Nitrogen and sulfur co-doped porous nanocarbon (ZIF-C-N-S) catalyst was successfully synthesized derived from ZIF-8 and thiourea precursors.The electrochemical measurements indicate that the as-obtained ZIF-C-N-S cata...Nitrogen and sulfur co-doped porous nanocarbon (ZIF-C-N-S) catalyst was successfully synthesized derived from ZIF-8 and thiourea precursors.The electrochemical measurements indicate that the as-obtained ZIF-C-N-S catalyst exhibits higher electrocatalytic activity for oxygen reduction reaction (ORR) in alkaline electrolyte and superior durability-longer than commercial Pt/C catalyst.The enhancment of electrocatalytic activity mainly be come from the open pore structure,large specific surface area as well as the synergistic effect resulted from the co-doping of N and S atoms.In addition,the ZIF-C-N-S catalyst is also used as the air cathode catalyst in the microbial fuel cell (MFC) device.The maximum power density and stable output voltage of ZIF-C-N-S based MFC are 1315 mW/m2 and 0.48 V,respectively,which is better than that of Pt/C based MFC.展开更多
A novel composite photocatalyst for photocatalytic decomposition of water for hydrogen evolution was successfully synthesized by in-situ growth of nitrogen and sulfur co-doped coal-based carbon quantum dots(NSCQDs)nan...A novel composite photocatalyst for photocatalytic decomposition of water for hydrogen evolution was successfully synthesized by in-situ growth of nitrogen and sulfur co-doped coal-based carbon quantum dots(NSCQDs)nanoparticles on the surface of sheet cobalt-based metal-organic framework(Co-MOF)and graphitic carbon nitride(g-C_(3)N_(4),CN).The structure and properties of the obtained catalysts were systematically analyzed.NSCQDs effectively broaden the absorption of Co-MOF and CN in the visible region.The new composite photocatalyst has high hydrogen production activity and the hydrogen production rate reaches 6254μmol/(g·h)at pH=9.At the same time,NSCQDs synergy Co-MOF/CN composites have good stability.After four cycles of hydrogen production,the performance remains relatively stable.The tran sient photocurrent response and Nyquist plot experimental results further demonstrate the improvement of carrier separation efficiency in composite catalysts.The semiconductor type(n-type semico nductor)of the single-phase catalyst was determined by the Mott-Schottky test,and the band structure was analyzed.The conductive and valence bands of CN are-0.99 and 1.72 eV,respectively,and the conduction and valence bands of Co-MOF are-1.85 and 1.33 eV,respectively.Th e mechanism of the photocatalytic reaction can be inferred,that is,Z-type heterojunction is formed between CN an d Co-MOF,and NSCQDs was used as cocatalyst.展开更多
Commercialization of acetylene hydrochlorination using AuCl3 catalysts has been impeded by its poor stability. We have been studying that nitrogen-modified Au/NAC catalyst delivered a stable performance which can impr...Commercialization of acetylene hydrochlorination using AuCl3 catalysts has been impeded by its poor stability. We have been studying that nitrogen-modified Au/NAC catalyst delivered a stable performance which can improve acetylene hydrochlorination activity and has resistance to catalytic deactivation. Here we show that nitrogen and sulfur co-doped activated carbon supported AuCl3 catalyst worked as efficient catalysts for the hydrochlorination of acetylene to vinyl chloride. Au/NSAC catalyst demonstrated high activity comparative to Au/AC catalyst. Furthermore, it also delivered stable performance within the selectivity of acetylene, reaching more than 99.5%, and there was only a 3.3% C2H2 conversion loss after running for 12 h under the reaction conditions of a temperature of 180 C and a C2H2 hourly space velocity of 1480 h 1. The presence of the sulfur atoms may serve to immobilize/ anchor the Au and also help prevent reduction and sintering of the Au and hence improve the catalytic activity and stability. The excellent catalytic performance of the Au/NSAC catalyst demonstrated its potential as an alternative to mercury chloride catalysts for acetylene hydrochlorination.展开更多
