期刊文献+
共找到2,984篇文章
< 1 2 150 >
每页显示 20 50 100
High nitrogen removal from wastewater with several new aerobic bacteria isolated from diverse ecosystems 被引量:7
1
作者 NAHIMANA Liberat 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第3期525-529,共5页
Three new bacteria HS-03, HS-043 and HS-047 isolated from different ecosystems were found capable of aerobic denitrification. The potential application of these strains in wastewater treatment under aerobic conditions... Three new bacteria HS-03, HS-043 and HS-047 isolated from different ecosystems were found capable of aerobic denitrification. The potential application of these strains in wastewater treatment under aerobic conditions was investigated, These three bacteria all presented high nitrogen removal from wastewater that more than 98% of 10 mmol/L nitrate could be removed in 12--24 h by adding cheap external carbon source and low concentration of iron as well as molybdate. The mechanism at molecular level was analyzed. The success of this aerobic denitrification applied to wastewater treatment may serve as an alternative to enhance the practical nitrogen removal from wastewater. Main biochemical and physiological features of these strains were characterized. The 16S rDNA sequences were compared with the published data in GenBank by using BLAST. The results of phenotype and genotype proved that strain HS-03 and HS-047 belonged to Pseudomonas stutzeri and Pseudomonas pseudoalcaligenes respectively. Strain HS-043 was identified as Delftia clcidovorans of which denitrifying activity has not previously been explored. 展开更多
关键词 high nitrogen removal aerobic denitrification wastewater treatment identification
下载PDF
Nitrogen Removal Improvement by Adding Peat in Deep Soil of Subsurface Wastewater Infi ltration System 被引量:6
2
作者 CHEN Pei-zhen CUI Jian-yu +4 位作者 HU Lin ZHENG Miao-zhuang CHENG Shan-ping HUANG Jie-wen MU Kang-guo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第5期1113-1120,共8页
In order to enhance the nitrogen removal, a subsurface wastewater infiltration system (SWIS) was improved by adding peat in deep soil as carbon source for denitrification process. The effects of addition of carbon s... In order to enhance the nitrogen removal, a subsurface wastewater infiltration system (SWIS) was improved by adding peat in deep soil as carbon source for denitrification process. The effects of addition of carbon source in the underpart of the SWIS on nitrogen removal at different influents (with the total nitrogen (TN) concentration 40 and 80 mg L^-1, respectively) were investigated by soil column simulating experiments. When the relatively light pollution influent with 40 mg L^-1 TN was used, the average concentrations of NO3-N and TN in effluents were (4.69±0.235), (6.18±0.079) mg L^-1, respectively, decreased by 32 and 30.8% than the control; the NO3--N concentration of all effluents was below the maximum contaminant level of 10 mg L^-1; as high as 92.67% of the TN removal efficiency was achieved. When relatively heavy pollution influent with 80 mg LITN was used, the average concentrations of NO3--N and TN in effluents were (10.2±0.265), (12.5±0.148) mg L^-1 respectively, decreased by 20 and 21.2% than the control; the NO3--N concentration of all effluents met the grade Ⅲ of the national quality standard for ground water of China (GB/T 14848-1993) with the values less than 20 mg L^-1; the TN removal efficiency of 94.1% was achieved. In summary, adding peat in the underpart of the SWIS significantly decreased TN and NO3- -N concentration in effluents and the nitrogen removal efficiency improved significantly. 展开更多
关键词 peat addition nitrogen removal efficiency DENITRIFICATION subsurface wastewater infiltration system
下载PDF
Removal of Organic Matter and Ammonia Nitrogen in Azodicarbonamide Wastewater by a Combination of Power Ultrasound Radiation and Hydrogen Peroxide 被引量:8
3
作者 李文军 吴笛 +2 位作者 石鑫 文利雄 邵磊 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第4期754-759,共6页
A simple and efficient sonochemical method was developed for the degradation of organic matter and ammonia nitrogen in azodicarbonamide wastewater.The effects of initial pH,ultrasound format and peripheral water level... A simple and efficient sonochemical method was developed for the degradation of organic matter and ammonia nitrogen in azodicarbonamide wastewater.The effects of initial pH,ultrasound format and peripheral water level on the sonolysis of hydrazine,urea,COD and ammonia nitrogen were investigated.It is found that the initial pH has a significant influence on the degradation of hydrazine and ammonia nitrogen,whereas this impact to urea is relatively small.It also shows that a noticeable enhancement of ammonia nitrogen removal could be achieved in a proper intermittent ultrasound operation mode,i.e.,1/1 min on/off mode.The height difference between the periph-eral water level and the inner water level of the flask affects the efficiency of ultrasonic treatment as well. 展开更多
