With the growing interest in utilizing Mg and austenitic stainless steel(ASS)in the automotive sector,joining them together in three-sheet configuration is inevitable.However,achieving this task presents considerable ...With the growing interest in utilizing Mg and austenitic stainless steel(ASS)in the automotive sector,joining them together in three-sheet configuration is inevitable.However,achieving this task presents considerable challenges due to the large differences in their physical,metallurgical and mechanical properties.To overcome these challenges,the feasibility of using weld-bonding to join Mg alloy/ASS/ASS was investigated.The nugget formation,interface characteristics,microstructure and mechanical properties of the joints were investigated.The results show that the connection between the Mg alloy and upper ASS was achieved through the combined effect of the cured adhesive and weld-brazing in the weld zone.On the other hand,a metallurgical bond was formed at the ASS/ASS interface.The Mg nugget microstructure exhibited fine columar grains composed predominantly of primaryα-Mg grains along with a eutectic mixture ofα-Mg andβ-Mg17Al12.The nugget formed at the ASS/ASS interface consisted largely of columnar grains of austenite,with some equiaxed dendritic grains formed at the centerline of the joint.The weld-bonded joints exhibited an average peak load and energy absorption of about 8.5 kN and 17 J,respectively(the conventional RSW joints failed with minimal or no load application).The failure mode of the joints changed with increasing welding current from interfacial failure via the Mg nugget/upper ASS interface to partial interfacial failure(part of the Mg nugget was pulled out of the Mg sheet).Both failure modes were accompanied by cohesive failure in the adhesive zone.展开更多
Pitting corrosion and crevice corrosion behaviors of high nitrogen austenitic stainless steels (HNSS) were investigated by electrochemical and immersion testing methods in chloride solution, respectively. The chemic...Pitting corrosion and crevice corrosion behaviors of high nitrogen austenitic stainless steels (HNSS) were investigated by electrochemical and immersion testing methods in chloride solution, respectively. The chemical constitution and composition in the depth of passive films formed on HNSS were analyzed by X-ray photoelectron spectrum (XPS). HNSS has excellent pitting and crevice corrosion resistance compared to 316L stainless steel. With increasing the nitrogen content in steels, pitting potentials and critical pitting temperature (CPT) increase, and the maximum, average pit depths and average weight loss decrease. The CPT of HNSS is correlated with the alloying element content through the measure of alloying for resistance to corrosion (MARC). The MARC can be expressed as an equation of CPT=2.55MARC-29. XPS results show that HNSS exhibiting excellent corrosion resistance is attributed to the enrichment of nitrogen on the surface of passive films, which forms ammonium ions increasing the local pH value and facilitating repassivation, and the synergistic effects of molybdenum and nitrogen.展开更多
A series of high nitrogen austenitic stainless steels were successfully developed with a pressurized electroslag remelting furnace. Nitride additives and deoxidizer were packed into the stainless steel pipes, and then...A series of high nitrogen austenitic stainless steels were successfully developed with a pressurized electroslag remelting furnace. Nitride additives and deoxidizer were packed into the stainless steel pipes, and then the stainless steel pipes were welded on the surface of an electrode with low nitrogen content to prepare a compound electrode. Using Si3N4 as a nitrogen alloying source, the silicon contents in the ingots were prone to be out of the specification range, the electric current fluctuated greatly and the surface qualities of the ingots were poor. The surface qualities of the ingots were improved with FeCrN as a nitrogen alloying source. The sound and compact macrostructure ingot with the maximum nitrogen content of 1.21wt% can be obtained. The 18Cr18Mn2Mo0.9N high nitrogen austenitic stainless steel exhibits high strength and good ductility at room temperature. The steel shows typical ductile-brittle transition behavior and excellent pitting corrosion resistance properties.展开更多
The intergranular corrosion (IGC) behavior of high nitrogen austenitic stainless steel (HNSS) sensitization treated at 650-950℃ was investigated by the double loop electrochemical potentiodynamic reactivation (D...The intergranular corrosion (IGC) behavior of high nitrogen austenitic stainless steel (HNSS) sensitization treated at 650-950℃ was investigated by the double loop electrochemical potentiodynamic reactivation (DL-EPR) method. The effects of the electrolytes, scan rate, sensitizing temperature on the susceptibility to IGC of HNSS were examined. The results show that the addi-tion of NaCl is an effective way to improve the formation of the cracking of a passive film in chromium-depleted zones during the reactivation scan. Decreasing the scan rate exhibits an obvious effect on the breakdown of the passive film. A solution with 2 mol/L H2SO4+1 mol/L NaCl+0.01 mol/L KSCN is suitable to check the susceptibility to IGC of HNSS at a sensitizing temperature of 650-950℃ at a suitable scan rate of 1.667 mV/s. Chromium depletion of HNSS is attributed to the precipitation of Cr2N which results in the susceptibility to IGC. The synergistic effect of Mo and N is suggested to play an important role in stabilizing the passive film to prevent the attack of IGC.展开更多
Hot-formed components are constantly exposed to hostile environments with corrosive substances. Microstructural changes caused by thermomechanical processing can be predicted to increase the corrosion resistance of au...Hot-formed components are constantly exposed to hostile environments with corrosive substances. Microstructural changes caused by thermomechanical processing can be predicted to increase the corrosion resistance of austenitic stainless steels. The objective of this study is to understand the relationship between the dynamic softening mechanisms and corrosion resistance, thus optimizing the hot-forming process. In the current work, the dynamic recrystallization (DRX) behavior of AISI 316 L austenitic stainless steel was studied in the temperature range of 1273 - 1423 K and strain-rate range of 0.1 - 5.0 s-1 using physical simulation. Subsequently, potentiodynamic polarization tests and scanning electron microscopy were performed on the hot-deformed samples to investigate the influence of temperature and strain-rate on the corrosion resistance and mechanical properties. The results indicated that the DRX fractions increased under low-temperature and high strain-rate conditions, resulting in grain refinement. The potentiodynamic polarization tests indicated that the dynamically recovered samples demonstrated high resistance to corrosion compared with the DRX samples. The best route found for the investigated alloy was for the strain to be applied at a temperature of 1423 K and a strain rate of 0.1 s-1.展开更多