Li-ion hybrid supercapacitors(Li-HSCs) have attracted increasing attention as a promising energy storage device with both high power and energy densities. We report a facile two-step hydrothermal method to prepare t...Li-ion hybrid supercapacitors(Li-HSCs) have attracted increasing attention as a promising energy storage device with both high power and energy densities. We report a facile two-step hydrothermal method to prepare the orthorhombic niobium oxide(T-Nb2O5) nanosheets supported on nitrogen and sulfur co-doped graphene(T-Nb205/NS-G) as anode for Li-HSCs. X-ray diffraction and morphological analysis show that the T-Nb2O5 nano sheets successfully and uniformly distributed on the NS-G sheets. The T-Nb2O5/NS-G hybrid exhibits great rate capability(capacity retention of63.1% from 0.05 to 5 A g^-1) and superior cycling stability(a low capacity fading of ~6.4% after 1000 cycles at 0.5 A g^-1).The full-cell consisting of T-Nb2O5/NS-G and active carbon(AC) results in high energy density(69.2 W h kg^-1 at0.1 A g^-1), high power density(9.17 kW kg^-1) and excellent cycling stability(95% of the initial energy after 3000 cycles).This excellent performance is mainly attributed to the highly conductive NS-G sheets, the uniformly distributed T-Nb2O5 nano sheets and the synergetic effects between them. These encouraging performances confirm that the obtained TNb2O5/NS-G has promising prospect as the anode for Li-HSCs.展开更多
Highly photoluminescent nitrogen and sulfur co-doped carbon nanoparticles(CNPs) ca. 56 nm have been prepared through a green one-step hydrothermal synthesis route by using millet powder as carbon sources, in which t...Highly photoluminescent nitrogen and sulfur co-doped carbon nanoparticles(CNPs) ca. 56 nm have been prepared through a green one-step hydrothermal synthesis route by using millet powder as carbon sources, in which the nitrogen and sulfur co-doping improves the photoluminescent efficiency of the CNPs. The as-prepared CNPs display excellent fluorescent properties and low biotoxicity with a relatively high quantum yield of 30.4%, which have been applied for bioimaging and highly sensitive and selective detection of iron(III) ions.展开更多
The nitrogen and sulfur co-doped carbon dots(N, S-CDs) with increased luminescence were synthesized by a hydrothermal process in one green pot by using glucose, and a new sulfur-doping source of sodium sulfite was dev...The nitrogen and sulfur co-doped carbon dots(N, S-CDs) with increased luminescence were synthesized by a hydrothermal process in one green pot by using glucose, and a new sulfur-doping source of sodium sulfite was developed.The synergistic effect of the N and S groups was well discussed through the structure analysis of Fourier transform infrared spectra and x-ray photoelectron spectra. The surface states of N, S-CDs embody more complicated functional groups, and S element exists as –SSO3, –C–SO3, and SO-42groups due to the introduction of sodium sulfite. The sulfur-containing groups passivate the surface of the CDs, and the relatively high sulfur groups may reduce the non-radiation centers. The fluorescence is affected by the hydroxyl group of the solvent. The quenching of Fe3+ ion to fluorescence and the sensitivity of fluorescence to p H were also investigated.展开更多
Sulfide-containing waste streams are generated by a number of industries. It is emitted into the environment as dis- solved sulfide (S2- and HS-) in wastewaters and as H2S in waste gases. Due to its corrosive nature, ...Sulfide-containing waste streams are generated by a number of industries. It is emitted into the environment as dis- solved sulfide (S2- and HS-) in wastewaters and as H2S in waste gases. Due to its corrosive nature, biological hydrogen sulfide removal processes are being investigated to overcome the chemical and disposal costs associated with existing chemically based removal processes. The nitrogen and sulfur metabolism interacts at various levels of the wastewater treatment process. Hence, the sulfur cycle offers possibilities to integrate nitrogen removal in the treatment process, which needs to be further optimized by appropriate design of the reactor configuration, optimization of performance parameters, retention of biomass and optimization of biomass growth. The present paper reviews the biotechnological advances to remove sulfides from various environments.展开更多
