concentrations. Currently agriculture (rice and cattle) is the predominant land use at the nearby University of Puerto Rico (UPR) Lajas Agricultural Experiment Substation, the predominant nonpoint source of nutrient pollution (SRP, TP and ammonia) in the principal channelized water sources to the lagoon. Current nutrient loads are likely derived from fertilizers applied to the Substation’s rice fields, and a high density livestock. The second important cause of external surface water degradation (SRP, TP and ammonia) is the discharge from rural households in the drainage basin that discharge greywater directly to the environment, as indicated by the results from Cerro Alto hills immediately to the north of the lagoon. Precipitation also was associated with SRP, TP and ammonia loads. 展开更多
关键词 Nonpoint Sources Soluble Reactive phosphorus Total phosphorus nitrogen Depleted EUTROPHICATION
下载PDF
Agricultural non-point nitrogen pollution control function of dierent vegetation types in riparian wetlands: A case study in the Yellow River wetland in China 被引量:30
4
作者 ZHAO Tongqian XU Huashan +4 位作者 HE Yuxiao TAI Chao MENG Hongqi ZENG Fanfu XING Menglin 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第7期933-939,共7页
Riparian wetland is the major transition zone of matter, energy and information transfer between aquatic and terrestrial ecosystems and has important functions of water purification and non-point pollution control. Us... Riparian wetland is the major transition zone of matter, energy and information transfer between aquatic and terrestrial ecosystems and has important functions of water purification and non-point pollution control. Using the field experiment method and an isotope tracing technique, the agricultural non-point nitrogen pollution control function of different vegetation types in riparian wetland was studied in the Kouma Section of the Yellow River. The results showed that the retention of agricultural non-point nitrogen pollution by riparian wetland soil occurs mainly in top 0-10 cm layer. The amount of nitrogen retained by surface soils associated with three types of vegetation are 0.045 mg/g for Phragmites communis Trin Linn, 0.036 mg/g for Scirpus triqueter Linn, and 0.032 mg/g for Typha angustifolia Linn, which account for 59.21%, 56.25%, and 56.14% of the total nitrogen interception, respectively. Exogenous nitrogen in 0-10 cm soil layer changes more quickly than in other layers. One month after adding KISNO3 to the tested vegetation, nitrogen content was 77.78% for P communis Trin, 68.75% for T. angustifolia, and 8.33% for S. triqueter in the surface soil. After three months, nitrogen content was 93.33% for P. communis Trin, 72.22% for S. triqueter, and 37.50% for T. Angustifolia. There are large differences among vegetation communities respecting to purification of agricultural non-point nitrogen pollution. The nitrogen uptake amount decreases in the sequence: new shoots ofP. communis Trin (9.731 nag/g) 〉 old P. communis Trin (4.939 mg/g) 〉 S. triqueter (0.620 mg/g) 〉 T. angustifolia (0.186 mg/g). Observations indicated that the presence of riparian wetlands as buffers on and adjacent to stream banks could be recommended to control agricultural non-point pollution. 展开更多
关键词 riparian wetland vegetation community agricultural non-point source nitrogen pollution
下载PDF
Removal of Nitrogen, Phosphorus, and Organic Pollutants From Water Using Seeding Type Immobilized Microorganisms 被引量:6
5
作者 LIN WANG LI-JING HUANG LUO-JIA YUN FEI TANG JING-HUI ZHAO YAN-QUN LIU XIN ZENG QI-FANG LUO 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2008年第2期150-156,共7页
Objective To study the possibility of removing nitrogen, phosphorus, and organic pollutants using seeding type immobilized microorganisms. Methods Lakes P and M in Wuhan were chosen as the objects to study the removal... Objective To study the possibility of removing nitrogen, phosphorus, and organic pollutants using seeding type immobilized microorganisms. Methods Lakes P and M in Wuhan were chosen as the objects to study the removal of nitrogen, phosphorus, and organic pollutants with the seeding type immobilized microorganisms. Correlations between the quantity of heterotrophic bacteria and the total nitrogen (TN), total phosphorus (TP), and total organic carbon (TOC) in the two lakes were studied. The