In order to reduce the cost of the austenitic stainless steels(ASSs),the expensive austenite former(nickel) is often substituted by manganese.However,manganese is generally seen to have a detrimental effect on the cor...In order to reduce the cost of the austenitic stainless steels(ASSs),the expensive austenite former(nickel) is often substituted by manganese.However,manganese is generally seen to have a detrimental effect on the corrosion resistance.In the present study,the feasibility of laser surface modification of a lean-alloyed ASS(FeCrMn) for enhancing pitting corrosion resistance was investigated.Laser surface modification of FeCrMn was successfully achieved by a 2.3 kW high power diode laser(HPDL).Cyclic polarization tests for FeCrMn after laser surface modification in 3.5% NaCl solution at 25 ℃ were performed by using a potentiostat.The pitting resistance of the laser-modified specimens was found to be significantly improved as reflected by the noble shift in pitting potential.This could be attributed to redistribution of manganese sulphide leading to a more homogenous and refined microstructure.Pitting corrosion resistance of the laser-treated FeCrMn followed by subsequent citric acid passivation was found to be further improved as reflected by the noble shift in pitting potential to 0.18 V.展开更多
Characteristic features of austenitic steel grades combine a good corrosion resistance with a low hardness, wear resistance and scratch resistance. An interesting possibility for improving the wear behaviour of these ...Characteristic features of austenitic steel grades combine a good corrosion resistance with a low hardness, wear resistance and scratch resistance. An interesting possibility for improving the wear behaviour of these steels without loss of their corrosion resistance lies in enriching the near surface region with nitrogen. The process of a solution nitriding allows the rise of the solution of nitrogen in the solid phase. On this state nitrogen increases the corrosion resistance and the tribilogical load-bearing capacity. The aim of the study was, to investigate the improvement of the pitting corrosion behaviour by solution nitriding. A special topic was to observe the effect of nitrogen by different molybdenum content. So austenitic stainless steels (18% Cr, 12% Ni, Mo gradation between 0.06 to 3.6%) had been solution nitrided. The samples could be prepared with various surface content of nitrogen from 0.04 to 0.45% with a step-by-step grinding. The susceptibility against pitting corrosion of these samples had been tested by determination of the stable pitting potential in 0.5M and 1M NaCl at 25°C. For the investigated steel composition and the used corrosion system there is no influence of molybdenum on the effectiveness of nitrogen. The influence of nitrogen to all of the determined parameters can be described well by PRE = Cr + 3,3 * Mo + 25 *N. XPS analysis of the sample surfaces support the results of the pitting corrosion tests.Additionally surface investigations with an acid elektolyte (0,1M HC1 + 0,4M NaCl) were performed. In this case the passivation effective nitrogen content increases markedly with rising molybdenum concentration of the steel. Obviously an interaction of Mo and N is connected with a strongly acid electrolyte.展开更多
In recent years,nitrogen-alloyed stainless steels have been a research hotspot in the field of stainless steel product and technology. Nitrogen-alloyed austenitic stainless steels developed by Baosteel and their appli...In recent years,nitrogen-alloyed stainless steels have been a research hotspot in the field of stainless steel product and technology. Nitrogen-alloyed austenitic stainless steels developed by Baosteel and their applications are introduced. These steels are nitrogen-controlled products 304 N and 316 LN,nitrogen containing economical products BN series and high-nitrogen stainless steel( HNS) series. The results show that the presence of nitrogen can significantly improve the strength and corrosion resistance of steel produced. By nitrogen alloying,economical austenitic stainless steels w ith considerably less nickel than 304 can be obtained; the corrosion resistances of these steels are almost the same as 304. Furthermore,by a scientific approach of nitrogen alloying,high-nitrogen steel of0. 8% nitrogen content is fabricated under the non-pressurized conditions,and the pitting potential of this steel is >1. 0 V. At present,nitrogen-alloyed steels developed by Baosteel are w idely utilized in the manufacture of cryogenic storage containers,transportation containers,and many household w ares.展开更多
A simple and feasible method for the production of high nitrogen austenitic stainless steels involves nitrogen gas alloying and adding nitrided ferroalloys under normal atmospheric conditions. Alloying by nitrogen gas...A simple and feasible method for the production of high nitrogen austenitic stainless steels involves nitrogen gas alloying and adding nitrided ferroalloys under normal atmospheric conditions. Alloying by nitrogen gas bubbling in Fe-Cr-Mn-Mo series alloys was carried out in MoSi2 resistance furnace and air induction furnace under normal atmospheric conditions. The results showed that nitrogen alloying could be accelerated by increasing nitrogen gas flow rate, prolonging residence time of bubbles, increasing gas/molten steel interfaces, and decreasing the sulphur and oxygen contents in molten steel. Nitrogen content of 0.69% in 18Crl8Mn was obtained using air induction furnace by bubbling of nitrogen gas from porous plug. In addition, the nickel-free, high nitrogen austenitic stainless steels with sound and compact macrostructure had been produced in the laboratory using vacuum induction furnace and electroslag remelting furnace under nitrogen atmosphere by the addition of nitrided alloy with the maximum nitrogen content of 0.81%. Pores were observed in the ingots obtained by melting and casting in vacuum induction furnace with the addition of nitrided ferroalloys and under nitrogen atmosphere. After electroslag remelting of the cast ingots, they were all sound and were free of pores. The yield of nitrogen increased with the decrease of melting rate in the ESR process. Due to electroslag remelting under nitrogen atmosphere and the consequential addition of aluminum as deoxidizer to the slag, the loss of manganese decreased obviously. There existed mainly irregular Al2O3 inclusions and MnS inclusions in ESR ingots, and the size of most of the inclusions was less than 5 um. After homogenization of the hot rolled plate at 1 150℃ × 1 h followed by water quenching, the microstructure consisted of homogeneous austenite.展开更多