Phytophthora root and crown rot was found on the fruit trees in Bulgaria for the first time in the period 1998-1999. Monitoring of the disease spread from 2000 to 2007 points out incidence between 2 and 14 per cent, i...Phytophthora root and crown rot was found on the fruit trees in Bulgaria for the first time in the period 1998-1999. Monitoring of the disease spread from 2000 to 2007 points out incidence between 2 and 14 per cent, in some orchards and nurseries in the Southern part of Bulgaria. The following Phytophthora species were identified based on morphological and cultural characteristics, and temperature requirements: Phytophthora cactorum, Phytophthora citrophthora, Phytophthora drechsleri, Phytophthora cryptogea, Phytophthora hybrid specie and Pythium. Prevailing specie was P. cactorum. P. cryptogea and P. cactorum were confirmed by application of molecular methods. Nutritional requirements of P. cactorum and P. citrophthora were studied. Most Nitrogen sources stimulated the mycelial growth of P. cactorum to a higher extend, and reduced the colony size ofP. citrophthora. Different Carbon sources were utilized well by P. cactorum, and only saccharose and maltose had a stimulating effect on the mycelial growth of P. citrophthora. MgSO4.7H20 was the preferred sulfur source for both fungi, as L-cysteine and L-methionine only for P. cactorum. Phytophthora infection leads to physiological changes in the.host plant tissues. The tendency traced out is: about disorders in the amino acid metabolism, increase in the total sugars and slight reduction of the cellulose content. The total nitrogen, phosphorus and potassium content are reduced and the calcium and magnesium are increased. Photosynthesis of inoculated plants was suppressed and transpiration was increased.展开更多
Potassium-ion batteries(PIBs) hold great potential as an alternative to lithium-ion batteries due to the abundant reserves of potassium and similar redox potentials of K+/K and Li+/Li. Unfortunately, PIBs with carbona...Potassium-ion batteries(PIBs) hold great potential as an alternative to lithium-ion batteries due to the abundant reserves of potassium and similar redox potentials of K+/K and Li+/Li. Unfortunately, PIBs with carbonaceous electrodes present sluggish kinetics, resulting in unsatisfactory cycling stability and poor rate capability. Herein, we demonstrate that the synergistic effects of the enlarged interlayer spacing and enhanced capacitive behavior induced by the co-doping of nitrogen and sulfur atoms into a carbon structure(NSC) can improve its potassium storage capability. Based on the capacitive contribution calculations, electrochemical impedance spectroscopy, the galvanostatic intermittent titration technique, and density functional theory results, the NSC electrode is found to exhibit favorable electronic conductivity,enhanced capacitive adsorption behavior, and fast K+ ion diffusion kinetics. Additionally, a series of exsitu characterizations demonstrate that NSC exhibits superior structural stability during the(de)potassiation process. As a result, NSC displays a high reversible capacity of 302.8 mAh g-1 at 0.1 Ag-1 and a stable capacity of 105.2 m Ahg-1 even at 2 Ag-1 after 600 cycles. This work may offer new insight into the effects of the heteroatom doping of carbon materials on their potassium storage properties and facilitate their application in PIBs.展开更多
According to a statistic,approximately 6 trillion cigarettes are smoked each year all over the world,which produces approximately 1.2 million tons of discarded cigarette butts.The discarded cigarette filters are non-b...According to a statistic,approximately 6 trillion cigarettes are smoked each year all over the world,which produces approximately 1.2 million tons of discarded cigarette butts.The discarded cigarette filters are non-biodegradable,thus they produce a mass of waste disposal and cause environmental pollution is-sue.For the purpose of transforming waste into wealth and reducing environmental pollution,nitrogen and sulfur co-doped carbon nanofiber/carbon black(N,S-CNF/CB)composite derived from the discarded cigarette filters is employed to modify glass fiber(GF)separator for the first time in this study.N,S-CNF improves binding ability towards sodium polysulfides(SPSs)by chemisorption.Non-polar CB limits the dissolution of SPSs in the liquid electrolyte by physisorption.The experiment and density functional theory calculation results indicate that a RT-Na/S battery with a N,S-CNF/CB+GF separator exhibits good cycling stability and rate performance.After 100 cycles at a low current rate of 0.1 C,a RT-Na/S battery with a sulfur mass fraction of 71%delivers a discharge capacity of 703 mAh g^(−1).In addition,at a high current rate of 0.5 C,a discharge capacity of 527 mAh g^(−1) is still maintained after 900 cycles with a very low capacity fading rate of 0.035%per cycle.展开更多