关键词 azodicarbonamide wastewater organic matter ammonia nitrogen ultrasound radiation hydrogen peroxide
下载PDF
Experimental analysis of a nitrogen removal process simulation of wastewater land treatment under three different wheat planting densities 被引量:2
4
作者 WangHQ ChenJJ 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2002年第3期317-324,共8页
Nitrogen contaminant transport, transformation and uptake simulation experiments were conducted in green house under three different planting density of winter wheat. They were Group A, planting density of 0.0208 plan... Nitrogen contaminant transport, transformation and uptake simulation experiments were conducted in green house under three different planting density of winter wheat. They were Group A, planting density of 0.0208 plants/cm 2, Group B, 0.1042 plants /cm 2, and Group C, 0.1415 plants/cm 2. The capacity and ratio of nitrogen removal were different on three kinds of conditions of wastewater land treatment. From analysis of wastewater treatment capacity, wastewater concentration and irrigation intensity for Group C were suitable and nitrogen quantity added was 2 times of that for Group B, 2.6 times for Group A while nitrogen residue was only 7.06%. Hence, wastewater irrigation and treatment design with purpose of waste water treatment should select the design with maximum capacity, optimal removal ratio and least residue in soil, which was closely related to crop planting density, crop growth status and also background nitrogen quantity in soil. 展开更多
关键词 wastewater land treatment planting density winter wheat nitrogen removal SOIL
下载PDF
Simultaneous removal of nitrogen and phosphorus from swine wastewater in a sequencing batch biofilm reactor 被引量:4
5
作者 海热提 何一群 +1 位作者 王晓慧 李媛 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第1期303-308,共6页
In this study, the performance of a sequencing batch biofilm reactor(SBBR) for removal of nitrogen and phosphorus from swine wastewater was evaluated. The replacement rate of wastewater was set at 12.5% throughout the... In this study, the performance of a sequencing batch biofilm reactor(SBBR) for removal of nitrogen and phosphorus from swine wastewater was evaluated. The replacement rate of wastewater was set at 12.5% throughout the experiment. The anaerobic and aerobic times were 3 h and 7 h, respectively, and the dissolved oxygen concentration of the aerobic phase was about 3.95 mg·L-1. The SBBR process demonstrated good performance in treating swine wastewater. The percentage removal of total chemical oxygen demand(COD), ammonia nitrogen(NH4+-N), total nitrogen(TN), and total phosphorus(TP) was 98.2%, 95.7%, 95.6%, and 96.2% at effluent concentrations of COD85.6 mg·L-1, NH4+-N 35.22 mg·L-1, TN 44.64 mg·L-1, and TP 1.13 mg·L-1, respectively. Simultaneous nitrification and denitrification phenomenon was observed. Further improvement in removal efficiency of NH4+-N and TN occurred at COD/TN ratio of 11:1, with effluent concentrations at NH4+-N 18.5 mg·L-1and TN 34 mg·L-1, while no such improvement in COD and TP removal was found. Microbial electron microscopy analysis showed that the filler surface was covered with a thick biofilm, forming an anaerobic–aerobic microenvironment and facilitating the removal of nitrogen, phosphorus and organic matters. A long-term experiment(15 weeks) showed that stable removal efficiency for N and P could be achieved in the SBBR system. 展开更多
关键词 Sequencing batch biofilm reactor Swine wastewater Simultaneous nitrogen and phosphorus REMOVAL
下载PDF
Study on Influencing Factors and Kinetics of Removal of Ammonia Nitrogen from High Salinity Wastewater by Sodium Hypochlorite Oxidation 被引量:2
6
作者 Fang Xiaoqin Hu Junjie Xia Junfang 《Meteorological and Environmental Research》 CAS 2017年第6期72-77,共6页