The corrosion behavior and mechanical properties of 316 L stainless steel(SS) fabricated via selective laser melting(SLM) were clarified by potentiodynamic polarization measurements, immersion tests, and tensile exper...The corrosion behavior and mechanical properties of 316 L stainless steel(SS) fabricated via selective laser melting(SLM) were clarified by potentiodynamic polarization measurements, immersion tests, and tensile experiments. The microstructural anisotropy of SLMed 316 L SS was also investigated by electron back-scattered diffraction and transmission electron microscopy. The grain sizes of the SLMed 316 L SS in the XOZ plane were smaller than those of the SLMed 316 L SS in the XOY plane, and a greater number of low-angle boundaries were present in the XOY plane, resulting in lower elongation for the XOY plane than for the XOZ plane. The SLMed 316 L was expected to exhibit higher strength but lower ductility than the wrought 316 L, which was attributed to the high density of dislocations. The pitting potentials of the SLMed 316 L samples were universally higher than those of the wrought sample in chloride solutions because of the annihilation of MnS or(Ca,Al)-oxides during the rapid solidification. However, the molten pool boundaries preferentially dissolved in aggressive solutions and the damage of the SLMed 316 L in FeCl3 solution was more serious after long-term service, indicating poor durability.展开更多
Silver or copper ions are often chosen as antibacterial agents. But a few reports are concerned with these two antibacterial agents for preparation of antibacterial stainless steel (SS). The antibacterial properties...Silver or copper ions are often chosen as antibacterial agents. But a few reports are concerned with these two antibacterial agents for preparation of antibacterial stainless steel (SS). The antibacterial properties and corrosion resistance of AISI 420 stainless steel implanted by silver and copper ions were investigated. Due to the cooperative antibacterial effect of silver and copper ions, the Ag/Cu implanted SS showed excellent antibacterial activities against both Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) at a total implantation dose of 2~ 1017 ions/cm2. Electrochemical polarization curves revealed that the corrosion resistance of Ag/Cu implanted SS was slightly enhanced as compared with that of un-implanted SS, The implanted layer was characterized by X-ray photoelec- tron spectroscopy (XPS). Core level XPS spectra indicate that the implanted silver and copper ions exist in metallic state in the implanted layer.展开更多
The precipitation behavior of M2N and the microstructural evolution in a Cr-Mn austenitic stainless steel with a high nitrogen content of 0.43mass% during isothermal aging has been investigated using optical microsco...The precipitation behavior of M2N and the microstructural evolution in a Cr-Mn austenitic stainless steel with a high nitrogen content of 0.43mass% during isothermal aging has been investigated using optical microscopy ( OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The aging treatments have led to the decomposition of nitrogen supersaturated austenitic matrix through discontinuous cellular precipitation. The precipitated cells comprise alternate lamellae of M2N precipitate and austenitic matrix. This kind of precipitate morphology is similar to that of pearlite. However, owing to the non-eutectoidic mechanism of the reaction, the growth characteristic of the cellular precipitates is different from that of pearlite in Fe-C binary alloys. M2N precipitate in the cell possesses a hexagonal crystal structure with the parameters a = 0.4752nm and c = 0.4429nm, and the orientation relationship between the M2V precipitates and austenite determined from the SADP is [01^-10]M2N//[101]γ, [2^-1^-10]M2N//[010]γ.展开更多
The effect of microstructure and passive film on the corrosion resistance of 2507 super duplex stainless steel(SDSS)in simulated marine environment was investigated by electrochemical measurements,periodic wet–dry cy...The effect of microstructure and passive film on the corrosion resistance of 2507 super duplex stainless steel(SDSS)in simulated marine environment was investigated by electrochemical measurements,periodic wet–dry cyclic corrosion test,scanning Kelvin probe force microscopy,atomic force microscopy,and X-ray photoelectron spectrometry.The results show that the occupation ratio ofγphase increases with the decrease in cooling rate,whereas the content ofαphase reduces gradually.In addition,theσprecipitated phase only emerges in the annealed steel.The pitting sensitivity and corrosion rate of 2507 SDSS reduce first and then increase as the cooling rate decreases.Theσprecipitated phase drastically reduces the protective ability of the passive film and facilitates micro-galvanic corrosion of the annealed steel.For various microstructures,the pits are preferentially distributed within theσandγphases.The corrosion resistance of 2507 SDSS prepared by different cooling methods is closely related to the microstructure and structure(stability and homogeneity)of the passive film.Normalized steel shows an optimal corrosion resistance,followed by the quenched and annealed steels.展开更多
Effects of cold rolling deformation on the microstructure, hardness, and creep behavior of high nitrogen austenitic stainless steel (HNASS) are investigated. Microstructure characterization shows that 70% cold rolli...Effects of cold rolling deformation on the microstructure, hardness, and creep behavior of high nitrogen austenitic stainless steel (HNASS) are investigated. Microstructure characterization shows that 70% cold rolling deformation results in significant refinement of the microstructure of this steel, with its average twin thickness reducing from 6.4 μm to 14 nm. Nanoindentation tests at different strain rates demonstrate that the hardness of the steel with nano-scale twins (nt-HNASS) is about 2 times as high as that of steel with micro-scale twins (mt-HNASS). The hardness of nt-HNASS exhibits a pronounced strain rate dependence with a strain rate sensitivity (m value) of 0.0319, which is far higher than that of mt-HNASS (m = 0.0029). nt-HNASS shows more significant load plateaus and a higher creep rate than mt-HNASS. Analysis reveals that higher hardness and larger m value of nt-HNASS arise from stronger strain hardening role, which is caused by the higher storage rate of dislocations and the interactions between dislocations and high density twins. The more significant load plateaus and higher creep rates of nt-HNASS are due to the rapid relaxation of the dislocation structures generated during loading.展开更多