Rational design and development of cost-effective, highly active and durable bifunctional electrocatalysts towards oxygen redox reactions is of critical importance but great challenge for the broad implementation of n...Rational design and development of cost-effective, highly active and durable bifunctional electrocatalysts towards oxygen redox reactions is of critical importance but great challenge for the broad implementation of next-generation metal-air batteries for electric transportation. Herein, a high-performance electrocatalyst of cobalt and zinc sulfides nanocrystals embedded within nitrogen and sulfur co-doped porous carbon is successfully designed and derived from bimetallic metal-organic frameworks of cobalt and zinc containing zeolitic imidazolate frameworks. The unique nanostructure contains abundant electrocatalytic active sites of sulfides nanocrystals and nitrogen and sulfur dopants which can be fast accessed through highly porous structure originate from both zinc vaporization and sulfurization processes. Such bifunctional electrocatalyst delivers a superior half-wave potential of 0.86 V towards oxygen reduction reaction and overpotential of 350 mV towards oxygen evolution reaction, as well as excellent durability owing to the highly stable carbon framework with a great graphitized portion. The performance boosting is mainly attributed to the unique nanostructure where bimetallic cobalt and zinc provide synergistic effect during both synthesis and catalysis processes. The design and realization pave a new way of development and understanding of bifunctional electrocatalyst towards clean electrochemical energy technologies.展开更多
Bisphenol A(BPA)has received increasing attention due to its long-term industrial application and persistence in environmental pollution.Iron-based carbon catalyst activation of peroxymonosulfate(PMS)shows a good pros...Bisphenol A(BPA)has received increasing attention due to its long-term industrial application and persistence in environmental pollution.Iron-based carbon catalyst activation of peroxymonosulfate(PMS)shows a good prospect for effective elimination of recalcitrant contaminants in water.Herein,considering the problem about the leaching of iron ions and the optimization of heteroatoms doping,the iron,nitrogen and sulfur co-doped tremellalike carbon catalyst(Fe-NS@C)was rationally designed using very little iron,S-C_(3)N_(4) and low-cost chitosan(CS)via the impregnation-calcination method.The as-prepared Fe-NS@C exhibited excellent performance for complete removal of BPA(20 mg/L)by activating PMS with the high kinetic constant(1.492 min^(−1))in 15 min.Besides,the Fe-NS@C/PMS system not only possessed wide pH adaptation and high resistance to environmental interference,but also maintained an excellent degradation efficiency on different pollutants.Impressively,increased S-C_(3)N_(4) doping amount modulated the contents of different N species in Fe-NS@C,and the catalytic activity of Fe-NS@C-1-x was visibly enhanced with increasing SC_(3)N_(4) contents,verifying pyridine N and Fe-Nx as main active sites in the system.Meanwhile,thiophene sulfur(C-S-C)as active sites played an auxiliary role.Furthermore,quenching experiment,EPR analysis and electrochemical test proved that surface-bound radicals(·OH and SO_(4)^(·−))and non-radical pathways worked in the BPA degradation(the former played a dominant role).Finally,possible BPA degradation route were proposed.This work provided a promising way to synthesize the novel Fe,N and S co-doping carbon catalyst for degrading organic pollutants with low metal leaching and high catalytic ability.展开更多
基金the National Natural Science Foundation of China(No.51472034)the Opening Project of Key Laboratory of Optoelectronic Chemical Materials and Devices,Ministry of Education,Jianghan University(No.JDGD-201806)。
文摘Nitrogen and sulfur co-doped porous nanocarbon (ZIF-C-N-S) catalyst was successfully synthesized derived from ZIF-8 and thiourea precursors.The electrochemical measurements indicate that the as-obtained ZIF-C-N-S catalyst exhibits higher electrocatalytic activity for oxygen reduction reaction (ORR) in alkaline electrolyte and superior durability-longer than commercial Pt/C catalyst.The enhancment of electrocatalytic activity mainly be come from the open pore structure,large specific surface area as well as the synergistic effect resulted from the co-doping of N and S atoms.In addition,the ZIF-C-N-S catalyst is also used as the air cathode catalyst in the microbial fuel cell (MFC) device.The maximum power density and stable output voltage of ZIF-C-N-S based MFC are 1315 mW/m2 and 0.48 V,respectively,which is better than that of Pt/C based MFC.