The influencing factors and kinetics of oxidative degradation of ammonia nitrogen in high salinity wastewater by sodium hypochlorite oxidation( Na Cl O) were studied. The results showed that the degradation process of... The influencing factors and kinetics of oxidative degradation of ammonia nitrogen in high salinity wastewater by sodium hypochlorite oxidation( Na Cl O) were studied. The results showed that the degradation process of ammonia nitrogen by sodium hypochlorite accorded with a pseudo first-order kinetics model,and the influencing factors included Na Cl O dosage,initial concentration of ammonia nitrogen,salinity,temperature,and so on. When Na Cl O dosage was 0. 6%( MCl∶ MN= 13. 76),the reaction rate constant was up to 0. 015 75 min^(-1). The higher the initial concentration of ammonia nitrogen was,the worse the effect of oxidation reaction was. When the initial concentration did not exceed 45 mg/L,the effect on oxidation reaction rate constant increased with the increase of the initial concentration. Low salinity had no effect on ammonia nitrogen oxidation.When salinity was higher than 2. 0%,the inhibition effect on ammonia nitrogen oxidation would increase,and the reaction rate constant decreased obviously with the increase of salinity. The improvement of reaction temperature was beneficial to ammonia oxidation degradation. As temperature increased from 10 to 35 ℃,the reaction rate constant rose from 0. 00188 to 0. 01043 min^(-1). 展开更多
关键词 Sodium HYPOCHLORITE OXIDATION High SALINITY wastewater KINETICS AMMONIA nitrogen
下载PDF
Inorganic nitrogen removal of toilet wastewater with an airlift external circulation membrane bioreactor 被引量:2
7
作者 LI Gang WU Lin-lin DONG Chun-song WU Guang-xia FAN Yao-bo 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第1期12-17,共6页
Removal of inorganic nitrogen (inorganic-N) from toilet wastewater, using a pilot-scale airlift external circulation membrane bioreactor (AEC-MBR) was studied. The results showed that the use of AEC-MBR with limit... Removal of inorganic nitrogen (inorganic-N) from toilet wastewater, using a pilot-scale airlift external circulation membrane bioreactor (AEC-MBR) was studied. The results showed that the use of AEC-MBR with limited addition of alkaline reagents and volumetric loading rates of inorganic-N of 0.19-0.40 kg inorganic-N/(m^3·d) helped achieve the desired nitrification and denitrification. Furthermore, the effects of pH and dissolved oxygen (DO) on inorganic-N removal were examined. Under the condition of MLSS at 1.56-2.35 g/L, BODs/ammonia nitrogen (NH4+-N) at 1.0, pH at 7.0-7.5, and DO at 1.0-2.0 mg/L, the removal efficiencies of NH4^+-N and inorganic-N were 91.5% and 70.0%, respectively, in the AEC-MBR. The cost of addition of alkaline reagent was approximately 0.5-1.5 RMB yuan/m^3, and the energy consumption was approximately 0.72 kWh/m^3 at the flux of 8 L/(m^2-h). 展开更多
关键词 inorganic nitrogen removal treatment of wastewater from toilet airlift external circulation membrane bioreaetor (AECMBR) membrane bioreactor (MBR)
下载PDF
Isolation and Identification of Ammonia Nitrogen Degradation Strains from Industrial Wastewater 被引量:6
8
作者 Cai-Hong Yu Ya Wang +2 位作者 Tao Guo Wan-Xin Shen Ming-Xin Gu 《Engineering(科研)》 2012年第11期790-793,共4页
Nine strains of ammonia nitrogen degradation strains from C1 to C9 were isolated from industrial wastewater to study their degradation and conversion of ammonia nitrogen. The results showed that C2 strain with a high ... Nine strains of ammonia nitrogen degradation strains from C1 to C9 were isolated from industrial wastewater to study their degradation and conversion of ammonia nitrogen. The results showed that C2 strain with a high degradation activiity of ammonia nitrogen, and the ammonia nitrogen degradation rate of the activated C2 strain was 93% within 24 h when the initial concentration of ammonia nitrogen was 200 mg/L under the conditions of inoculation 10%, temperature 35?C, pH 7.0, rotation 200 r/min. And C2 was identified as Bacillus amyloliquefaciens. 展开更多
关键词 Industrial wastewater AMMONIA nitrogen DEGRADATION Strain DEGRADATION Characteristics
下载PDF
Nitrogen removal from municipal wastewater by limit-oxic/anoxic/oxic biological aerated filter system 被引量:1
9
作者 韩洪军 胡宏博 +1 位作者 李雨霏 王冰 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第2期47-50,共4页