dominant bacteria were detected, inoculated to the sludge and acclimated by increasing nitrogen, phosphorus and decreasing carbon source in an intermittent, time-controlled and fixed-quantity way. The bacteria were then used to prepare the seeding type immobilized microorganisms, selecting diatomite as the adsorbent cartier. The ability and influence factors of removing nitrogen, phosphorus, and organic pollutant from water samples by the seeding type immobilized microorganisms were studied. Results The coefficients of the heterotrophic bacterial quantity correlated with TOC, TP, and TN were 0.9143, 0.8229, 0.7954 in Lake P and 0.9168, 0.7187, 0.6022 in Lake M. Ten strains of dominant heterotrophic bacteria belonging to Pseudomonas, Coccus, Aeromonas, Bacillus, and Enterobateriaceae, separately, were isolated. The appropriate conditions for the seeding type immobilized microorgansims in purifying the water sample were exposure time=24 h, pH=7.0-8.0, and quantity of the immobilized microorganisms=0.75-1g/50 mL. The removal rates of TOC, TP, and TN under the above conditions were 80.2%, 81.6%, and 86.8%, respectively. Conclusion The amount of heterotrophic bacteria in the two lakes was correlated with TOC, TP, and TN. These bacteria could be acclimatized and prepared for the immobilized microorganisms which could effectively remove nitrogen, phosphorus, and mixed organic pollutants in the water sample. 展开更多
关键词 Heterotrophic bacteria ACCLIMATION Immobilized microorganisms nitrogen phosphorus Mixed organic pollutants
下载PDF
Discussion on the Green Tax Stimulation Measure of Nitrogen Fertilizer Non-Point Source Pollution Control-Taking the Dongting Lake Area in China as a Case 被引量:8
6
作者 XIANG Ping-an ZHOUYan +1 位作者 HUANG Huang ZHENG Hua 《Agricultural Sciences in China》 CAS CSCD 2007年第6期732-741,共10页
A study on designing the tax of nitrogen fertilizer can provide a new method for controlling nitrogen fertilizer non-point source pollution. The tax design of nitrogen fertilizer was discussed by utilizing the externa... A study on designing the tax of nitrogen fertilizer can provide a new method for controlling nitrogen fertilizer non-point source pollution. The tax design of nitrogen fertilizer was discussed by utilizing the external theory and the demand elasticity theory. The results indicated that the coefficient of price elasticity of nitrogen fertilizer demand is -0.21, which instructed that the market demand is in lack of elasticity in the short period and the impact of nitrogen fertilizer manufacturers is subtle. The 11 counties (cities and boroughs) in the Dongting Lake area in China, where the farmland nitrogen application surpassed the average ecological fertilization dosage, is listed to the taxation scope of nitrogen fertilizer tax. The environment loss will reduce 0.07 hundred million RMB yuan and the revenue will increase 0.89 hundred million RMB yuan in the country after levying on nitrogen fertilizer. The loss, which was brought by the decreasing food supplies production, will be 0.58 hundred million RMB yuan and the net social benefit will be 0.38 hundred million RMB yuan following revenue collection. The variation scope of the increasing expenditure of farmers will range from 0.95 to 1.49%. The variation scope of the income of farmers will range from -8.41 to 6.44%. The 5 areas, Yunxi Borough, Junshan Borough, Hanshou County, Jinshi City, and Ziyang Borough, had an increase in food supplies production after the revenue collection. The environment loss will reduce 0.01 hundred million RMB yuan and the revenue will increase 0.16 hundred million RMB yuan in the country after levying on nitrogen fertilizer. The economic benefits, which was brought by the increasing cereals production, will be 0.67 hundred million RMB yuan and the net social benefit will be 0.84 hundred million RMB yuan after revenue collection. The variation scope of the increasing expenditure of farmers will range from 0.95 to 1.06%. The variation scope of the increasing income of farmers will range from 0.69 to 6.44%. Considering the entire social welfare, taxation of nitrogen fertilizer will have more advantages than disadvantages in the Dongting Lake area. 展开更多
关键词 nitrogen fertilizer non-point source pollution TAX Dongting Lake area
下载PDF
Investigation and Analysis of Three Nitrogen Pollution in Groundwater in Ledong, Hainan Province 被引量:7
