期刊文献+
共找到132,956篇文章
< 1 2 250 >
每页显示 20 50 100
Effects of Ocean Acidification on Nitrogen Metabolism of Skeletonema costatum
1
作者 WANG Shuxing MI Tiezhu +1 位作者 ZHEN Yu ZHU Jianbin 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第5期1359-1370,共12页
Ocean acidification(OA),caused by the rising concentration of atmospheric CO_(2),leads to changes in the marine carbonate system.This,in turn,affects the physiological processes of phytoplankton.In response to increas... Ocean acidification(OA),caused by the rising concentration of atmospheric CO_(2),leads to changes in the marine carbonate system.This,in turn,affects the physiological processes of phytoplankton.In response to increased pCO_(2) levels,marine microalgae modulate their physiological responses to meet their energy and metabolic requirements.Nitrogen metabolism is a critical metabolic pathway,directly affecting the growth and reproductive capacity of marine microorganisms.Understanding the molecular mechanisms that regulate nitrogen metabolism in microalgae under OA conditions is therefore crucial.This study aimed to investi-gate how OA affects the expression profiles of key genes in the nitrogen metabolic pathway of the marine diatom Skeletonema costatum.Our findings indicate that OA upregulates key genes involved in the nitrogen metabolic pathway,specifically those related to nitrate assimilation and glutamate metabolism.Moreover,pCO_(2) has been identified as the predominant factor affecting the expression of these genes,with a more significant impact than pH variations in S.costatum.This research not only advances our understanding of the adaptive mechanisms of S.costatum in response to OA but also provides essential data for predicting the ecological consequences of OA on marine diatoms. 展开更多
关键词 Skeletonema costatum ocean acidification nitrogen metabolism gene expression TRANSCRIPTOME
下载PDF
Effects ofγ-aminobutyric Acid on Nitrogen Metabolism in Roots and Leaves of Cold-stressed Rice(Oryza sativa L.)During Early Vegetative Growth
2
作者 Jia Yan Gong Weibin +9 位作者 Ma Huimiao Liu Ge Zhang Can Liu Aixin Han Yiming Dang Yuxiang Bai Xu Wang Haixing Wu Yulong Xin Junying 《Journal of Northeast Agricultural University(English Edition)》 CAS 2024年第3期1-19,共19页
Cold stress adversely affects rice growth,particularly at the early vegetative growth stage.In higher plants,nitrogen metabolism plays a central role in amino acid metabolism,plant defense mechanisms and productivity.... Cold stress adversely affects rice growth,particularly at the early vegetative growth stage.In higher plants,nitrogen metabolism plays a central role in amino acid metabolism,plant defense mechanisms and productivity.This report investigated the effects of cold stress and supplementalγ-aminobutyric acid(GABA)under cold stress on nitrogen metabolism in rice seedlings.Cold stress resulted in a greater increase in the transformation to NH_(4)^(+)by nitrate reductase(NR)in roots,it further resulted in lower levels of NO_(3)^(-)content in roots,weakened glutamine glutamate(GOGAT/GS)pathway and elevated glutamate dehydrogenase(GDH)pathway of rice seedlings.Whereas,compared with cold stress,supplementation of GABA(2.5 mmol·L^(-1))could increase relative water content(79.43%)and biomass(34.15%)of rice seedlings.GABA could act as an amplifier of stress signal conduction/transduction to increase NR activity and promote NO_(3)^(-)assimilation in leaves.In addition,GABA elicited the Ca^(2+)signaling pathway which could promote the GDH pathway and GABA shunt,increase the activities of GS and GDH,and the expression of OsGAD2 and OsGDH family.The GABA might increase the ratio of the Glu family and avoid NH4+toxicity in order to raise the concentration of organic compounds and alleviate the harmful consequences of cold stress.Based on these observations,this study proposed that GABA mediated cold tolerance in rice seedlings by activating Ca^(2+)burst and subsequent crosstalk among Ca^(2+)signaling,GDH pathway and GABA shunt. 展开更多
关键词 cold stress γ-aminobutyric acid RICE nitrogen metabolism
下载PDF
Ethylene accelerates maize leaf senescence in response to nitrogen deficiency by regulating chlorophyll metabolism and autophagy 被引量:1
3
作者 Jiapeng Xing Ying Feng +3 位作者 Yushi Zhang Yubin Wang Zhaohu Li Mingcai Zhang 《The Crop Journal》 SCIE CSCD 2024年第5期1391-1403,共13页