基金Project supported by the Ningxia Natural Science Foundation of China(2023AAC03285)National Natural Science Foundation of China(21666001)+1 种基金Innovative Team for Transforming Waste Cooking Oil into Clean Energy and High Value-added Chemicals,ChinaNingxia Low-grade Resource High Value Utilization and Environmental Chemical Integration Technology Innovation Team Project,China。
文摘A novel composite photocatalyst for photocatalytic decomposition of water for hydrogen evolution was successfully synthesized by in-situ growth of nitrogen and sulfur co-doped coal-based carbon quantum dots(NSCQDs)nanoparticles on the surface of sheet cobalt-based metal-organic framework(Co-MOF)and graphitic carbon nitride(g-C_(3)N_(4),CN).The structure and properties of the obtained catalysts were systematically analyzed.NSCQDs effectively broaden the absorption of Co-MOF and CN in the visible region.The new composite photocatalyst has high hydrogen production activity and the hydrogen production rate reaches 6254μmol/(g·h)at pH=9.At the same time,NSCQDs synergy Co-MOF/CN composites have good stability.After four cycles of hydrogen production,the performance remains relatively stable.The tran sient photocurrent response and Nyquist plot experimental results further demonstrate the improvement of carrier separation efficiency in composite catalysts.The semiconductor type(n-type semico nductor)of the single-phase catalyst was determined by the Mott-Schottky test,and the band structure was analyzed.The conductive and valence bands of CN are-0.99 and 1.72 eV,respectively,and the conduction and valence bands of Co-MOF are-1.85 and 1.33 eV,respectively.Th e mechanism of the photocatalytic reaction can be inferred,that is,Z-type heterojunction is formed between CN an d Co-MOF,and NSCQDs was used as cocatalyst.
文摘Commercialization of acetylene hydrochlorination using AuCl3 catalysts has been impeded by its poor stability. We have been studying that nitrogen-modified Au/NAC catalyst delivered a stable performance which can improve acetylene hydrochlorination activity and has resistance to catalytic deactivation. Here we show that nitrogen and sulfur co-doped activated carbon supported AuCl3 catalyst worked as efficient catalysts for the hydrochlorination of acetylene to vinyl chloride. Au/NSAC catalyst demonstrated high activity comparative to Au/AC catalyst. Furthermore, it also delivered stable performance within the selectivity of acetylene, reaching more than 99.5%, and there was only a 3.3% C2H2 conversion loss after running for 12 h under the reaction conditions of a temperature of 180 C and a C2H2 hourly space velocity of 1480 h 1. The presence of the sulfur atoms may serve to immobilize/ anchor the Au and also help prevent reduction and sintering of the Au and hence improve the catalytic activity and stability. The excellent catalytic performance of the Au/NSAC catalyst demonstrated its potential as an alternative to mercury chloride catalysts for acetylene hydrochlorination.