7
作者 Zixi TANG Yongfu ZHANG +2 位作者 Lifang ZENG Qiang YUAN Na LI 《Agricultural Biotechnology》 CAS 2019年第3期135-137,144,共4页
[Objectives]This study was conducted to systematically monitor the contents of "three nitrogen",including ammonia nitrogen (NH4^+-N),nitrate nitrogen (NO3^--N) and nitrite nitrogen (NO2^--N) in groundwater i... [Objectives]This study was conducted to systematically monitor the contents of "three nitrogen",including ammonia nitrogen (NH4^+-N),nitrate nitrogen (NO3^--N) and nitrite nitrogen (NO2^--N) in groundwater in Ledong and analyze the reasons.[Methods]A total of 30 sampling points were set up in Ledong,including 22 ground waters and 8 surface waters.NO3^--N,NH4^+-N,NO2^--N and pH indicators were detected.[Results]① There is a problem of excessive nitrogen in the groundwater of Ledong,Hainan.NH4^+-N and NO3^--N exceeded the standards severely,and the over-standard rates were 27.27% and 13.64%,respectively.NO2^--N didn't exceed the standard.Among them,the highest concentration of NH4^+-N was up to 2.692 mg/L;and the highest concentration of NO3^--N reached 24.071 mg/L.② The pollution trends of NH4^+-N and NO2^--N in Ledong County were similar,and NO3^--N had no similarity.③ There was a regional difference in the groundwater three nitrogen in Ledong,Hainan.The pollution level near the farmland was greater than that far from the farmland.The pollution level near the farm area was greater than that far from the farm area.In addition,in combination with the layout of the sampling points and the test results,it was not found that the area far from the coastline would be lower than the area near the coastline in the pollution level.④ The main reasons for the excessive nitrogen in the groundwater of Ledong,Hainan are farmland fertilization,random discharge of domestic sewage,discharge of aquaculture wastewater,and discharge of industrial water at will.[Conclusions]This study is of great significance to safe prevention and control of groundwater in Ledong. 展开更多
关键词 GROUNDWATER THREE nitrogen pollution SURVEY
下载PDF
Nitrogen and Phosphorus Pollutants Removal from Rice Field Drainage with Ecological Agriculture Ditch: A Field Case 被引量:5
8
作者 Lina Chen Wenshuo Zhang +4 位作者 Junyi Tan Xiaohou Shao Yaliu Qiu Fangxiu Zhang Xiang Zhang 《Phyton-International Journal of Experimental Botany》 SCIE 2022年第12期2827-2841,共15页
Excessive nitrogen and phosphorus in agricultural drainage can cause a series of water environmental problems such as eutrophication of water bodies and non-point source pollution.By monitoring the water purification ... Excessive nitrogen and phosphorus in agricultural drainage can cause a series of water environmental problems such as eutrophication of water bodies and non-point source pollution.By monitoring the water purification effect of a paddy ditch wetland in Gaochun,Nanjing,Jiangsu Province,we investigated the spatial and temporal distribution patterns of N and P pollutants in paddy drains during the whole reproductive period of rice.Then,the dynamic changes of nitrogen and phosphorus in time and space during the two processes of rainfall after basal fertilization and topdressing were analyzed after comparison.At last,the effect of the ditch wetland on nutrient purification and treatment mechanism,along with changing flow and concentration in paddy drains,was clarified.The results of this study showed that the concentrations of various nitrogen and phosphorus in the ditch basically reached the peak on the second and third days after the rainfall(5.98 mg/L for TN and 0.21 mg/L for TP),which provided a response time for effective control of nitrogen and phosphorus loss.The drainage can be purified by the ecological ditch,about 89.61%,89.03%,89.61%,98.14%,and 79.05%of TN,NH4+-N,NO3−-N,NO2−-N,and TP decline.It is more effective than natural ditches for water purification with 80.59%,40%,12.07%,91.06%and 18.42%removal rates,respectively.The results of the study can provide a theoretical basis for controlling agricultural non-point source pollution and improving the water environment of rivers and lakes scientifically. 展开更多
关键词 Paddy field ecological ditches nitrogen phosphorus
下载PDF
Environmental dynamics of nitrogen and phosphorus release from river sediments of arid areas
9