The gas tungsten arc welding based additive manufacturing (GTAW-AM) was carried out by printing 316L austenitic stainless steel on carbon steel substrate with different arc currents (140,160,180 A).Microstructure and ...The gas tungsten arc welding based additive manufacturing (GTAW-AM) was carried out by printing 316L austenitic stainless steel on carbon steel substrate with different arc currents (140,160,180 A).Microstructure and corrosion resistance of additive manufactured components were investigated.The results show that the microstructure of the GTAW-AM austenitic stainless steel is obviously changed by the arc current.With arc current increasing from 140 to 180 A,the austenite grains become coarse due to the effect of welding heat input.Meanwhile,the quantity of ferrites in the austenite matrix is decreased and the morphology transforms from lath to skeleton.Moreover,σ phases are finally formed under the arc currents of 180 A owing to high welding heat input.Therefore,as the microstructure transform into coarse-grained austenites,low-quantity ferrites and new-generated σ phases,the GTAW-AM austenitic stainless steel presents a significantly decrease in corrosion resistance.And the reduction of corrosion resistance is mainly due to the formation of σ phase as a result from consuming the large amounts of Cr element from the matrix.展开更多
Pd-Ni coating shows good corrosion resistance in strong corrosion environments.However,in complex aggressiveenvironments,the performance of the coatings is limited and further improvement is necessary.The effects of t...Pd-Ni coating shows good corrosion resistance in strong corrosion environments.However,in complex aggressiveenvironments,the performance of the coatings is limited and further improvement is necessary.The effects of the applied platingcurrent density on the composition,structure and properties of Pd-Ni coatings were studied.By changing the current density in thesame bath,multi-layer Pd-Ni coatings were prepared on316L stainless steel.Scanning electronic microscopy,weight loss tests,adhesion strength,porosity and electrochemical methods were used to study the corrosion resistance of the films prepared bydifferent coating methods.Compared with the single layer Pd-Ni coating,the multi-layer coatings showed higher microhardness,lower internal stress,lower porosity and higher adhesive strength.The multi-layer Pd-Ni coating showed obviously better corrosionresistance in hot sulfuric acid solution containing Cl-.展开更多
The 304 stainless steel strips were deposited one layer on carbon steel base metal by electroslag strip cladding (ESC) and submerged arc cladding (SAC), respectively. The solidification microstrueture of ESC metal...The 304 stainless steel strips were deposited one layer on carbon steel base metal by electroslag strip cladding (ESC) and submerged arc cladding (SAC), respectively. The solidification microstrueture of ESC metal was analyzed by the optical microscopy, scanning electron microscope and energy dispersive spectroscopy. The corrosion resistance studies of strip cladding metals were carried out in 10% oxalic acid electrolytic etching test. The results showed that the cladding metal obtained by ESC presented low content of C, high content of Cr and enough alloying element of Ni in the chemical composition. The transition zone of ESC with small width was almost parallel with the base metal, leading to a lower dilution. There are three types of solidification modes ( A→AF→FA ) occurred in the ESC metal due to the decrease of cooling rate and degree of dilution from the transition zone to the top of ESC metal. As a result, the microstructure of ESC metal exhibited mainly austenite with a small amount of ferrite, contributing to achievement of better corrosion resistance.展开更多
The effect of egg shell powder(ES) as an environmental friendly inhibitor was studied for its corrosion inhibitive tendency on N08904 austenitic stainless steel in simulated saline(3.5% NaCl) solution using potentiody...The effect of egg shell powder(ES) as an environmental friendly inhibitor was studied for its corrosion inhibitive tendency on N08904 austenitic stainless steel in simulated saline(3.5% NaCl) solution using potentiodynamic polarization, weight loss, and SEM/EDX at room temperature. The experimental data explained the effective performance of ES with values of 57%-100% inhibition efficiency, at 2 g-10 g inhibitor concentration from weight loss tests due to the inhibition of stainless steel. The electrochemical action was as a result of the ionized particles which inhibit the compound influencing the redox reaction mechanism causing surface corrosion. ES's best performance was achieved when 6 g of the inhibitor concentration was added to the saline medium. Corrosion rate value decreased progressively with the presence of inhibitor because of anions adsorption at the interface of the metal film. Corrosion potential(Ecorr) value was found to decrease from-0.3991 V to-0.3447 V in the presence of inhibitor at 2 g concentration, decreasing gradually to-0.2048 at 6 g inhibitor concentration. The compounds identified in the ES completely adsorbed onto the surface of stainless steel as observed from the EDX analysis. The ES adsorption on stainless steel surface obeyed Langmuir adsorption isotherm. A corroded morphology with pits was observed in the SEM results without ES which contrast the images obtained with the presence of ES.展开更多
The aim of this work is to investigate the effect of cold working and sandblasting on the microhardness, tensile strength and corro-sion rate of AISI 316L stainless steel. The specimens were deformed from 17% to 47% a...The aim of this work is to investigate the effect of cold working and sandblasting on the microhardness, tensile strength and corro-sion rate of AISI 316L stainless steel. The specimens were deformed from 17% to 47% and sandblasted for 20 min using SiC particles with a diameter of 500-700 μm and an air flow with 0.6-0.7 MPa pressure. The microhardness distribution and tensile test were conducted and a measurement on the corrosion current density was done to determine the corrosion rate of the specimens. The result shows that the cold working enhances the bulk microhardness, tensile and yield strength of the specimen by the degree of deformation applied in the treatment. The sandblasting treatment increases the microhardness only at the surface of the specimen without or with a low degree of deformation. In addition, the sandblasting enhances the surface roughness. The corrosion resistance is improved by cold working, especially for the highly deformed specimen. However the follow-up sandblasting treatment reduces the corrosion resistance. In conclusion, the cold working is prominent to be used for improving the mechanical properties and corrosion resistance of AISI 316L stainless steel. Meanwhile, the sandblasting subjected to the cold worked steel is only useful for surface texturing instead of improving the mechanical properties and corrosion resistance.展开更多
Vertical section of Fe-18Cr-12Mn-0.04C-N system phase diagram varying with nitrogen content at 1×105 Pa was calculated using Thermo-Calc software and thermodynamic database.The morphology and crystallography info...Vertical section of Fe-18Cr-12Mn-0.04C-N system phase diagram varying with nitrogen content at 1×105 Pa was calculated using Thermo-Calc software and thermodynamic database.The morphology and crystallography information of precipitates in Fe-18Cr-12Mn-0.04C-0.48N high-nitrogen austenitic stainless steel during isothermal aging at 800 ℃ after austenization was investigated using optical microscopy(OM),and transmission electron microscopy(TEM) with energy distribution spectrum(EDS).The experimental results show that three precipitates,(Cr,Fe,Mn)2(N,C),(Cr,Fe,Mn)23(C,N)6 and σ phase exist in this steel,which is consistent with the thermodynamic calculation,indicating that thermodynamic calculation can provide instructions for alloy composition design,heat treatment and prediction of precipitation sequence in Fe-18Cr-12Mn-0.04C-N system.展开更多