基金supported by the National Natural Science Foundation of China(21576138 and 51572127)China-Israel Cooperative Program (2016YFE0129900)+5 种基金Program for NCET-12-0629,PhD Program Foundation of Ministry of Education of China (20133219110018)the Natural Science Foundation of Jiangsu Province (BK20160828)Post-Doctoral Foundation(1501016B)Six Major Talent Summit (XNY-011)PAPD of Jiangsu Provincethe program for Science and Technology Innovative Research Team in Universities of Jiangsu Province,China
文摘Li-ion hybrid supercapacitors(Li-HSCs) have attracted increasing attention as a promising energy storage device with both high power and energy densities. We report a facile two-step hydrothermal method to prepare the orthorhombic niobium oxide(T-Nb2O5) nanosheets supported on nitrogen and sulfur co-doped graphene(T-Nb205/NS-G) as anode for Li-HSCs. X-ray diffraction and morphological analysis show that the T-Nb2O5 nano sheets successfully and uniformly distributed on the NS-G sheets. The T-Nb2O5/NS-G hybrid exhibits great rate capability(capacity retention of63.1% from 0.05 to 5 A g^-1) and superior cycling stability(a low capacity fading of ~6.4% after 1000 cycles at 0.5 A g^-1).The full-cell consisting of T-Nb2O5/NS-G and active carbon(AC) results in high energy density(69.2 W h kg^-1 at0.1 A g^-1), high power density(9.17 kW kg^-1) and excellent cycling stability(95% of the initial energy after 3000 cycles).This excellent performance is mainly attributed to the highly conductive NS-G sheets, the uniformly distributed T-Nb2O5 nano sheets and the synergetic effects between them. These encouraging performances confirm that the obtained TNb2O5/NS-G has promising prospect as the anode for Li-HSCs.
基金financial supports of the National Natural Science Foundation of China(No.21535006)the Fundamental Research Funds for the Central Universities(No.XDJK2015B029)
文摘Highly photoluminescent nitrogen and sulfur co-doped carbon nanoparticles(CNPs) ca. 56 nm have been prepared through a green one-step hydrothermal synthesis route by using millet powder as carbon sources, in which the nitrogen and sulfur co-doping improves the photoluminescent efficiency of the CNPs. The as-prepared CNPs display excellent fluorescent properties and low biotoxicity with a relatively high quantum yield of 30.4%, which have been applied for bioimaging and highly sensitive and selective detection of iron(III) ions.
基金Project by the National Natural Science Foundation of China(Grant Nos.51571085,11805052,and 61705062)the Research Project for Basic and Forefront Technology of Henan Province,China(Grant No.162300410219)the Doctor Foundation of Henan Polytechnic University,China(Grant No.B2014049)
文摘The nitrogen and sulfur co-doped carbon dots(N, S-CDs) with increased luminescence were synthesized by a hydrothermal process in one green pot by using glucose, and a new sulfur-doping source of sodium sulfite was developed.The synergistic effect of the N and S groups was well discussed through the structure analysis of Fourier transform infrared spectra and x-ray photoelectron spectra. The surface states of N, S-CDs embody more complicated functional groups, and S element exists as –SSO3, –C–SO3, and SO-42groups due to the introduction of sodium sulfite. The sulfur-containing groups passivate the surface of the CDs, and the relatively high sulfur groups may reduce the non-radiation centers. The fluorescence is affected by the hydroxyl group of the solvent. The quenching of Fe3+ ion to fluorescence and the sensitivity of fluorescence to p H were also investigated.
基金Project supported by the National Natural Science Foundation ofChina (No. 30070017)the Science and Technology Foundationfor Key Project of Zhejiang Province (No. 2003C13005), China
文摘Sulfide-containing waste streams are generated by a number of industries. It is emitted into the environment as dis- solved sulfide (S2- and HS-) in wastewaters and as H2S in waste gases. Due to its corrosive nature, biological hydrogen sulfide removal processes are being investigated to overcome the chemical and disposal costs associated with existing chemically based removal processes. The nitrogen and sulfur metabolism interacts at various levels of the wastewater treatment process. Hence, the sulfur cycle offers possibilities to integrate nitrogen removal in the treatment process, which needs to be further optimized by appropriate design of the reactor configuration, optimization of performance parameters, retention of biomass and optimization of biomass growth. The present paper reviews the biotechnological advances to remove sulfides from various environments.