作者 SU Wenhao WU Chengcheng +4 位作者 Sun Xuanxuan LEI Rongrong LEI Li WANG Ling ZHU Xinping 《Journal of Arid Land》 SCIE CSCD 2024年第5期685-698,共14页
Human activities lead to the accumulation of a large amount of nitrogen and phosphorus in sediments in rivers.Simultaneously,nitrogen and phosphorus can be affected by environment and re-enter the upper water body,cau... Human activities lead to the accumulation of a large amount of nitrogen and phosphorus in sediments in rivers.Simultaneously,nitrogen and phosphorus can be affected by environment and re-enter the upper water body,causing secondary pollution of the river water.In this study,laboratory simulation experiments were conducted initially to investigate the release of nitrogen and phosphorus from river sediments in Urumqi City and the surrounding areas in Xinjiang Uygur Autonomous Region of China and determine the factors that influence their release.The results of this study showed significant short-term differences in nitrogen and phosphorus release characteristics from sediments at different sampling points.The proposed secondary kinetics model(i.e.,pseudo-second-order kinetics model)better fitted the release process of sediment nitrogen and phosphorus.The release of nitrogen and phosphorus from sediments is a complex process driven by multiple factors,therefore,we tested the influence of three factors(pH,temperature,and disturbance intensity)on the release of nitrogen and phosphorus from sediments in this study.The most amount of nitrate nitrogen(NO_(3)^(–)-N)was released under neutral conditions,while the most significant release of ammonia nitrogen(NH_(4)^(+)-N)occurred under acidic and alkaline conditions.The release of nitrite nitrogen(NO_(2)^(-)-N)was less affected by pH.The dissolved total phosphorus(DTP)released significantly in the alkaline water environment,while the release of dissolved organic phosphorus(DOP)was more significant in acidic water.The release amount of soluble reactive phosphorus(SRP)increased with an increase in pH.The sediments released nitrogen and phosphorus at higher temperatures,particularly NH_(4)^(+)-N,NO_(3)^(–)-N,and SRP.The highest amount of DOP was released at 15.0℃.An increase in disturbance intensity exacerbated the release of nitrogen and phosphorus from sediments.NH_(4)^(+)-N,DTP,and SRP levels increased linearly with the intensity of disturbance,while NO_(3)^(–)-N and NO_(2)^(–)-N were more stable.This study provides valuable information for protecting and restoring the water environment in arid areas and has significant practical reference value. 展开更多
关键词 SEDIMENT nitrogen and phosphorus environmental dynamics pseudo-second-order kinetics model dissolved organic phosphorus(DOP) Urumqi City
下载PDF
Degree of shade tolerance shapes seasonality of chlorophyll, nitrogen and phosphorus levels of trees and herbs in a temperate deciduous forest
10
作者 Jiajia Zeng Fan Liu +5 位作者 Yuan Zhu Jiayi Li Ying Ruan Xiankui Quan Chuankuan Wang Xingchang Wang 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第4期60-72,共13页
Forest productivity is closely linked to seasonal variations and vertical differentiation in leaf traits.However,leaf structural and chemical traits variation among co-existing species,and plant functional types withi... Forest productivity is closely linked to seasonal variations and vertical differentiation in leaf traits.However,leaf structural and chemical traits variation among co-existing species,and plant functional types within the canopy are poorly quantified.In this study,the seasonality of leaf chlorophyll,nitrogen(N),and phosphorus(P)were quantified vertically along the canopy of four major tree species and two types of herbs in a temperate deciduous forest.The role of shade tolerance in shaping the seasonal variation and vertical differentiation was examined.During the entire season,chlorophyll content showed a distinct asymmetric unimodal pattern for all species,with greater chlorophyll levels in autumn than in spring,and the timing of peak chlorophyll per leaf area gradually decreased as shade tolerance increased.Chlorophyll a:b ratios gradually decreased with increasing shade tolerance.Leaf N and P contents sharply declined during leaf expansion,remained steady in the mature stage and decreased again during leaf senescence.Over the seasons,the lower canopy layer had significantly higher chlorophyll per leaf mass but not chlorophyll per leaf area than the upper canopy layer regardless of degree of shade tolerance.However,N and P per leaf area of intermediate shade-tolerant and fully shade-tolerant tree species were significantly higher in the upper canopy than in the lower.Seasonal variations in N:P ratios suggest changes in N or P limitation.These findings indicate that shade tolerance is a key feature shaping inter-specific differences in leaf chlorophyll,N,and P contents as well as their seasonality in temperate deciduous forests,which have significant implications for modeling leaf photosynthesis and ecosystem production. 展开更多