基金Supported by National Natural Science Foundation of China (Grant No.52075378)Prince Sattam Bin Abdulaziz University of Saudi Arabia (Grant No.PSAU/2024/R/1445)。
文摘With the growing interest in utilizing Mg and austenitic stainless steel(ASS)in the automotive sector,joining them together in three-sheet configuration is inevitable.However,achieving this task presents considerable challenges due to the large differences in their physical,metallurgical and mechanical properties.To overcome these challenges,the feasibility of using weld-bonding to join Mg alloy/ASS/ASS was investigated.The nugget formation,interface characteristics,microstructure and mechanical properties of the joints were investigated.The results show that the connection between the Mg alloy and upper ASS was achieved through the combined effect of the cured adhesive and weld-brazing in the weld zone.On the other hand,a metallurgical bond was formed at the ASS/ASS interface.The Mg nugget microstructure exhibited fine columar grains composed predominantly of primaryα-Mg grains along with a eutectic mixture ofα-Mg andβ-Mg17Al12.The nugget formed at the ASS/ASS interface consisted largely of columnar grains of austenite,with some equiaxed dendritic grains formed at the centerline of the joint.The weld-bonded joints exhibited an average peak load and energy absorption of about 8.5 kN and 17 J,respectively(the conventional RSW joints failed with minimal or no load application).The failure mode of the joints changed with increasing welding current from interfacial failure via the Mg nugget/upper ASS interface to partial interfacial failure(part of the Mg nugget was pulled out of the Mg sheet).Both failure modes were accompanied by cohesive failure in the adhesive zone.
基金supported by the National Natural Science Foundation of China and Baosteel Group Corporation (No.50534010)
文摘Pitting corrosion and crevice corrosion behaviors of high nitrogen austenitic stainless steels (HNSS) were investigated by electrochemical and immersion testing methods in chloride solution, respectively. The chemical constitution and composition in the depth of passive films formed on HNSS were analyzed by X-ray photoelectron spectrum (XPS). HNSS has excellent pitting and crevice corrosion resistance compared to 316L stainless steel. With increasing the nitrogen content in steels, pitting potentials and critical pitting temperature (CPT) increase, and the maximum, average pit depths and average weight loss decrease. The CPT of HNSS is correlated with the alloying element content through the measure of alloying for resistance to corrosion (MARC). The MARC can be expressed as an equation of CPT=2.55MARC-29. XPS results show that HNSS exhibiting excellent corrosion resistance is attributed to the enrichment of nitrogen on the surface of passive films, which forms ammonium ions increasing the local pH value and facilitating repassivation, and the synergistic effects of molybdenum and nitrogen.
基金supported by the National Natural Science Foundation of China(No.50534010)
文摘A series of high nitrogen austenitic stainless steels were successfully developed with a pressurized electroslag remelting furnace. Nitride additives and deoxidizer were packed into the stainless steel pipes, and then the stainless steel pipes were welded on the surface of an electrode with low nitrogen content to prepare a compound electrode. Using Si3N4 as a nitrogen alloying source, the silicon contents in the ingots were prone to be out of the specification range, the electric current fluctuated greatly and the surface qualities of the ingots were poor. The surface qualities of the ingots were improved with FeCrN as a nitrogen alloying source. The sound and compact macrostructure ingot with the maximum nitrogen content of 1.21wt% can be obtained. The 18Cr18Mn2Mo0.9N high nitrogen austenitic stainless steel exhibits high strength and good ductility at room temperature. The steel shows typical ductile-brittle transition behavior and excellent pitting corrosion resistance properties.
基金supported by the National Natural Science Foundation of China (No.50534010) and Baosteel Group Corporation
文摘The intergranular corrosion (IGC) behavior of high nitrogen austenitic stainless steel (HNSS) sensitization treated at 650-950℃ was investigated by the double loop electrochemical potentiodynamic reactivation (DL-EPR) method. The effects of the electrolytes, scan rate, sensitizing temperature on the susceptibility to IGC of HNSS were examined. The results show that the addi-tion of NaCl is an effective way to improve the formation of the cracking of a passive film in chromium-depleted zones during the reactivation scan. Decreasing the scan rate exhibits an obvious effect on the breakdown of the passive film. A solution with 2 mol/L H2SO4+1 mol/L NaCl+0.01 mol/L KSCN is suitable to check the susceptibility to IGC of HNSS at a sensitizing temperature of 650-950℃ at a suitable scan rate of 1.667 mV/s. Chromium depletion of HNSS is attributed to the precipitation of Cr2N which results in the susceptibility to IGC. The synergistic effect of Mo and N is suggested to play an important role in stabilizing the passive film to prevent the attack of IGC.
文摘Hot-formed components are constantly exposed to hostile environments with corrosive substances. Microstructural changes caused by thermomechanical processing can be predicted to increase the corrosion resistance of austenitic stainless steels. The objective of this study is to understand the relationship between the dynamic softening mechanisms and corrosion resistance, thus optimizing the hot-forming process. In the current work, the dynamic recrystallization (DRX) behavior of AISI 316 L austenitic stainless steel was studied in the temperature range of 1273 - 1423 K and strain-rate range of 0.1 - 5.0 s-1 using physical simulation. Subsequently, potentiodynamic polarization tests and scanning electron microscopy were performed on the hot-deformed samples to investigate the influence of temperature and strain-rate on the corrosion resistance and mechanical properties. The results indicated that the DRX fractions increased under low-temperature and high strain-rate conditions, resulting in grain refinement. The potentiodynamic polarization tests indicated that the dynamically recovered samples demonstrated high resistance to corrosion compared with the DRX samples. The best route found for the investigated alloy was for the strain to be applied at a temperature of 1423 K and a strain rate of 0.1 s-1.