文摘Phytophthora root and crown rot was found on the fruit trees in Bulgaria for the first time in the period 1998-1999. Monitoring of the disease spread from 2000 to 2007 points out incidence between 2 and 14 per cent, in some orchards and nurseries in the Southern part of Bulgaria. The following Phytophthora species were identified based on morphological and cultural characteristics, and temperature requirements: Phytophthora cactorum, Phytophthora citrophthora, Phytophthora drechsleri, Phytophthora cryptogea, Phytophthora hybrid specie and Pythium. Prevailing specie was P. cactorum. P. cryptogea and P. cactorum were confirmed by application of molecular methods. Nutritional requirements of P. cactorum and P. citrophthora were studied. Most Nitrogen sources stimulated the mycelial growth of P. cactorum to a higher extend, and reduced the colony size ofP. citrophthora. Different Carbon sources were utilized well by P. cactorum, and only saccharose and maltose had a stimulating effect on the mycelial growth of P. citrophthora. MgSO4.7H20 was the preferred sulfur source for both fungi, as L-cysteine and L-methionine only for P. cactorum. Phytophthora infection leads to physiological changes in the.host plant tissues. The tendency traced out is: about disorders in the amino acid metabolism, increase in the total sugars and slight reduction of the cellulose content. The total nitrogen, phosphorus and potassium content are reduced and the calcium and magnesium are increased. Photosynthesis of inoculated plants was suppressed and transpiration was increased.
基金supported by the National Natural Science Foundation of China (51932011, 51972346, 51802356, and 51872334)Innovation-Driven Project of Central South University (2020CX024)the Fundamental Research Funds for the Central Universities of Central South University (2020zzts075)。
文摘Potassium-ion batteries(PIBs) hold great potential as an alternative to lithium-ion batteries due to the abundant reserves of potassium and similar redox potentials of K+/K and Li+/Li. Unfortunately, PIBs with carbonaceous electrodes present sluggish kinetics, resulting in unsatisfactory cycling stability and poor rate capability. Herein, we demonstrate that the synergistic effects of the enlarged interlayer spacing and enhanced capacitive behavior induced by the co-doping of nitrogen and sulfur atoms into a carbon structure(NSC) can improve its potassium storage capability. Based on the capacitive contribution calculations, electrochemical impedance spectroscopy, the galvanostatic intermittent titration technique, and density functional theory results, the NSC electrode is found to exhibit favorable electronic conductivity,enhanced capacitive adsorption behavior, and fast K+ ion diffusion kinetics. Additionally, a series of exsitu characterizations demonstrate that NSC exhibits superior structural stability during the(de)potassiation process. As a result, NSC displays a high reversible capacity of 302.8 mAh g-1 at 0.1 Ag-1 and a stable capacity of 105.2 m Ahg-1 even at 2 Ag-1 after 600 cycles. This work may offer new insight into the effects of the heteroatom doping of carbon materials on their potassium storage properties and facilitate their application in PIBs.
基金supported by the National Natural Science Foundation of China(Nos.51631004 and 52130101)the Basic Construction Fund in Jilin Province Budget for 2019(No.2019C042-8).