关键词 Leaf traits Leaf nutrients Seasonal variations CHLOROPHYLL nitrogen phosphorus Shade tolerance Canopy layers
下载PDF
Correlation and Pathway Analysis of the Carbon,Nitrogen,and Phosphorus in Soil-Microorganism-Plant with Main Quality Components of Tea(Camellia sinensis)
11
作者 Chun Mao Ji He +3 位作者 Xuefeng Wen Yangzhou Xiang Jihong Feng Yingge Shu 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第3期487-502,共16页
The contents of carbon(C),nitrogen(N),and phosphorus(P)in soil-microorganisms-plant significantly affect tea quality by altering the main quality components of tea,such as tea polyphenols,amino acids,and caffeine.Howev... The contents of carbon(C),nitrogen(N),and phosphorus(P)in soil-microorganisms-plant significantly affect tea quality by altering the main quality components of tea,such as tea polyphenols,amino acids,and caffeine.However,few studies have quantified the effects of these factors on the main quality components of tea.The study aimed to explore the interactions of C,N,and P in soil-microorganisms-plants and the effects of these factors on the main quality components of tea by using the path analysis method.The results indicated that(1)The contents of C,N,and P in soil,microorganisms,and tea plants were highly correlated and collinear,and showed significant correlations with the main quality components of tea.(2)Optimal regression equations were established to esti-mate tea polyphenol,amino acid,catechin,caffeine,and water extract content based on C,N,and P contents in soil,microorganisms,and tea plants(R^(2)=0.923,0.726,0.954,0.848,and 0.883,respectively).(3)Pathway analysis showed that microbial biomass phosphorus(MBP),root phosphorus,branch nitrogen,and microbial biomass carbon(MBC)were the largest direct impact factors on tea polyphenol,catechin,water extracts,amino acid,and caffeine content,respectively.Leaf carbon,root phosphorus,and leaf nitrogen were the largest indirect impact factors on tea polyphenol,catechin,and water extract content,respectively.Leaf carbon indirectly affected tea polyphenol content mainly by altering MBP content.Root phosphorus indirectly affected catechin content mainly by altering soil organic carbon content.Leaf nitrogen indirectly affected water extract content mainly by altering branch nitrogen content.The research results provide the scientific basis for reasonable fertilization in tea gardens and tea quality improvement. 展开更多
关键词 Soil-microorganisms-plant system CARBON nitrogen phosphorus tea quality path analysis
下载PDF
Characteristics of diffuse pollution of nitrogen and phosphorous from a small town in the hilly area of the central Sichuan Basin,China 被引量:1
12
作者 YANG Xiao-lin SHEN Xi ZHU Bo 《Journal of Mountain Science》 SCIE CSCD 2016年第2期292-301,共10页
Hydrological and hydro-chemical monitoring of nitrogen(N) and phosphorus(P) in a small urbanized catchment was conducted in the hilly area of the central Sichuan Basin,China,from 2010 through 2011.The diffuse N and P ... Hydrological and hydro-chemical monitoring of nitrogen(N) and phosphorus(P) in a small urbanized catchment was conducted in the hilly area of the central Sichuan Basin,China,from 2010 through 2011.The diffuse N and P loadings in different forms of total nitrogen(TN) and phosphorus(TP),dissolved nitrogen(DN) and phosphorus(DP),as well as particulate nitrogen(PN) and phosphorus(PP) were calculated based on runoff discharges and chemical analyses.The results revealed that the diffuse pollution concentrations of TN,DN,PN,TP,DP and PP exhibited large variations during rainfall events,with peak concentrations occurring during the initial period.For all of the measured parameters,the event mean concentrations(EMCs) were