Leaf senescence is an orderly and highly coordinated process,and finely regulated by ethylene and nitrogen(N),ultimately affecting grain yield and nitrogen-use efficiency(NUE).However,the underlying regulatory mechani... Leaf senescence is an orderly and highly coordinated process,and finely regulated by ethylene and nitrogen(N),ultimately affecting grain yield and nitrogen-use efficiency(NUE).However,the underlying regulatory mechanisms on the crosstalk between ethylene-and N-regulated leaf senescence remain a mystery in maize.In this study,ethylene biosynthesis gene ZmACS7 overexpressing(OE-ZmACS7)plants were used to study the role of ethylene regulating leaf senescence in response to N deficiency,and they exhibited the premature leaf senescence accompanied by increased ethylene release,decreased chlorophyll content and F_v/F_m ratio,and accelerated chloroplast degradation.Then,we investigated the dynamics changes of transcriptome reprogramming underlying ethylene-accelerated leaf senescence in response to N deficiency.The differentially expressed genes(DEGs)involved in chlorophyll biosynthesis were significantly down-regulated,while DEGs involved in chlorophyll degradation and autophagy processes were significantly up-regulated,especially in OE-ZmACS7 plants in response to N deficiency.A gene regulatory network(GRN)was predicted during ethylene-accelerated leaf senescence in response to N deficiency.Three transcription factors(TFs)ZmHSF4,Zmb HLH106,and ZmEREB147 were identified as the key regulatory genes,which targeted chlorophyll biosynthesis gene ZmLES22,chlorophyll degradation gene ZmNYC1,and autophagy-related gene ZmATG5,respectively.Furthermore,ethylene signaling key genes might be located upstream of these TFs,generating the signaling cascade networks during ethylene-accelerated leaf senescence in response to N deficiency.Collectively,these findings improve our molecular knowledge of ethylene-accelerated maize leaf senescence in response to N deficiency,which is promising to improve NUE by manipulating the progress of leaf senescence in maize. 展开更多
关键词 ETHYLENE Leaf senescence N deficiency Chlorophyll metabolism AUTOPHAGY Gene regulatory network
下载PDF
Plant Nitrogen Metabolism: Balancing Resilience to Nutritional Stress andAbiotic Challenges
4
作者 Muhammad Farhan Manda Sathish +10 位作者 Rafia Kiran Aroosa Mushtaq Alaa Baazeem Ammarah Hasnain Fahad Hakim Syed Atif Hasan Naqvi Mustansar Mubeen Yasir Iftikhar Aqleem Abbas Muhammad Zeeshan Hassan Mahmoud Moustafa 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第3期581-609,共29页
Plant growth and resilience to abiotic stresses,such as soil salinity and drought,depend intricately on nitrogen metabolism.This review explores nitrogen’s regulatory role in plant responses to these challenges,unvei... Plant growth and resilience to abiotic stresses,such as soil salinity and drought,depend intricately on nitrogen metabolism.This review explores nitrogen’s regulatory role in plant responses to these challenges,unveiling a dynamic interplay between nitrogen availability and abiotic stress.In the context of soil salinity,a nuanced rela-tionship emerges,featuring both antagonistic and synergistic interactions between salinity and nitrogen levels.Salinity-induced chlorophyll depletion in plants can be alleviated by optimal nitrogen supplementation;however,excessive nitrogen can exacerbate salinity stress.We delve into the complexities of this interaction and its agri-cultural implications.Nitrogen,a vital element within essential plant structures like chloroplasts,elicits diverse responses based on its availability.This review comprehensively examines manifestations of nitrogen deficiency and toxicity across various crop types,including cereals,vegetables,legumes,and fruits.Furthermore,we explore the broader consequences of nitrogen products,such as N_(2)O,NO_(2),and ammonia,on human health.Understand-ing the intricate relationship between nitrogen and salinity,especially chloride accumulation in nitrate-fed plants and sodium buildup in ammonium-fed plants,is pivotal for optimizing crop nitrogen management.However,prudent nitrogen use is essential,as overapplication can exacerbate nitrogen-related issues.Nitrogen Use Effi-ciency(NUE)is of paramount importance in addressing salinity challenges and enhancing sustainable crop productivity.Achieving this goal requires advancements in crop varieties with efficient nitrogen utilization,pre-cise timing and placement of nitrogen fertilizer application,and thoughtful nitrogen source selection to mitigate losses,particularly urea-based fertilizer volatilization.This review article delves into the multifaceted world of plant nitrogen metabolism and its pivotal role in enabling plant resilience to nutritional stress and abiotic challenges.It offers insights into future directions for sustainable agriculture. 展开更多
关键词 Synthetic nitrogen nitrogen signaling sustainable agriculture EUTROPHICATION AMMONIUM NITRATE
下载PDF
Nitrogen application regulates antioxidant capacity and flavonoid metabolism,especially quercetin,in grape seedlings under salt stress
5
作者 Congcong Zhang Han Wang +13 位作者 Guojie Nai Lei Ma Xu Lu Haokai Yan Meishuang Gong YuanyuanLi Ying Lai Zhihui Pu Li Wei Guiping Chen Ping Sun Baihong Chen Shaoying Ma Sheng Li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第12期4074-4092,共19页
