期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Numerical study on the characteristics of nitrogen discharge at high pressure with induced plasma
1
作者 王一男 刘悦 +1 位作者 郑殊 林国强 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第7期378-384,共7页
Based on the fluid theory of plasma, a model is built to study the characteristics of nitrogen discharge at high pressure with induced argon plasma. In the model, species such as electrons, N2+, N4+, Ar+, and two m... Based on the fluid theory of plasma, a model is built to study the characteristics of nitrogen discharge at high pressure with induced argon plasma. In the model, species such as electrons, N2+, N4+, Ar+, and two metastable states (N2 (A3 ∑ u+), N2 (a1 ∑ u)) are taken into account. The model includes the particle continuity equation, the electron energy balance equation, and Poisson抯iequation. The model ’s solved with a finite difference method. The numerical results are obtained and used to investigate the effect of time taken to add nitrogen gas and initially-induced argon plasma pressure. It is found that lower speeds of adding the nitrogen gas and varying the gas pressure can induce higher plasma density, and inversely lower electron temperature. At high-pressure discharge, the electron density increases when the proportion of nitrogen component is below 4070, while the electron density will keep constant as the nitrogen component further increases. It is also shown that with the increase of initially-induced argon plasma pressure, the density of charged particles increases~ and the electron temperature as well as the electric field decreases. 展开更多
关键词 induced plasma nitrogen discharge numerical simulation
下载PDF
Numerical study on the characteristics of nitrogen discharge at high pressure with induced plasma
2
作者 王一男 刘悦 +1 位作者 郑殊 林国强 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第7期382-388,共7页
Based on the fluid theory of plasma, a model is built to study the characteristics of nitrogen discharge at high pressure with induced argon plasma. In the model, species such as electrons, N2+, N4+, Ar+, and two meta... Based on the fluid theory of plasma, a model is built to study the characteristics of nitrogen discharge at high pressure with induced argon plasma. In the model, species such as electrons, N2+, N4+, Ar+, and two metastable states (N 2(A3∑u+), N2 (a1 ∑u-)) are taken into account. The model includes the particle continuity equation, the electron energy balance equation, and Poisson抯equation. The model is solved with a finite difference method. The numerical results are obtained and used to investigate the effect of time taken to add nitrogen gas and initially-induced argon plasma pressure. It is found that lower speeds of adding the nitrogen gas and varying the gas pressure can induce higher plasma density, and inversely lower electron temperature. At high-pressure discharge, the electron density increases when the proportion of nitrogen component is below 40%, while the electron density will keep constant as the nitrogen component further increases. It is also shown that with the increase of initially-induced argon plasma pressure, the density of charged particles increases, and the electron temperature as well as the electric field decreases. 展开更多
关键词 induced plasma nitrogen discharge numerical simulation
全文增补中
Characterization of Nitrogen Glow Discharge Plasma via Optical Emission Spectrum Simulation 被引量:1
3
作者 张连珠 赵书霞 孟秀兰 《Plasma Science and Technology》 SCIE EI CAS CSCD 2008年第4期455-462,共8页
Optical emission spectroscopy in nitrogen glow discharge plasma is simulated, and the collision excitations and characteristic emissions of the species (N2, N2^+, N^+, N) are investigated by a Monte Carlo model fo... Optical emission spectroscopy in nitrogen glow discharge plasma is simulated, and the collision excitations and characteristic emissions of the species (N2, N2^+, N^+, N) are investigated by a Monte Carlo model for nitrogen molecular gas discharge. The excitation rates of the main excited states are calculated and the corresponding relation and relative magnitude between the distribution of excitation rate of a certain excited state and the distributions of the emission rates of various lines originating from this excited level are also explored. The simulated results are compared with the experimental measurements in two typical discharge conditions. The luminescence mechanism of the line N2^+: 391.4 nm is explained based on the microscopic plasma processes. The cathode glow in N2 discharge is found to be mainly caused by N^+ impact excitation and the intensity of cathode glow decreases with the voltage. The corresponding relation between the emission rate or intensity of the 391.4 nm line and the production rate and the density of N2^+ is also examined. 展开更多