observed to clearly vary among rainfall events.The EMCs of TN,DN,PN,TP,DP and PP(for all of the observed rainfall events) were 10.04,6.62,3.42,1.30,0.47 and0.83 mg/L,respectively.The losses of diffuse N and P exhibited clear seasonal patterns and mainly occurred during the period from July through September,when the losses totaled 99.3 and 9.6 kg/ha for TN and TP,respectively,accounting for 75% and 74% of the total annual loadings.The mean annual loadings of TN and TP were 124.6 and 12.9 kg/ha,respectively.The results indicate that residential areas in the hilly areaof the central Sichuan Basin are subject to high diffuse N and P loadings,posing a serious risk to the receiving water quality.Ecological buffering belts are recommended to incorporate into the urbanized catchment to reduce diffuse pollution. 展开更多
关键词 nitrogen transport phosphorus transport Event mean concentration pollution loading pollution sources Non-point-source pollution Yanting Agro-ecological Station
下载PDF
Effects of tree size and organ age on variations in carbon,nitrogen,and phosphorus stoichiometry in Pinus koraiensis
13
作者 Yanjun Wang Guangze Jin Zhili Liu 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第3期155-165,共11页
Carbon(C),nitrogen(N),and phosphorus(P)are of fundamental importance for growth and nutrient dynamics within plant organs and deserve more attention at regional to global scales.However,our knowledge of how these nutr... Carbon(C),nitrogen(N),and phosphorus(P)are of fundamental importance for growth and nutrient dynamics within plant organs and deserve more attention at regional to global scales.However,our knowledge of how these nutrients vary with tree size,organ age,or root order at the individual level remains limited.We determined C,N,and P contents and their stoichiometric ratios(i.e.,nutrient traits)in needles,branches,and fine roots at different organ ages(0-3-year-old needles and branches)and root orders(1st-4th order roots)from 64 Pinus koraiensis of varying size(Diameter at breast height ranged from 0.3 to 100 cm)in northeast China.Soil factors were also measured.The results show that nutrient traits were regulated by tree size,organ age,or root order rather than soil factors.At a whole-plant level,nutrient traits decreased in needles and fine roots but increased in branches with tree size.At the organ level,age or root order had a negative effect on C,N,and P and a positive effect on stoichiometric ratios.Our results demonstrate that nutrient variations are closely related to organ-specific functions and ecophysiological processes at an individual level.It is suggested that the nutrient acquisition strategy by younger trees and organ fractions with higher nutrient content is for survival.Conversely,nutrient storage strategy in older trees and organ fractions are mainly for steady growth.Our results clarified the nutrient utilization strategies during tree and organ ontogeny and suggest that tree size and organ age or root order should be simultaneously considered to understand the complexities of nutrient variations. 展开更多
关键词 Tree size Organ age(or root order) Carbon(C) nitrogen(N) phosphorus(P) Pinus koraiensis
下载PDF
Nitrogen and Phosphorus Removal from Lake Kinneret Inputs
14
作者 Moshe Gophen 《Open Journal of Ecology》 2024年第2期165-182,共18页
The Hula Valley was drained in 1957. The land use was modified from natural wetland and old shallow lake ecosystems to agricultural development. About half of the drained land area was utilized for aquaculture. Popula... The Hula Valley was drained in 1957. The land use was modified from natural wetland and old shallow lake ecosystems to agricultural development. About half of the drained land area was utilized for aquaculture. Population size was enhanced and the diary was developed intensively resulting in the enhancement of domestic and husbandry sewage production that increased as well. The natural intact Hula Valley-Lake Kinneret ecosystem was heavily anthropogenically interrupted: The Hula was drained and Kinneret became a national source for domestic water supply. Some aspects of the environmental and water quality protection policy of the system are presented. The causation and operational management implications for the reduction of Nitrogen and Phosphorus migration from the Hula Valley are discussed. Drastic (81%) restriction of aquaculture accompanied by sewage totally removed achieved a reasonable improvement in pollution control which was also supported by the Hula Project. The implications of anthropogenic intervention in the process of environmental management design are presented. 展开更多