Salt stress is a typical abiotic stress in plants that causes slow growth,stunting,and reduced yield and fruit quality.Fertilization is necessary to ensure proper crop growth.However,the effect of fertilization on sal... Salt stress is a typical abiotic stress in plants that causes slow growth,stunting,and reduced yield and fruit quality.Fertilization is necessary to ensure proper crop growth.However,the effect of fertilization on salt tolerance in grapevine is unclear.In this study,we investigated the effect of nitrogen fertilizer(0.01 and 0.1 mol L^(-1)NH_(4)NO_(3))application on the salt(200 mmol L^(-1)NaCl)tolerance of grapevine based on physiological indices,and transcriptomic and metabolomic analyses.The results revealed that 0.01 mol L^(-1)NH_(4)NO_(3) supplementation significantly reduced the accumulation of superoxide anion(O_(2)^(-)·),enhanced the activities of superoxide dismutase(SOD)and peroxidase(POD),and improved the levels of ascorbic acid(AsA)and glutathione(GSH)in grape leaves compared to salt treatment alone.Specifically,joint transcriptome and metabolome analyses showed that the differentially expressed genes(DEGs)and differentially accumulated metabolites(DAMs)were significantly enriched in the flavonoid biosynthesis pathway(ko00941)and the flavone and flavonol biosynthesis pathway(ko00944).In particular,the relative content of quercetin(C00389)was markedly regulated by salt and nitrogen.Further analysis revealed that exogenous foliar application of quercetin improved the SOD and POD activities,increased the AsA and GSH contents,and reduced the H_(2)O_(2) and O_(2)^(-)·contents.Meanwhile,10 hub DEGs,which had high Pearson correlations(R^(2)>0.9)with quercetin,were repressed by nitrogen.In conclusion,all the results indicated that moderate nitrogen and quercetin application under salt stress enhanced the antioxidant system defense response,thus providing a new perspective for improving salt tolerance in grapes. 展开更多
关键词 GRAPEVINE salt stress nitrogen multi-omics QUERCETIN antioxidant
下载PDF
Corrigendum: Astrocytic endothelin-1 overexpression impairs learning and memory ability in ischemic stroke via altered hippocampal neurogenesis and lipid metabolism
6
《Neural Regeneration Research》 SCIE CAS 2025年第2期401-401,共1页
In the article titled“Astrocytic endothelin-1 overexpression impairs learning and memory ability in ischemic stroke via altered hippocampal neurogenesis and lipid metabolism,”published on pages 650-656,Issue 3,Volum... In the article titled“Astrocytic endothelin-1 overexpression impairs learning and memory ability in ischemic stroke via altered hippocampal neurogenesis and lipid metabolism,”published on pages 650-656,Issue 3,Volume 19 of Neural Regeneration Research(Li et al.,2024),there were two errors that needed to be corrected. 展开更多
关键词 metabolism ENDOTHELIN
下载PDF
Pyrroloquinoline quinone:a potential neuroprotective compound for neurodegenerative diseases targeting metabolism
7
作者 Alessio Canovai Pete A.Williams 《Neural Regeneration Research》 SCIE CAS 2025年第1期41-53,共13页
Pyrroloquinoline quinone is a quinone described as a cofactor for many bacterial dehydrogenases and is reported to exert an effect on metabolism in mammalian cells/tissues.Pyrroloquinoline quinone is present in the di... Pyrroloquinoline quinone is a quinone described as a cofactor for many bacterial dehydrogenases and is reported to exert an effect on metabolism in mammalian cells/tissues.Pyrroloquinoline quinone is present in the diet being available in foodstuffs,conferring the potential of this compound to be supplemented by dietary administration.Pyrroloquinoline quinone’s nutritional role in mammalian health is supported by the extensive deficits in reproduction,growth,and immunity resulting from the dietary absence of pyrroloquinoline quinone,and as such,pyrroloquinoline quinone has been considered as a“new vitamin.”Although the classification of pyrroloquinoline quinone as a vitamin needs to be properly established,the wide range of benefits for health provided has been reported in many studies.In this respect,pyrroloquinoline quinone seems to be particularly involved in regulating cell signaling pathways that promote metabolic and mitochondrial processes in many experimental contexts,thus dictating the rationale to consider pyrroloquinoline quinone as a vital compound for mammalian life.Through the regulation of different metabolic mechanisms,pyrroloquinoline quinone may improve clinical deficits where dysfunctional metabolism and mitochondrial activity contribute to induce cell damage and death.Pyrroloquinoline quinone has been demonstrated to have neuroprotective properties in different experimental models of neurodegeneration,although the link between pyrroloquinoline quinone-promoted metabolism and improved neuronal viability in some of such contexts is still to be fully elucidated.Here,we review the general properties of pyrroloquinoline quinone and its capacity to modulate metabolic and mitochondrial mechanisms in physiological contexts.In addition,we analyze the neuroprotective properties of pyrroloquinoline quinone in different neurodegenerative conditions and consider future perspectives for pyrroloquinoline quinone’s potential in health and disease. 展开更多