基金supported by research grant from the Science and Technology Development Fund(FDCT)of MacauSAR(Grant No.070/2011/A3)
文摘In order to reduce the cost of the austenitic stainless steels(ASSs),the expensive austenite former(nickel) is often substituted by manganese.However,manganese is generally seen to have a detrimental effect on the corrosion resistance.In the present study,the feasibility of laser surface modification of a lean-alloyed ASS(FeCrMn) for enhancing pitting corrosion resistance was investigated.Laser surface modification of FeCrMn was successfully achieved by a 2.3 kW high power diode laser(HPDL).Cyclic polarization tests for FeCrMn after laser surface modification in 3.5% NaCl solution at 25 ℃ were performed by using a potentiostat.The pitting resistance of the laser-modified specimens was found to be significantly improved as reflected by the noble shift in pitting potential.This could be attributed to redistribution of manganese sulphide leading to a more homogenous and refined microstructure.Pitting corrosion resistance of the laser-treated FeCrMn followed by subsequent citric acid passivation was found to be further improved as reflected by the noble shift in pitting potential to 0.18 V.
基金The DFG(Deutsche Forschungsgemeinschaft)is gratefully acknowledged for the financial support(DFG No.PA 699/3-1 and FR 1603/1-2).
文摘Characteristic features of austenitic steel grades combine a good corrosion resistance with a low hardness, wear resistance and scratch resistance. An interesting possibility for improving the wear behaviour of these steels without loss of their corrosion resistance lies in enriching the near surface region with nitrogen. The process of a solution nitriding allows the rise of the solution of nitrogen in the solid phase. On this state nitrogen increases the corrosion resistance and the tribilogical load-bearing capacity. The aim of the study was, to investigate the improvement of the pitting corrosion behaviour by solution nitriding. A special topic was to observe the effect of nitrogen by different molybdenum content. So austenitic stainless steels (18% Cr, 12% Ni, Mo gradation between 0.06 to 3.6%) had been solution nitrided. The samples could be prepared with various surface content of nitrogen from 0.04 to 0.45% with a step-by-step grinding. The susceptibility against pitting corrosion of these samples had been tested by determination of the stable pitting potential in 0.5M and 1M NaCl at 25°C. For the investigated steel composition and the used corrosion system there is no influence of molybdenum on the effectiveness of nitrogen. The influence of nitrogen to all of the determined parameters can be described well by PRE = Cr + 3,3 * Mo + 25 *N. XPS analysis of the sample surfaces support the results of the pitting corrosion tests.Additionally surface investigations with an acid elektolyte (0,1M HC1 + 0,4M NaCl) were performed. In this case the passivation effective nitrogen content increases markedly with rising molybdenum concentration of the steel. Obviously an interaction of Mo and N is connected with a strongly acid electrolyte.
文摘In recent years,nitrogen-alloyed stainless steels have been a research hotspot in the field of stainless steel product and technology. Nitrogen-alloyed austenitic stainless steels developed by Baosteel and their applications are introduced. These steels are nitrogen-controlled products 304 N and 316 LN,nitrogen containing economical products BN series and high-nitrogen stainless steel( HNS) series. The results show that the presence of nitrogen can significantly improve the strength and corrosion resistance of steel produced. By nitrogen alloying,economical austenitic stainless steels w ith considerably less nickel than 304 can be obtained; the corrosion resistances of these steels are almost the same as 304. Furthermore,by a scientific approach of nitrogen alloying,high-nitrogen steel of0. 8% nitrogen content is fabricated under the non-pressurized conditions,and the pitting potential of this steel is >1. 0 V. At present,nitrogen-alloyed steels developed by Baosteel are w idely utilized in the manufacture of cryogenic storage containers,transportation containers,and many household w ares.
基金Item Sponsored by National Natural Science Foundation of China(50534010)
文摘A simple and feasible method for the production of high nitrogen austenitic stainless steels involves nitrogen gas alloying and adding nitrided ferroalloys under normal atmospheric conditions. Alloying by nitrogen gas bubbling in Fe-Cr-Mn-Mo series alloys was carried out in MoSi2 resistance furnace and air induction furnace under normal atmospheric conditions. The results showed that nitrogen alloying could be accelerated by increasing nitrogen gas flow rate, prolonging residence time of bubbles, increasing gas/molten steel interfaces, and decreasing the sulphur and oxygen contents in molten steel. Nitrogen content of 0.69% in 18Crl8Mn was obtained using air induction furnace by bubbling of nitrogen gas from porous plug. In addition, the nickel-free, high nitrogen austenitic stainless steels with sound and compact macrostructure had been produced in the laboratory using vacuum induction furnace and electroslag remelting furnace under nitrogen atmosphere by the addition of nitrided alloy with the maximum nitrogen content of 0.81%. Pores were observed in the ingots obtained by melting and casting in vacuum induction furnace with the addition of nitrided ferroalloys and under nitrogen atmosphere. After electroslag remelting of the cast ingots, they were all sound and were free of pores. The yield of nitrogen increased with the decrease of melting rate in the ESR process. Due to electroslag remelting under nitrogen atmosphere and the consequential addition of aluminum as deoxidizer to the slag, the loss of manganese decreased obviously. There existed mainly irregular Al2O3 inclusions and MnS inclusions in ESR ingots, and the size of most of the inclusions was less than 5 um. After homogenization of the hot rolled plate at 1 150℃ × 1 h followed by water quenching, the microstructure consisted of homogeneous austenite.