In this study,a three-stage biological aerated filter(BAF) system was proposed for the enhancement of nitrogen removal in the treatment of low carbon-to-nitrogen ratio(C/N ratio) municipal wastewater.Operational param... In this study,a three-stage biological aerated filter(BAF) system was proposed for the enhancement of nitrogen removal in the treatment of low carbon-to-nitrogen ratio(C/N ratio) municipal wastewater.Operational parameters were studied for each process for maximum nitrite accumulation in the nitrification step and nitrite adaptation in the denitrification step.Nitrite accumulation during nitrification could be controlled by the dissolved oxygen(DO) concentration,presenting a mean value of 40% at around 1.0 mg DO/L.Denitrification could be adapted to nitrite and the process was stable if nitrite in the reactor was keep low.Once the operational parameters were established,the process was stable and a steady state was maintained for over 30 days,and the various indexes of discharged water were up to the Discharge standard of pollutants for municipal wastewater treatment plant(GB18918-2002) Level-one A.It was concluded that the three-stage BAF system proposed in this study was excellent in nitrogen removal performance by employing three-column functioning as short-cut nitrification,short-cut denitrification and secondary nitrification,respectively. 展开更多
关键词 nitrogen removal BAF Municipal wastewater Nitrite accumulation DO
下载PDF
Traditional Nitrogen Removal Coupled with SND to Meet Advanced WWTP Standards at a Full Scale SBR Wastewater Treatment Facility 被引量:1
10
作者 Charlie L. Martin Jr. Clayton J. Clark II 《Journal of Water Resource and Protection》 2017年第10期1169-1183,共15页
A Florida wastewater treatment facility studied how Simultaneous Nitrification Denitrification (SND) coupled with traditional nitrogen removal would be used to meet the state’s current advanced wastewater treatment n... A Florida wastewater treatment facility studied how Simultaneous Nitrification Denitrification (SND) coupled with traditional nitrogen removal would be used to meet the state’s current advanced wastewater treatment nutrient criterion. This study examined the effect of these combined processes on the fate and transport of the nitrogen species during the treatment process. The effectiveness of nitrogen removal within the full scale sequential batch reactor system (SBR) and the extent of SND compared to nitrification and denitrification in the nitrogen removal process was also evaluated. Finally, the overall performance of the municipal wastewater treatment facility utilizing these combined processes was evaluated. Overall, this application reduced the total nitrogen to almost 6% of the permitted concentration of 3.0 mg/L. The combination of both processes also resulted in an actual ?concentration 93.7% lower than the acceptable theoretical ?concentration, which also resulted in effluent Total Inorganic Nitrogen nearly 80% lower than the permitted 3.0 mg/L effluent concentration. Further, the process produced a composite Total Nitrogen concentration that was 74% lower than the permitted concentration. This coupling of SND with traditional nitrogen removal resulted in a highly effective process to reduce nitrogen in the municipal wastewater effluent which is also attractive for potential implementation due to the low cost expenditure incurred in its utilization. 展开更多
关键词 nitrogen Simultaneous NITRIFICATION DENITRIFICATION (SND) wastewater Treatment Full Scale FACILITY
下载PDF
Effects of Coagulation and Ozonation Pretreatments on Biochemical Treatment of Fluid Catalytic Cracking Wastewater
11
作者 Ibrah Landi Ali Lu Jun 《Journal of Environmental Protection》 2024年第2期156-172,共17页
Fluid catalytic cracking (FCC) salty wastewaters, containing quaternary ammonium compounds (QACs), are very difficult to treat by biochemical process. Anoxic/oxic (A/O) biochemical system, based on nitrification and d... Fluid catalytic cracking (FCC) salty wastewaters, containing quaternary ammonium compounds (QACs), are very difficult to treat by biochemical process. Anoxic/oxic (A/O) biochemical system, based on nitrification and denitrification reactions, was used to assess their possible biodegradation. Because of the negative effects of high salt concentration (3%), heavy metals and toxic organic matter on microorganisms’ activities, some techniques consisting of dilution, coagulation and flocculation, and ozonation pretreatments, were gradually tested to evaluate chemical oxygen demand (COD), ammonia-nitrogen (ammonia-N) and total nitrogen (TN) removal rates. In this process of FCC wastewater, starting with university-domesticated sludge, the ammonia-N and TN removal rates were worst. However, when using domesticated SBR’s sludge and operating with five-fold daily diluted influent (thus reducing salt concentration), the ammonia-N removal reached about 57% while the