关键词 metabolism MITOCHONDRIA neurodegenerative disease NEUROPROTECTION pyrroloquinoline quinone retinal diseases
下载PDF
Cholesterol metabolism: physiological versus pathological aspects in intracerebral hemorrhage
8
作者 Ruoyu Huang Qiuyu Pang +4 位作者 Lexin Zheng Jiaxi Lin Hanxi Li Lingbo Wan Tao Wang 《Neural Regeneration Research》 SCIE CAS 2025年第4期1015-1030,共16页
Cholesterol is an important component of plasma membranes and participates in many basic life functions,such as the maintenance of cell membrane stability,the synthesis of steroid hormones,and myelination.Cholesterol ... Cholesterol is an important component of plasma membranes and participates in many basic life functions,such as the maintenance of cell membrane stability,the synthesis of steroid hormones,and myelination.Cholesterol plays a key role in the establishment and maintenance of the central nervous system.The brain contains 20%of the whole body’s cholesterol,80%of which is located within myelin.A huge number of processes(e.g.,the sterol regulatory element-binding protein pathway and liver X receptor pathway)participate in the regulation of cholesterol metabolism in the brain via mechanisms that include cholesterol biosynthesis,intracellular transport,and efflux.Certain brain injuries or diseases involving crosstalk among the processes above can affect normal cholesterol metabolism to induce detrimental consequences.Therefore,we hypothesized that cholesterol-related molecules and pathways can serve as therapeutic targets for central nervous system diseases.Intracerebral hemorrhage is the most severe hemorrhagic stroke subtype,with high mortality and morbidity.Historical cholesterol levels are associated with the risk of intracerebral hemorrhage.Moreover,secondary pathological changes after intracerebral hemorrhage are associated with cholesterol metabolism dysregulation,such as neuroinflammation,demyelination,and multiple types of programmed cell death.Intracellular cholesterol accumulation in the brain has been found after intracerebral hemorrhage.In this paper,we review normal cholesterol metabolism in the central nervous system,the mechanisms known to participate in the disturbance of cholesterol metabolism after intracerebral hemorrhage,and the links between cholesterol metabolism and cell death.We also review several possible and constructive therapeutic targets identified based on cholesterol metabolism to provide cholesterol-based perspectives and a reference for those interested in the treatment of intracerebral hemorrhage. 展开更多
关键词 cell death cholesterol metabolism intracerebral hemorrhage MYELINATION therapeutic target
下载PDF
Risk factors for developing osteoporosis in diabetic kidney disease and its correlation with calcium-phosphorus metabolism,FGF23,and Klotho
9
作者 Fan Yang Yan Wu Wei Zhang 《World Journal of Diabetes》 SCIE 2025年第1期49-57,共9页
BACKGROUND The progression of diabetic kidney disease(DKD)affects the patient’s kidney glomeruli and tubules,whose normal functioning is essential for maintaining normal calcium(Ca)and phosphorus(P)metabolism in the ... BACKGROUND The progression of diabetic kidney disease(DKD)affects the patient’s kidney glomeruli and tubules,whose normal functioning is essential for maintaining normal calcium(Ca)and phosphorus(P)metabolism in the body.The risk of developing osteoporosis(OP)in patients with DKD increases with the aggravation of the disease,including a higher risk of fractures,which not only affects the quality of life of patients but also increases the risk of death.AIM To analyze the risk factors for the development of OP in patients with DKD and their correlation with Ca-P metabolic indices,fibroblast growth factor 23(FGF23),and Klotho.METHODS One hundred and fifty-eight patients with DKD who were admitted into the Wuhu Second People’s Hospital from September 2019 to May 2021 were selected and divided into an OP group(n=103)and a normal bone mass group(n=55)according to their X-ray bone densitometry results.Baseline data and differences in Ca-P biochemical indices,FGF23,and Klotho were compared.The correlation of Ca-P metabolic indices with FGF23 and Klotho was discussed,and the related factors affecting OP in patients with DKD were examined by multivariate logistic regression analysis.RESULTS