文摘According to a statistic,approximately 6 trillion cigarettes are smoked each year all over the world,which produces approximately 1.2 million tons of discarded cigarette butts.The discarded cigarette filters are non-biodegradable,thus they produce a mass of waste disposal and cause environmental pollution is-sue.For the purpose of transforming waste into wealth and reducing environmental pollution,nitrogen and sulfur co-doped carbon nanofiber/carbon black(N,S-CNF/CB)composite derived from the discarded cigarette filters is employed to modify glass fiber(GF)separator for the first time in this study.N,S-CNF improves binding ability towards sodium polysulfides(SPSs)by chemisorption.Non-polar CB limits the dissolution of SPSs in the liquid electrolyte by physisorption.The experiment and density functional theory calculation results indicate that a RT-Na/S battery with a N,S-CNF/CB+GF separator exhibits good cycling stability and rate performance.After 100 cycles at a low current rate of 0.1 C,a RT-Na/S battery with a sulfur mass fraction of 71%delivers a discharge capacity of 703 mAh g^(−1).In addition,at a high current rate of 0.5 C,a discharge capacity of 527 mAh g^(−1) is still maintained after 900 cycles with a very low capacity fading rate of 0.035%per cycle.
基金This work was financially supported by the Natural Sciences and Engineering Research Council of Canada(NSERC)through the Discovery Grant Program(RGPIN-2018-06725)+1 种基金the Discovery Accelerator Supplement Grant program(RGPAS-2018-522651)by the New Frontiers in Research Fund-Exploration program(NFRFE-2019-00488)。
文摘Rational design and development of cost-effective, highly active and durable bifunctional electrocatalysts towards oxygen redox reactions is of critical importance but great challenge for the broad implementation of next-generation metal-air batteries for electric transportation. Herein, a high-performance electrocatalyst of cobalt and zinc sulfides nanocrystals embedded within nitrogen and sulfur co-doped porous carbon is successfully designed and derived from bimetallic metal-organic frameworks of cobalt and zinc containing zeolitic imidazolate frameworks. The unique nanostructure contains abundant electrocatalytic active sites of sulfides nanocrystals and nitrogen and sulfur dopants which can be fast accessed through highly porous structure originate from both zinc vaporization and sulfurization processes. Such bifunctional electrocatalyst delivers a superior half-wave potential of 0.86 V towards oxygen reduction reaction and overpotential of 350 mV towards oxygen evolution reaction, as well as excellent durability owing to the highly stable carbon framework with a great graphitized portion. The performance boosting is mainly attributed to the unique nanostructure where bimetallic cobalt and zinc provide synergistic effect during both synthesis and catalysis processes. The design and realization pave a new way of development and understanding of bifunctional electrocatalyst towards clean electrochemical energy technologies.
基金This work was supported by the Major special projects of Science and Technology Department of Sichuan Province(No.2020ZDZX0020).
文摘Bisphenol A(BPA)has received increasing attention due to its long-term industrial application and persistence in environmental pollution.Iron-based carbon catalyst activation of peroxymonosulfate(PMS)shows a good prospect for effective elimination of recalcitrant contaminants in water.Herein,considering the problem about the leaching of iron ions and the optimization of heteroatoms doping,the iron,nitrogen and sulfur co-doped tremellalike carbon catalyst(Fe-NS@C)was rationally designed using very little iron,S-C_(3)N_(4) and low-cost chitosan(CS)via the impregnation-calcination method.The as-prepared Fe-NS@C exhibited excellent performance for complete removal of BPA(20 mg/L)by activating PMS with the high kinetic constant(1.492 min^(−1))in 15 min.Besides,the Fe-NS@C/PMS system not only possessed wide pH adaptation and high resistance to environmental interference,but also maintained an excellent degradation efficiency on different pollutants.Impressively,increased S-C_(3)N_(4) doping amount modulated the contents of different N species in Fe-NS@C,and the catalytic activity of Fe-NS@C-1-x was visibly enhanced with increasing SC_(3)N_(4) contents,verifying pyridine N and Fe-Nx as main active sites in the system.Meanwhile,thiophene sulfur(C-S-C)as active sites played an auxiliary role.Furthermore,quenching experiment,EPR analysis and electrochemical test proved that surface-bound radicals(·OH and SO_(4)^(·−))and non-radical pathways worked in the BPA degradation(the former played a dominant role).Finally,possible BPA degradation route were proposed.This work provided a promising way to synthesize the novel Fe,N and S co-doping carbon catalyst for degrading organic pollutants with low metal leaching and high catalytic ability.