关键词 nitrogen glow discharge optical emission spectroscopy Monte Carlo simulation
下载PDF
Generation and Distribution of Fast Atomic Species(N^+,N_f)in Nitrogen Glow Discharge 被引量:1
4
作者 张连珠 于威 +2 位作者 韩理 赵占强 傅广生 《Plasma Science and Technology》 SCIE EI CAS CSCD 2006年第6期670-674,共5页
Using a combination of the Monte Carlo models of fast electrons, of molecular ions (N+) and of atomic species (N^+, Nf), the influence of the discharge pressure (P) and voltage (Vc) on the energy distributio... Using a combination of the Monte Carlo models of fast electrons, of molecular ions (N+) and of atomic species (N^+, Nf), the influence of the discharge pressure (P) and voltage (Vc) on the energy distributions of fast atomic species (N^+, Nf) produced by e^--N2s and N2^+- N2s dissociation reactions at the cathode in a nitrogen dc glow discharge was investigated. Both the angular distributions and the density distributions along the radius of the species (N^+, Nf) produced by the two dissociations at the cathode were calculated. The results show that: (1) there is an optimum discharge condition for P and Vc in order to obtain the species (N^+, Nf) at the cathode with high a density and energy, (2) when the voltage is above 800 V, the species (N^+, Nf) bombarding the cathode are mainly produced by the N^+-N2s dissociation, whereas when the voltage is below 300 V, they are mainly produced by the e-N2s dissociation, and (3) at high Voltages the incident angles of a considerable number of Nf into the cathode are quite small. The density of the species (N^+ Nf) at the cathode increases with the voltage, and when the pressure goes up to about 133 Pa, it decreases with the increasing pressure. 展开更多
关键词 nitrogen dc glow discharge Monte Carlo simulation fast nitrogen atomic species
下载PDF
Influence of Agricultural Activity on Nitrogen Budget in Chinese and Japanese Watersheds 被引量:4
5
作者 S. D. KIMURA YAN Xiao-Yuan +9 位作者 R. HATANO A. HAYAKAWA K. KOHYAMA TI Chao-Pu DENG Mei-Hua M. HOJITO S. ITAHASHI K. KURAMOCHI CAI Zu-Cong M. SAITO 《Pedosphere》 SCIE CAS CSCD 2012年第2期137-151,共15页
To analyze the effect of agricultural activity on nitrogen(N) budget at the watershed scale,a comparative study was conducted at two Japanese watersheds,the Shibetsu River watershed(SRW) and Upper-Naka River watershed... To analyze the effect of agricultural activity on nitrogen(N) budget at the watershed scale,a comparative study was conducted at two Japanese watersheds,the Shibetsu River watershed(SRW) and Upper-Naka River watershed(UNRW),and one Chinese watershed,the Jurong Reservoir watershed(JRW).The total area and the proportion of agricultural area(in parentheses) of the watersheds were 685(51%),1 299(21%),and 46 km 2(55%) for SRW,UNRW,and JRW,respectively.The main agricultural land use in SRW was forage grassland,while paddy fields occupied the highest proportion of cropland in UNRW(11% of total area) and JRW(31% of total area).The farmland surplus N was 61,48,and 205 kg N ha 1 year 1 for SRW,UNRW,and JRW,respectively.The total input and output for the whole watershed were 89 and 76,83 and 61,and 353 and 176 kg N ha 1 year 1 for SRW,UNRW,and JRW,respectively.The proportion of discharged N to net anthropogenic N input was 31%,37%,and 1.7% for SRW,UNRW,and JRW,respectively.The two watersheds in Japan showed similar proportions of discharged N to those of previous reports,while the watershed in China(JRW) showed a totally different characteristic compared to previous studies.The high N input in JRW did not increase the amount of discharged N at the outlet of the watershed due to high proportions of paddy fields and water bodies,which was an underestimated N sink at the landscape scale. 展开更多
关键词 anthropogenic nitrogen input DENITRIFICATION discharged nitrogen land use nitrogen balance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部