The OP group had a higher proportion of females,an older age,and a longer diabetes mellitus duration than the normal group(all P<0.05).Patients in the OP group exhibited significantly higher levels of intact parathyroid hormone(iPTH),blood P,Ca-P product(Ca×P),fractional excretion of phosphate(FeP),and FGF23,as well as lower estimated glomerular filtration rate,blood Ca,24-hour urinary phosphate excretion(24-hour UPE),and Klotho levels(all P<0.05).In the OP group,25-(OH)-D3,blood Ca,and 24-hour UPE were negatively correlated with FGF23 and positively correlated with Klotho.In contrast,iPTH,blood Ca,Ca×P,and FeP exhibited a positive correlation with FGF23 and an inverse association with Klotho(all P<0.05).Moreover,25-(OH)-D3,iPTH,blood Ca,FePO4,FGF23,Klotho,age,and female gender were key factors that affected the lumbar and left femoral neck bone mineral density.CONCLUSION The Ca-P metabolism metabolic indexes,FGF23,and Klotho in patients with DKD are closely related to the occurrence and development of OP. 展开更多
关键词 Diabetic kidney disease OSTEOPOROSIS Calcium-phosphorus metabolism FGF23 KLOTHO
下载PDF
Effect of cholesterol metabolism on hepatolithiasis
10
作者 Lin Zheng Zi-Yu Ye Jun-Ji Ma 《World Journal of Gastroenterology》 SCIE CAS 2025年第1期157-162,共6页
Surgical intervention is currently the primary treatment for hepatolithiasis;how-ever,some patients still experience residual stones and high recurrence rates after surgery.Cholesterol metabolism seems to play an impo... Surgical intervention is currently the primary treatment for hepatolithiasis;how-ever,some patients still experience residual stones and high recurrence rates after surgery.Cholesterol metabolism seems to play an important role in hepatoli-thiasis pathogenesis.A high cholesterol diet is one of the significant reasons for the increasing incidence of hepatolithiasis.Therefore,regular diet and appropriate medical intervention are crucial measures to prevent hepatolithiasis and reduce recurrence rate after surgery.Reducing dietary cholesterol and drugs that increase cholesterol stone solubility are key therapeutic approaches in treating hepato-lithiasis.This article discusses the cholesterol metabolic pathways related to the pathogenesis of hepatolithiasis,as well as food intake and targeted therapeutic drugs. 展开更多
关键词 HEPATOLITHIASIS Cholesterol metabolism High-fat diet 3-hydroxy-3-methylglutaryl-coenzyme A reductase Interlobular bile duct
下载PDF
Targeting sepsis through inflammation and oxidative metabolism
11
作者 Salena Jacob Sanjana Ann Jacob Joby Thoppil 《World Journal of Critical Care Medicine》 2025年第1期69-81,共13页
Infection is a public health problem and represents a spectrum of disease that can result in sepsis and septic shock.Sepsis is characterized by a dysregulated immune response to infection.Septic shock is the most seve... Infection is a public health problem and represents a spectrum of disease that can result in sepsis and septic shock.Sepsis is characterized by a dysregulated immune response to infection.Septic shock is the most severe form of sepsis which leads to distributive shock and high mortality rates.There have been significant advances in sepsis management mainly focusing on early identification and therapy.However,complicating matters is the lack of reliable diagnostic tools and the poor specificity and sensitivity of existing scoring tools i.e.,systemic inflammatory response syndrome criteria,sequential organ failure assessment(SOFA),or quick SOFA.These limitations have underscored the modest progress in reducing sepsis-related mortality.This review will focus on novel therapeutics such as oxidative stress targets,cytokine modulation,endothelial cell modulation,etc.,that are being conceptualized for the management of sepsis and septic shock. 展开更多
关键词 SEPSIS INFLAMMATION Oxidative metabolism INFECTION Reactive oxygen species
下载PDF
Liver as a new target organ in Alzheimer's disease:insight from cholesterol metabolism and its role in amyloid-beta clearance
12
作者 Beibei Wu Yuqing Liu +4 位作者 Hongli Li Lemei Zhu Lingfeng Zeng Zhen Zhang Weijun Peng 《Neural Regeneration Research》 SCIE CAS 2025年第3期695-714,共20页