关键词 Hula Valley JORDAN Kinneret nitrogen phosphorus Peat Soil Fish Ponds Sewage Removal
下载PDF
Nitrogen Removal in Wastewater Irrigation Systems and Its Influence on Groundwater Pollution
15
作者 Wang Min Wu Yongfeng Tang Minggao Zhong Zuoxin Shen ZhaoliHydrogeological Department , China University of Geosciences , Beijing 100083 《Journal of Earth Science》 SCIE CAS CSCD 1995年第2期108-113,共6页
The experiment included ten soil columns and field investigation in 1 - 2 year duration. Data on the columns continuously flooded with waste water indicated that when total input of NH4-N reached to above 70% of the N... The experiment included ten soil columns and field investigation in 1 - 2 year duration. Data on the columns continuously flooded with waste water indicated that when total input of NH4-N reached to above 70% of the NH4-N adsorption capacity in soil the breakthrough would appear in the output . Adequate removal of nitrogen from the waste water would require at least 170 cm deep groundwater table . Fine textured soil would promote denitrification . The columns simulating discontinuous waste water irrigation indicated that denitrification existed only in the partial microenvironment of reduction .Groundwater table depth had no strong influence on nitrogen removal . The investigation in field revealed that the groundwater recharged with waste water was not polluted by nitrogen when the aeration profile was in finer textures owing to the combined contribution of nitrification and denitrification . 展开更多
关键词 wastewater irrigation system nitrogen removal GROUNDWATER pollution nitrification denitrification .
下载PDF
Long-Term Assessment of Nitrogen Pollution Load Potential for Groundwater by Mass Balance Analysis in the Tedori River Alluvial Fan Area, Japan
16
作者 Toshisuke Maruyama Masashi Yoshida +3 位作者 Keiji Takase Hiroshi Takimoto Shigeo Ishikawa Sadao Nagasaka 《Journal of Water Resource and Protection》 2013年第2期171-182,共12页
To evaluate the nitrogen pollution load in an aquifer, a water and nitrogen balance analysis was conducted over a thirty-five year period at five yearly intervals. First, we established a two-horizon model comprising ... To evaluate the nitrogen pollution load in an aquifer, a water and nitrogen balance analysis was conducted over a thirty-five year period at five yearly intervals. First, we established a two-horizon model comprising a channel/soil horizon, and an aquifer horizon, with exchange of water between the aquifer and river. The nitrogen balance was estimated from the product of nitrogen concentration and water flow obtained from the water balance analysis. The aquifer nitrogen balance results were as follows: 1) In the aquifer horizon, the total nitrogen pollution load potential (NPLP) peaked in the period 1981-1990 at 1800 t·yr-1;following this the NPLP rapidly decreased to about 600 t·yr-1 in the period 2006-2010. The largest NPLP input component of 1000 t·yr-1 in the period 1976-1990 was from farmland. Subsequently, farmland NPLP decreased to only 400 t·yr-1 between 2006 and 2010. The second largest input component, 600 t·yr-1, was effluent from wastewater treatment works (WWTWs) in the period 1986-1990;this also decreased markedly to about 100 t·yr-1 between 2006 and 2010;2) The difference between input and output in the aquifer horizon, used as an index of groundwater pollution, peaked in the period 1986-1990 at about 1200 t·yr-1. This gradually decreased to about 200 t·yr-1 by 2006-2010. 3) The temporal change in NPLP coincided with the nitrogen concentration of the rivers in the study area. In addition, nitrogen concentrations in two test wells were 1.0 mg·l-1 at a depth of 150 m and only 0.25 mg·l-1 at 50 m, suggesting gradual percolation of the nitrogen polluted water deeper in the aquifer. 展开更多
关键词 WATER BALANCE nitrogen BALANCE GROUNDWATER pollution Sewage Treatment WATER pollution from Farmland nitrogen pollution Load POTENTIAL
下载PDF
MRIO model-based study on water nitrogen pollution transfer embodied in international trade
17