基金financially supported by the Shanghai Materials Genome Institute No. 5 (No. 16DZ2260605)the Shanghai Sailing Program (No. 17YF1405400)the Project to Strengthen Industrial Development at the Grass-roots Level (No. TC160A310/19)
文摘The corrosion behavior and mechanical properties of 316 L stainless steel(SS) fabricated via selective laser melting(SLM) were clarified by potentiodynamic polarization measurements, immersion tests, and tensile experiments. The microstructural anisotropy of SLMed 316 L SS was also investigated by electron back-scattered diffraction and transmission electron microscopy. The grain sizes of the SLMed 316 L SS in the XOZ plane were smaller than those of the SLMed 316 L SS in the XOY plane, and a greater number of low-angle boundaries were present in the XOY plane, resulting in lower elongation for the XOY plane than for the XOZ plane. The SLMed 316 L was expected to exhibit higher strength but lower ductility than the wrought 316 L, which was attributed to the high density of dislocations. The pitting potentials of the SLMed 316 L samples were universally higher than those of the wrought sample in chloride solutions because of the annihilation of MnS or(Ca,Al)-oxides during the rapid solidification. However, the molten pool boundaries preferentially dissolved in aggressive solutions and the damage of the SLMed 316 L in FeCl3 solution was more serious after long-term service, indicating poor durability.
基金supported by the National Natural Science Foundation of China (Nos. 50771075 and 51171133) the Program for New Century Excellent Talents in University of Ministries of the Education of China (No.NECT-07-0650)
文摘Silver or copper ions are often chosen as antibacterial agents. But a few reports are concerned with these two antibacterial agents for preparation of antibacterial stainless steel (SS). The antibacterial properties and corrosion resistance of AISI 420 stainless steel implanted by silver and copper ions were investigated. Due to the cooperative antibacterial effect of silver and copper ions, the Ag/Cu implanted SS showed excellent antibacterial activities against both Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) at a total implantation dose of 2~ 1017 ions/cm2. Electrochemical polarization curves revealed that the corrosion resistance of Ag/Cu implanted SS was slightly enhanced as compared with that of un-implanted SS, The implanted layer was characterized by X-ray photoelec- tron spectroscopy (XPS). Core level XPS spectra indicate that the implanted silver and copper ions exist in metallic state in the implanted layer.
基金supported by the Key Programme of National Natural Science Foundation of China(No.50534010)the National Key Basic Research and Development Programme of China(No.2004CB619103).
文摘The precipitation behavior of M2N and the microstructural evolution in a Cr-Mn austenitic stainless steel with a high nitrogen content of 0.43mass% during isothermal aging has been investigated using optical microscopy ( OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The aging treatments have led to the decomposition of nitrogen supersaturated austenitic matrix through discontinuous cellular precipitation. The precipitated cells comprise alternate lamellae of M2N precipitate and austenitic matrix. This kind of precipitate morphology is similar to that of pearlite. However, owing to the non-eutectoidic mechanism of the reaction, the growth characteristic of the cellular precipitates is different from that of pearlite in Fe-C binary alloys. M2N precipitate in the cell possesses a hexagonal crystal structure with the parameters a = 0.4752nm and c = 0.4429nm, and the orientation relationship between the M2V precipitates and austenite determined from the SADP is [01^-10]M2N//[101]γ, [2^-1^-10]M2N//[010]γ.
基金financially supported by the National Natural Science Foundation of China(No.51871026)the Natural Science Foundation of Zhejiang Province,China(No.LY18E010004)supported by the National Material Environmental Corrosion Infrastructure,China。
文摘The effect of microstructure and passive film on the corrosion resistance of 2507 super duplex stainless steel(SDSS)in simulated marine environment was investigated by electrochemical measurements,periodic wet–dry cyclic corrosion test,scanning Kelvin probe force microscopy,atomic force microscopy,and X-ray photoelectron spectrometry.The results show that the occupation ratio ofγphase increases with the decrease in cooling rate,whereas the content ofαphase reduces gradually.In addition,theσprecipitated phase only emerges in the annealed steel.The pitting sensitivity and corrosion rate of 2507 SDSS reduce first and then increase as the cooling rate decreases.Theσprecipitated phase drastically reduces the protective ability of the passive film and facilitates micro-galvanic corrosion of the annealed steel.For various microstructures,the pits are preferentially distributed within theσandγphases.The corrosion resistance of 2507 SDSS prepared by different cooling methods is closely related to the microstructure and structure(stability and homogeneity)of the passive film.Normalized steel shows an optimal corrosion resistance,followed by the quenched and annealed steels.
基金Project supported by the National Natural Science Foundations of China (Grant Nos.51371089 and 51201068)the National Key Basic Research and Development Program of China (Grant No.2010CB631001)
文摘Effects of cold rolling deformation on the microstructure, hardness, and creep behavior of high nitrogen austenitic stainless steel (HNASS) are investigated. Microstructure characterization shows that 70% cold rolling deformation results in significant refinement of the microstructure of this steel, with its average twin thickness reducing from 6.4 μm to 14 nm. Nanoindentation tests at different strain rates demonstrate that the hardness of the steel with nano-scale twins (nt-HNASS) is about 2 times as high as that of steel with micro-scale twins (mt-HNASS). The hardness of nt-HNASS exhibits a pronounced strain rate dependence with a strain rate sensitivity (m value) of 0.0319, which is far higher than that of mt-HNASS (m = 0.0029). nt-HNASS shows more significant load plateaus and a higher creep rate than mt-HNASS. Analysis reveals that higher hardness and larger m value of nt-HNASS arise from stronger strain hardening role, which is caused by the higher storage rate of dislocations and the interactions between dislocations and high density twins. The more significant load plateaus and higher creep rates of nt-HNASS are due to the rapid relaxation of the dislocation structures generated during loading.