Alzheimer's disease,the primary cause of dementia,is characterized by neuropathologies,such as amyloid plaques,synaptic and neuronal degeneration,and neurofibrillary tangles.Although amyloid plaques are the primar... Alzheimer's disease,the primary cause of dementia,is characterized by neuropathologies,such as amyloid plaques,synaptic and neuronal degeneration,and neurofibrillary tangles.Although amyloid plaques are the primary characteristic of Alzheimer's disease in the central nervous system and peripheral organs,targeting amyloid-beta clearance in the central nervous system has shown limited clinical efficacy in Alzheimer's disease treatment.Metabolic abnormalities are commonly observed in patients with Alzheimer's disease.The liver is the primary peripheral organ involved in amyloid-beta metabolism,playing a crucial role in the pathophysiology of Alzheimer's disease.Notably,impaired cholesterol metabolism in the liver may exacerbate the development of Alzheimer's disease.In this review,we explore the underlying causes of Alzheimer's disease and elucidate the role of the liver in amyloid-beta clearance and cholesterol metabolism.Furthermore,we propose that restoring normal cholesterol metabolism in the liver could represent a promising therapeutic strategy for addressing Alzheimer's disease. 展开更多
关键词 ABCA1 Alzheimer's disease AMYLOID-BETA apolipoprotein E cholesterol metabolism LIVER liver X receptor low-density lipoprotein receptor-related protein 1 peripheral clearance tauroursodeoxycholic acid
下载PDF
Longitudinal assessment of peripheral organ metabolism and the gut microbiota in an APP/PS1 transgenic mouse model of Alzheimer’s disease
13
作者 Hongli Li Jianhua Huang +4 位作者 Di Zhao Lemei Zhu Zheyu Zhang Min Yi Weijun Peng 《Neural Regeneration Research》 SCIE CAS 2025年第10期2982-2997,共16页
Alzheimer’s disease not only affects the brain,but also induces metabolic dysfunction in peripheral organs and alters the gut microbiota.The aim of this study was to investigate systemic changes that occur in Alzhei... Alzheimer’s disease not only affects the brain,but also induces metabolic dysfunction in peripheral organs and alters the gut microbiota.The aim of this study was to investigate systemic changes that occur in Alzheimer’s disease,in particular the association between changes in peripheral organ metabolism,changes in gut microbial composition,and Alzheimer’s disease development.To do this,we analyzed peripheral organ metabolism and the gut microbiota in amyloid precursor protein-presenilin 1(APP/PS1)transgenic and control mice at 3,6,9,and 12 months of age.Twelve-month-old APP/PS1 mice exhibited cognitive impairment,Alzheimer’s disease-related brain changes,distinctive metabolic disturbances in peripheral organs and fecal samples(as detected by untargeted metabolomics sequencing),and substantial changes in gut microbial composition compared with younger APP/PS1 mice.Notably,a strong correlation emerged between the gut microbiota and kidney metabolism in APP/PS1 mice.These findings suggest that alterations in peripheral organ metabolism and the gut microbiota are closely related to Alzheimer’s disease development,indicating potential new directions for therapeutic strategies. 展开更多
关键词 Alzheimer’s disease APP/PS1 mice brain-kidney axis gut microbiota heart-brain axis liver-brain axis lung-brain axis microbiota-gut-brain axis peripheral organ metabolism spleen-brain axis
下载PDF
Effects of Postponing N Application on Metabolism,Absorption and Utilization of Nitrogen of Summer Maize in SuperHigh Yield Region 被引量:3
14
作者 王宜伦 王群 +3 位作者 韩丹 任丽 谭金芳 李潮海 《Agricultural Science & Technology》 CAS 2013年第1期131-134,185,共5页
[Objective] The aim was to explore effects of application postponing of N fertilizer and the mechanism of yield increase in order to provide references for N fertilizer application in a rational way. [Method] In a sup... [Objective] The aim was to explore effects of application postponing of N fertilizer and the mechanism of yield increase in order to provide references for N fertilizer application in a rational way. [Method] In a super-high yielded region of summer maize, field experiment was conducted to research effects of N fertilizer postponing on key enzymes of N metabolism, yield of maize and N fertilizer use. [Result] After application of N fertilizer was postponed, NR, SPS and GS activities of ear-leaf of summer maize increased by 11.99%-34.87%, 8.25%-10.64% and 10.00%- 16.81% on the 28^th d of silking; content of soluble sugar in leaves enhanced signifi- cantly and accumulated nitrogen increased by 5.00%-9.74% in mature stage. The postponing fertilization of "30% of fertilizer in seedling stage+30% of fertilizer in flare- opening stage+40% of fertilizer in silking stage meets N demands of summer maize in late growth period. Compared with conventional fertilization, the maize yield, agro- nomic efficiency and use of N fertilizer all improved by 5.05%, 1.75 kg/kg and 6.87%, respectively, after application postponed. [Conclusion] Application postponing of N fertilizer maintains activity of NR, GS and SPS higher and coordinates metabolism of C and N in late growth period, to further improve yield of maize. 展开更多
关键词 Summer maize Super high yield Application postponing of N fertilizer nitrogen metabolism Use efficiency of N fertilizer
下载PDF
Effects of Irrigation on Nitrogen Metabolism and Yield of Strong Gluten Wheat 被引量:1
15
作者 李晓 姚占军 +2 位作者 管涛 郭天财 冯伟 《Agricultural Science & Technology》 CAS 2010年第3期68-71,共4页