TN removal rate was less than 37% meaning an amelioration of the nitrification process. However, by reducing the dilution factors, these results were inflected after some days of operation, with ammonia-N removal decreasing and TN barely removed meaning a poor nitrification. Even by reducing heavy metals concentration with coagulation/flocculation process, the results never changed. Thereafter, by using ozonation pre-treatment to degrade the detected organic matter of di-tert-butylphenol and certain isoparaffins, COD, ammonia-N and TN removal rates reached 92%, 62% and 61%, respectively. These results showed that the activities of the microorganisms were increased, thus indicating a net denitrification and nitrification reactions improvement. 展开更多
关键词 Ammonia-N Anoxic and Oxic (A/O) Reactor Coagulation and Sedimentation FCC wastewater Ozone Total nitrogen (TN)
下载PDF
Simultaneous nitrification and denitrification by aerobic granular sludge membrane bioreactor for high concentration ammonium nitrogen wastewater 被引量:2
12
作者 Rui CHEN Xiaoli WANG +1 位作者 Yonggang ZHANG Xueqi FU 《Chinese Journal Of Geochemistry》 EI CAS 2006年第B08期130-131,共2页
关键词 废水处理 需氧菌 污泥 硝化作用
下载PDF
Nitrogen Removal in Wastewater Irrigation Systems and Its Influence on Groundwater Pollution
13
作者 Wang Min Wu Yongfeng Tang Minggao Zhong Zuoxin Shen ZhaoliHydrogeological Department , China University of Geosciences , Beijing 100083 《Journal of Earth Science》 SCIE CAS CSCD 1995年第2期108-113,共6页
The experiment included ten soil columns and field investigation in 1 - 2 year duration. Data on the columns continuously flooded with waste water indicated that when total input of NH4-N reached to above 70% of the N... The experiment included ten soil columns and field investigation in 1 - 2 year duration. Data on the columns continuously flooded with waste water indicated that when total input of NH4-N reached to above 70% of the NH4-N adsorption capacity in soil the breakthrough would appear in the output . Adequate removal of nitrogen from the waste water would require at least 170 cm deep groundwater table . Fine textured soil would promote denitrification . The columns simulating discontinuous waste water irrigation indicated that denitrification existed only in the partial microenvironment of reduction .Groundwater table depth had no strong influence on nitrogen removal . The investigation in field revealed that the groundwater recharged with waste water was not polluted by nitrogen when the aeration profile was in finer textures owing to the combined contribution of nitrification and denitrification . 展开更多
关键词 wastewater irrigation system nitrogen removal GROUNDWATER pollution nitrification denitrification .
下载PDF
Evaluating the Effects of Aquaculture Wastewater Irrigation with Fertilizer Reduction on Greenhouse Tomato Production,Economic Benefits and Soil Nitrogen Characteristics
14
作者 Hang Guo Linxian Liao +4 位作者 Zhenhao Zheng Junzeng Xu Qi Wei Peng Chen Kechun Wang 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第12期3291-3304,共14页
The utilization of aquaculture wastewater as irrigation is an effective way to recycle and reuse water and nitrogen fertilizer resources because it contains numerous nutrients.However,it is still unclear that the patt... The utilization of aquaculture wastewater as irrigation is an effective way to recycle and reuse water and nitrogen fertilizer resources because it contains numerous nutrients.However,it is still unclear that the pattern of substituting aquaculture wastewater irrigation for fertilizer supplementing is conducive to improving the soil nitrogen status,fruit yield and water-fertilizer use efficiency for tomato production.In this context,the experiment was intended to establish the appropriate irrigation regime of aquaculture wastewater in tomato production for freshwater replacement and fertilizer reduction to ensure good yields.Pot experiments were conducted with treatments as farmers accustomed to irrigation and fertilization used as control(CK),1.75 L aquaculture wastewater with base fertilizer(W1),2 L aquaculture wastewater with base fertilizer;and 2.25 L aquaculture wastewater with base fertilizer(W3).We examined the effects of aquaculture wastewater irrigation on soil nitrogen distribution,Nrelated hydrolases,tomato yield,and economic benefits.The results showed that the control treatment had the highest N input,about 24.68%higher than the W3 treatment,while the yield was only about 7.81%higher than W3.This indicated