基金Funded by National Key Research and Development Program of China(No.2017YFE0100100)Fundamental Research Funds for the Central Universities(No.2018B59714)Basic Research Program of Nantong(No.JC2019063)。
文摘The gas tungsten arc welding based additive manufacturing (GTAW-AM) was carried out by printing 316L austenitic stainless steel on carbon steel substrate with different arc currents (140,160,180 A).Microstructure and corrosion resistance of additive manufactured components were investigated.The results show that the microstructure of the GTAW-AM austenitic stainless steel is obviously changed by the arc current.With arc current increasing from 140 to 180 A,the austenite grains become coarse due to the effect of welding heat input.Meanwhile,the quantity of ferrites in the austenite matrix is decreased and the morphology transforms from lath to skeleton.Moreover,σ phases are finally formed under the arc currents of 180 A owing to high welding heat input.Therefore,as the microstructure transform into coarse-grained austenites,low-quantity ferrites and new-generated σ phases,the GTAW-AM austenitic stainless steel presents a significantly decrease in corrosion resistance.And the reduction of corrosion resistance is mainly due to the formation of σ phase as a result from consuming the large amounts of Cr element from the matrix.
文摘Pd-Ni coating shows good corrosion resistance in strong corrosion environments.However,in complex aggressiveenvironments,the performance of the coatings is limited and further improvement is necessary.The effects of the applied platingcurrent density on the composition,structure and properties of Pd-Ni coatings were studied.By changing the current density in thesame bath,multi-layer Pd-Ni coatings were prepared on316L stainless steel.Scanning electronic microscopy,weight loss tests,adhesion strength,porosity and electrochemical methods were used to study the corrosion resistance of the films prepared bydifferent coating methods.Compared with the single layer Pd-Ni coating,the multi-layer coatings showed higher microhardness,lower internal stress,lower porosity and higher adhesive strength.The multi-layer Pd-Ni coating showed obviously better corrosionresistance in hot sulfuric acid solution containing Cl-.
基金sponsored by National Natural Science Foundation of China(Grant No.51101050)Fundamental Research Funds for the Central Universities(Grant No.2015B22614)Natural Science Foundation of Jiangsu Province of China(Grant No.BK20141156)
文摘The 304 stainless steel strips were deposited one layer on carbon steel base metal by electroslag strip cladding (ESC) and submerged arc cladding (SAC), respectively. The solidification microstrueture of ESC metal was analyzed by the optical microscopy, scanning electron microscope and energy dispersive spectroscopy. The corrosion resistance studies of strip cladding metals were carried out in 10% oxalic acid electrolytic etching test. The results showed that the cladding metal obtained by ESC presented low content of C, high content of Cr and enough alloying element of Ni in the chemical composition. The transition zone of ESC with small width was almost parallel with the base metal, leading to a lower dilution. There are three types of solidification modes ( A→AF→FA ) occurred in the ESC metal due to the decrease of cooling rate and degree of dilution from the transition zone to the top of ESC metal. As a result, the microstructure of ESC metal exhibited mainly austenite with a small amount of ferrite, contributing to achievement of better corrosion resistance.
文摘The effect of egg shell powder(ES) as an environmental friendly inhibitor was studied for its corrosion inhibitive tendency on N08904 austenitic stainless steel in simulated saline(3.5% NaCl) solution using potentiodynamic polarization, weight loss, and SEM/EDX at room temperature. The experimental data explained the effective performance of ES with values of 57%-100% inhibition efficiency, at 2 g-10 g inhibitor concentration from weight loss tests due to the inhibition of stainless steel. The electrochemical action was as a result of the ionized particles which inhibit the compound influencing the redox reaction mechanism causing surface corrosion. ES's best performance was achieved when 6 g of the inhibitor concentration was added to the saline medium. Corrosion rate value decreased progressively with the presence of inhibitor because of anions adsorption at the interface of the metal film. Corrosion potential(Ecorr) value was found to decrease from-0.3991 V to-0.3447 V in the presence of inhibitor at 2 g concentration, decreasing gradually to-0.2048 at 6 g inhibitor concentration. The compounds identified in the ES completely adsorbed onto the surface of stainless steel as observed from the EDX analysis. The ES adsorption on stainless steel surface obeyed Langmuir adsorption isotherm. A corroded morphology with pits was observed in the SEM results without ES which contrast the images obtained with the presence of ES.
文摘The aim of this work is to investigate the effect of cold working and sandblasting on the microhardness, tensile strength and corro-sion rate of AISI 316L stainless steel. The specimens were deformed from 17% to 47% and sandblasted for 20 min using SiC particles with a diameter of 500-700 μm and an air flow with 0.6-0.7 MPa pressure. The microhardness distribution and tensile test were conducted and a measurement on the corrosion current density was done to determine the corrosion rate of the specimens. The result shows that the cold working enhances the bulk microhardness, tensile and yield strength of the specimen by the degree of deformation applied in the treatment. The sandblasting treatment increases the microhardness only at the surface of the specimen without or with a low degree of deformation. In addition, the sandblasting enhances the surface roughness. The corrosion resistance is improved by cold working, especially for the highly deformed specimen. However the follow-up sandblasting treatment reduces the corrosion resistance. In conclusion, the cold working is prominent to be used for improving the mechanical properties and corrosion resistance of AISI 316L stainless steel. Meanwhile, the sandblasting subjected to the cold worked steel is only useful for surface texturing instead of improving the mechanical properties and corrosion resistance.
基金This work is financially supported by Key Program of the National Natural Science Foundation of China( No50534010)National Program on Key Basic Research Project ( No2004CB619103)
文摘Vertical section of Fe-18Cr-12Mn-0.04C-N system phase diagram varying with nitrogen content at 1×105 Pa was calculated using Thermo-Calc software and thermodynamic database.The morphology and crystallography information of precipitates in Fe-18Cr-12Mn-0.04C-0.48N high-nitrogen austenitic stainless steel during isothermal aging at 800 ℃ after austenization was investigated using optical microscopy(OM),and transmission electron microscopy(TEM) with energy distribution spectrum(EDS).The experimental results show that three precipitates,(Cr,Fe,Mn)2(N,C),(Cr,Fe,Mn)23(C,N)6 and σ phase exist in this steel,which is consistent with the thermodynamic calculation,indicating that thermodynamic calculation can provide instructions for alloy composition design,heat treatment and prediction of precipitation sequence in Fe-18Cr-12Mn-0.04C-N system.