[Objective] The aim was to provide reference for the field irrigation management of high yield and quality cultivation of strong gluten wheat.[Method]Under field conditions,the effects of irrigation times on nitrogen ... [Objective] The aim was to provide reference for the field irrigation management of high yield and quality cultivation of strong gluten wheat.[Method]Under field conditions,the effects of irrigation times on nitrogen metabolism and yield of strong gluten wheat cultivar zhengmai 9023 were studied.[Result]The results indicated that NR activity,Chlorophyll and nitrogen content in flag leaf increased with irrigation times,and the irrigation treatment had obvious advantages during middle filling stage.Grain protein content showed "V" type change with grain filling going on,and protein content decreased when irrigation times going on.There was significant difference among treatments during early stage of grain filling,and the difference became smaller in the late grain filling stage.The grain yield and protein yield increased but the protein content decreased with increasing of irrigation times.[Conclusion] Increasing irrigation times properly could improve grain yield and protein yield per unit area,but reduce the grain protein content. 展开更多
关键词 Winter wheat IRRIGATION nitrogen metabolism Grain yield
下载PDF
Influences of Nitrogen Level on Carbon Metabolism of Spring Maize 被引量:5
16
作者 其其格 李可 +2 位作者 李刚 李春艳 曹国军 《Agricultural Science & Technology》 CAS 2010年第4期34-36,共3页
[Objective]To study the effect of supplies of nitrogen level on spring maize leaf blade carbon metabolism.[Method]In this experiment,field trail and biochemistry analysis were used to study the effect of the diference... [Objective]To study the effect of supplies of nitrogen level on spring maize leaf blade carbon metabolism.[Method]In this experiment,field trail and biochemistry analysis were used to study the effect of the diference-nitrogen level on the content of chlorophyl and carboxylase activity of RuBP and PEP in the leaf of spring maize during main growing period.[Result]Applying proper amount of N could keep relative higher content of chlorophyl and higher activity of carboxylase of RuBP and PEP in the leaf of spring maize,insufficient or excessive(N 400 kg/hm^2) of nitrogenous fertilizer has the adverse effect.[Conclusion]In this experiment,applying 300 kg/hm^2 amount of N could keep relative higher content of chlorophyl and higher activity of carboxylase of RuBP and PEP in the leaf of spring maize during main growing period.It was important to strengthens the leaf blade photosynthesis ability,promote the yield formation and postpone the decline of leaf blade. 展开更多
关键词 nitrogen nutrition Spring maize Carbon metabolism
下载PDF
Effect of RPlys on Digestive Metabolism of Nitrogen in Sheep 被引量:2
17
作者 程胜利 李建升 +6 位作者 冯瑞林 郎侠 裴杰 岳耀敬 郭宪 刘建斌 郭天芬 《Agricultural Science & Technology》 CAS 2010年第3期186-188,共3页
[Objective] The aim was to study the effect of RPlys on digestive metabolism of nitrogen in sheep.[Method] The contribution of RPlys for nitrogen residual in sheep was researched by digestive metabolism test.[Result] ... [Objective] The aim was to study the effect of RPlys on digestive metabolism of nitrogen in sheep.[Method] The contribution of RPlys for nitrogen residual in sheep was researched by digestive metabolism test.[Result] The results showed that adding RPlys decreased excretion of urine nitrogen (P0.05) and had no significant effect on excretion of fecal nitrogen (P0.05),and precipitation coefficient of nitrogen was increased (P0.05).[Conclusion] RPlys is propitious to the aggradations of nitrogen in sheep. 展开更多
关键词 SHEEP RPlys nitrogen Digestive metabolism
下载PDF
Effects of Cadmium Stress on Key Enzymes Involved in Nitrogen Metabolism and Nitrogen,Phosphorus, Potassium Accumulation of Different Varieties of Rice
18
作者 黄维 彭建伟 +2 位作者 龚蓉 庹海波 范艳咪 《Agricultural Science & Technology》 CAS 2015年第6期1204-1208,共5页
In this study, the pot experiment was used to explore the differences of activity of key enzymes involved in N metabolism and NPK accumulation under Cd stress during the til iering stage of differen varieties of rice.... In this study, the pot experiment was used to explore the differences of activity of key enzymes involved in N metabolism and NPK accumulation under Cd stress during the til iering stage of differen varieties of rice. The results showed that:Cd stress could increase the NPK concentration of different rice type in the til ering stage, while Shen-Liangyou 5867,Yongyou 5550 and Wu-Yunjing 27 showed the highest amplification respectively. Morever, Cd stress can also contribute to the ac-tivity of NR,GS,GOGAT increasing.A s for NR,the Cd stress significantly contribute to NR activity increasing of