that the overuse of chemical fertilizer was present in the current tomato production.Although the reduction of fertilizer in aquaculture wastewater irrigation caused a decrease in tomato production,this economic loss can be compensated by cost savings in the wastewater disposal.Among aquaculture wastewater treatments,the W3 treatment had the highest overall benefit,achieving 62.63%freshwater savings,37.50%fertilizer input reduction,and an economic return of approximately 19,466 Yuan per hectare higher than the control.Additionally,increasing the irrigation volume of aquaculture wastewater could provide more available nutrients to the soil,which were more prevalent in the form of organic nitrogen.The lower soil nitrate reductase activities(NR)under aquaculture wastewater treatments after harvesting also proved that this pattern was beneficial to reduce soil nitrate nitrogen residues.Overall,the results demonstrate that aquaculture wastewater irrigation alleviates the soil nitrate residues,improves nutrient availability,and results in more economic returns with water and fertilizer conservation for the greenhouse production of tomatoes. 展开更多
关键词 Aquaculture wastewater irrigation fertilizer reduction soil nitrogen residue tomato production
下载PDF
A Combined System for Biological Removal of Nitrogen and Carbon from Nylon-6 Production Wastewater
15
作者 刘芳 刘国华 +2 位作者 田晴 张曼 陈季华 《Journal of Donghua University(English Edition)》 EI CAS 2007年第6期700-706,共7页
A combined system consisting of hydrolysis acidification, denitrification and nitrification reactors was used to remove carbon and nitrogen from the nylon - 6 production wastewater, which was characterized by good bio... A combined system consisting of hydrolysis acidification, denitrification and nitrification reactors was used to remove carbon and nitrogen from the nylon - 6 production wastewater, which was characterized by good biodegradability and high nitrogen concentration. The influences of Chemical Oxygen Demand (COD) in the influent, recirculation ratio, Hydraulic Residence Time (HRT) and Dissolved Oxygen (DO) concentration on the system performances were investigated. From results it could be seen that good performances have been achieved during the overall experiments periods, and COD, Total Nitrogen (TN), NH^+ -N and Suspended Solids (SS) in the effluent were 53, 16, 2 and 24 mg· L^-1, respectively, which has satisfied the first standard of wastewater discharge established by Environmental Protection Agency (EPA) of China. Furthermore, results showed that operation factors, viz. COD in the influent, recirculation ratio, HRT and DO concentration, all had important influences on the system performances. 展开更多
关键词 Nylon-6 production wastewater hydrolysis acidification submerged biofilm reactor biological nitrogen removal
下载PDF
Simultaneous removal of organic substances and nitrogen from municipal wastewater by an intermittently aerated submerged membrane bioreactor
16
作者 Jian YU Guo K. FU +1 位作者 Xiong W. OUYANG Wen J. HOU 《Chinese Journal Of Geochemistry》 EI CAS 2006年第B08期257-257,共1页
关键词 废水 有机物质 生物反应器
下载PDF
Study on the Treatment of High Strength Ammonia Wastewater by Using Inner Circulation Impinging Stream Biofilm Reactor 被引量:10
17
作者 李国朝 杨涛 +1 位作者 陈捷 张新华 《Meteorological and Environmental Research》 CAS 2010年第12期104-106,共3页
[Objective] The treatment effect of inner circulation impinging stream biofilm reactor(ICISBR) on high strength ammonia wastewater was studied.[Method] By means of ICISBR,high strength ammonia wastewater was treated b... [Objective] The treatment effect of inner circulation impinging stream biofilm reactor(ICISBR) on high strength ammonia wastewater was studied.[Method] By means of ICISBR,high strength ammonia wastewater was treated by using corncob as biological carrier,and the effect of C/N and dissolved oxygen(DO) on the removal effect of chemical oxygen demand(COD) and ammonia nitrogen(NH+4-N) were discussed in our paper.[Result] When NH+4-N and DO in effluent water were 200 and 2 mg/L,respectively,the removal effect of COD was not affected obviously whether C/N was 1.0 or 1.5,reaching above 92%;when C/N was 1.5,the average removal rate of COD and NH+4-N were the highest,namely 92.7% and 41.2%,respectively;when C/N was 2.0,the average removal rate of COD and NH+4-N decreased obviously to 20% and 10%;when C/N and NH+4-N were 1.5 and 200 mg/L,DO had little effects on the removal of COD and great effects on the removal of NH+4-N,namely the removal rate of NH+4-N decreased to 17.1% from 46.4% with the reduction of DO concentration from 4 to 1 mg/L.[Conclusion] Our study could provide theoretical basis for the treatment of high strength ammonia wastewater. 展开更多