作者 Kunyu Niu Xudong Han +1 位作者 Qianxin Niu Yu Zhong 《Chinese Journal of Population,Resources and Environment》 2019年第2期176-183,共8页
This study uses the global pollutant emission databases and global input-output model in 2015 to calculate the impact of international trade on global water nitrogen emission patterns,based on considering the total am... This study uses the global pollutant emission databases and global input-output model in 2015 to calculate the impact of international trade on global water nitrogen emission patterns,based on considering the total amount of pollutant transfer and pollutant emission intensity of trade flows The main conclusions are as follows:(1) There are always a large amount of water nitrogen emissions transferring from developed economies to developing economies embodied in their bilateral trade activities.Small amount of transfers are of some areas with similar endowments of agricultural resources or long distances.(2) In 2015,the net import of water nitrogen pollution embodied in China's trade was 160,000 tons,accounting for 2.72% of the global water nitrogen imports.The sharp increases in cereal imports,together with high food storage as well as high pollution intensity embedded in trade are the main reason.It is recommended that through applying alleviations such as agricultural machinery assistance and technical training to accelerate the transfer and spread of agricultural technology in Africa,Asia,and other regions,thus helping increase agricultural production productivity in underdeveloped areas and reducing the pollution intensity embodied in trade flows from underdeveloped areas to developed areas. 展开更多
关键词 International TRADE WATER nitrogen pollution EMBODIED EMISSIONS EMISSIONS transfer MRIO model
下载PDF
Nitrogen forms and pollution load of Dianchi Lake inflow river runoff in rainy season
18
作者 SU Bin SHI Zheng-tao +4 位作者 SHEN Ying-jia FENG Ze-bo XIAO Dong-dong KONG Yan ZHAO Yang 《Ecological Economy》 2016年第4期311-319,共9页
With the control of point source pollution in Dianchi Lake basin, and the expansion of Kunming city, non-point source pollution has become the main source pollution of urban water environment and Dianchi Lake. To reve... With the control of point source pollution in Dianchi Lake basin, and the expansion of Kunming city, non-point source pollution has become the main source pollution of urban water environment and Dianchi Lake. To reveal the nitrogen pollution characteristics in watershed, this research selected key monitoring points and sections at Baoxiang river basin in rainy season which is the peak transported time of non-point source pollution, the nitrogen and hydrological indicators are monitored systematically. The different forms of nitrogen are analyzed, the pollution load of nitrogen are calculated and studied at cardinal sections; combined with the literature data, we compared the water nitrogen characteristics of Dianchi basin and Taihu basin, the main results are as follows:(1) In summer, water nitrogen form of Baoxiang river in the Caohe area is dominated by nitrate nitrogen, while in other areas it is dominated by ammonia nitrogen which is accounted for 31%-50% of total nitrogen;(2) The water pollution loads of Baoxiang river tended to increase from upstream to downstream, from June to August the total nitrogen pollution mainly comes from urban areas and the pollution load is 166.408 t;(3) In Dianchi Lake watershed and Taihu Lake watershed nitrogen concentration of inflow river is higher than that of the lake, nitrate nitrogen concentration between inflow river and lake shows a little difference, while ammonia nitrogen concentration of inflow river is higher than that of the lake. The results can provide the theoretical basis for nonpoint source pollution control and urban water environment planning and improvement in Dianchi Lake Basin. 展开更多
关键词 Dianchi Lake basin nitrogen forms of occurrence pollution load non-point pollution
下载PDF
Study on nitrogen pollution in waterbodies and it's control strategy
19
《Global Geology》 1998年第1期28-28,共1页
关键词 Study on nitrogen pollution in waterbodies and it’s control strategy
下载PDF
Study on prediction and assessment for nitrogen pollution in a mining area
20
《Global Geology》 1998年第1期94-94,共1页
关键词 Study on prediction and assessment for nitrogen pollution in a mining area
下载PDF
上一页 1 2 126 下一页 到第
使用帮助 返回顶部