Huang-Huazhan and Yongyou 538 but is not significant for Wu-Yunjing 27, Shen-Liangyou 5867 and Yongyou 5550, however, the difference among them is not obvious.However, for the activity of GS , Cd stress promote the GS activity. Huang-Huazhan and Wu-Yunjing 27 with low activity in Cd normal level are the most sensitive. Meanwhile the difference between two treatment is the most significant. To the contrary, restrain the GS activity of Shen-Liangyou 5867, Yongy-ou 5550 and the difference is not significant. And under Cd stress, either difference reached significant in GS activity. Cd stress also improve the activity of GOGAT, Wu-Yunjing 27 showed the highest inprovement which showed the lowest GOGAT activity under Cd normal level. Cd stress on rice growth and development of ad-verse, make its lower seed setting rate, 1 000 grain weight decreased, resulting in different degrees of reduction of output of rice. 展开更多
关键词 RICE Cadmium stresses Til ering stage nitrogen metabolism
下载PDF
Effects of Aeration on Root Physiology and Nitrogen Metabolism in Rice 被引量:13
19
作者 XU Chun-mei WANG Dan-ying +2 位作者 CHEN Song CHEN Li-ping ZHANG Xiu-fu 《Rice science》 SCIE 2013年第2期148-153,共6页
In order to clarify the effects of aeration on root nitrogen metabolism in rice seedlings,rice cultivars Guodao 6 (indica) and Xiushui 09 (japonica) were investigated for root growth,the activities of glutamine sy... In order to clarify the effects of aeration on root nitrogen metabolism in rice seedlings,rice cultivars Guodao 6 (indica) and Xiushui 09 (japonica) were investigated for root growth,the activities of glutamine synthetase (GS),glutamic acid-pyruvic acid transaminase (GPT) and glutamic acid oxaloacetate transaminase (GOT),the nitrate (NO 3-N) concertration,the contents of free amino acids and soluble sugar in root under hydroponics with continuous aeration treatment.The results showed that rice seedlings grown in oxygenation solutions had higher root dry matter,longer root length,stronger root activity and larger root absorption area compared with the control.In addition,the contents of soluble sugar,root vigor and the activities of GS,GOT and GPT in the aeration solutions were higher than those in the control.The results also indicated that the activities of enzymes involved in root nitrogen metabolism of Xiushui 09 were enhanced by aeration,however,there was no significant influence on root nitrogen metabolism of Guodao 6,which suggested that effect of oxygenation on rice root nitrogen metabolism might be genotype-specific. 展开更多
关键词 RICE AERATION root physiology nitrogen metabolism
下载PDF
Effects of lanthanum(Ⅲ) on nitrogen metabolism of soybean seedlings under elevated UV-B radiation 被引量:9
20
作者 CAO Rui HUANG Xiao-hua +1 位作者 ZHOU Qing CHENG Xiao-ying 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第11期1361-1366,共6页
The hydroponic culture experiments of soybean bean seedlings were conducted to investigate the effect of lanthanum (La) on nitrogen metabolism under two different levels of elevated UV-B radiation (UV-B, 280-320 nm... The hydroponic culture experiments of soybean bean seedlings were conducted to investigate the effect of lanthanum (La) on nitrogen metabolism under two different levels of elevated UV-B radiation (UV-B, 280-320 nm). The whole process of nitrogen metabolism involves uptake and transport of nitrate, nitrate assimilation, ammonium assimilation, amino acid biosynthesis, and protein synthesis. Compared with the control, UV-B radiation with the intensity of low level 0.15 W/m^2 and high level 0.45 W/m^2 significantly affected the whole nitrogen metabolism in soybean seedlings (p 〈 0.05). It restricted uptake and transport of NO3^-, inhibited activity of some key nitrogen-metabolism-related enzymes, such as: nitrate reductase (NR) to the nitrate reduction, glutamine systhetase (GS) and glutamine synthase (GOGAT) to the ammonia assimilation, while it increased the content of free amino acids and decreased that of soluble protein as well. The damage effect of high level of UV-B radiation on nitrogen metabolism was greater than that of low level. And UV-B radiation promoted the activity of the anti-adversity enzyme glutamate dehydrogenase (GDH), which reduced the toxicity of excess ammonia in plant. After pretreatment with the optimum concentration of La (20 mg/L), La could increase the activity of NR, GS, GOGAT, and GDH, and ammonia assimilation, but decrease nitrate and ammonia accumulation. In conclusion, La could relieve the damage effect of UV-B radiation on plant by regulating nitrogen metabolism process, and its alleviating effect under low level was better than that under the high one. 展开更多
关键词 lanthanum(Ⅲ) UV-B radiation soybean seedlings nitrogen metabolism alleviating effect
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部