关键词 ICISBR CORNCOB C/N Ammonia nitrogen wastewater China
下载PDF
Study on Purification Efficiency of Vertical Flow Wetlands on Domestic Wastewater 被引量:7
18
作者 仝昭昭 王延华 顾中铸 《Agricultural Science & Technology》 CAS 2011年第3期461-465,共5页
The combination method of intermittent influent and vertical flow wetlands (VFW) was used in the test to treat the domestic wastewater. Four artificial wetlands including Typha latifolia wetland,Phragmites australis... The combination method of intermittent influent and vertical flow wetlands (VFW) was used in the test to treat the domestic wastewater. Four artificial wetlands including Typha latifolia wetland,Phragmites australis (P.H.) wetland,polyculture wetlands (Typha latifolia and Phragmites australis) and non-vegetation wetland were established in the test. The effects of hydraulic retention time (HRT) and plant species on pollutants removal efficiencies were studied. The results showed that when HRT=7,the treatment efficiencies of wetlands with plants for the removal of TN and NH+4-N were up to 99.65% and 99.58%,respectively. For the control wetland,TN removal efficiency was up to 87.9% when HRT were 6 days,and NH+4-N removal efficiency was up to 91.8% when HRT were 5 days. TP removal efficiencies of four wetlands were higher than 93% when HRT was 6 days. Through the studies on different plants,it was found that vegetation wetlands had better nitrogen removal efficiency than non-vegetation wetland. The treatment efficacy of Phragmites australis wetland and polyculture wetland was better than Typha latifolia wetland. 展开更多
关键词 Vertical flow wetlands Domestic wastewater Removal of nitrogen and phosphorus Hydraulic retention time
下载PDF
Treatment of coke plant wastewater by SND fixed biofilm hybrid system 被引量:33
19
作者 QI Rong YANG Kun YU Zhao-xiang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第2期153-159,共7页
In this article, coke plant wastewater was treated by a simultaneous nitrifying and denitrifying (SND) fixed biofilm hybrid system. The results showed that suitable parameters of the system were important for the pe... In this article, coke plant wastewater was treated by a simultaneous nitrifying and denitrifying (SND) fixed biofilm hybrid system. The results showed that suitable parameters of the system were important for the performance of the bio-degradation system. The chemical oxygen demand (COD) removal efficiency in this system was satisfactory, higher than 94%, and ammonia nitrogen was higher than 95%. The effluent COD concentration could meet the discharge standard, except for very few situations. The results showed that a sufficient carbon source was important for making ammonia nitrogen concentration meet the discharge standard. Then the TiN removal efficiency in this system can be brought higher than 94%. Dissolved oxygen (DO) is very important to the performance of the SND bio-degradation system, and the suitable DO is about 3.5-4.0 mg/L at the forepart of reactor. In addition, the performance of the system was almost not affected by pH value. The results show that the system is feasible to treat coke plant wastewater. 展开更多
关键词 coke plant wastewater SND fixed biofilm ammonia nitrogen COD carbon source
下载PDF
N-Removal on Wastewater Treatment Plants: A Process Control Approach 被引量:2
20
作者 Ramon Vilanova Reza Katebi NoraLiza Wahab 《Journal of Water Resource and Protection》 2011年第1期1-11,共11页
A multilayered control design approach is proposed here. Starting with the Dissolved Oxygen (DO) control loop in the last aerated tank, the control of the recirculation sludge is added next. Once the limitations of th... A multilayered control design approach is proposed here. Starting with the Dissolved Oxygen (DO) control loop in the last aerated tank, the control of the recirculation sludge is added next. Once the limitations of this two-loop control strategy are highlighted, a cascade control loop is proposed. This cascade control is further enhanced by a feed-forward control action that makes use of influent ammonia concentration. The resulting cascade+feedforward control configuration achieves satisfactory nitrogen removal for the three influent operating conditions (dry, rain and storm.) 展开更多
关键词 wastewater PROCESS CONTROL nitrogen REMOVAL PID CONTROL
下载PDF
上一页 1 2 150 下一页 到第
使用帮助 返回顶部