期刊文献+
共找到11,859篇文章
< 1 2 250 >
每页显示 20 50 100
Activation of Transition Metal(Fe,Co and Ni)-Oxide Nanoclusters by Nitrogen Defects in Carbon Nanotube for Selective CO_(2) Reduction Reaction 被引量:1
1
作者 Yi Cheng Jinfan Chen +7 位作者 Chujie Yang Huiping Wang Bernt Johannessen Lars Thomsen Martin Saunders Jianping Xiao Shize Yang San Ping Jiang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期253-263,共11页
The electrochemical carbon dioxide reduction reaction(CO_(2)RR),which can produce value-added chemical feedstocks,is a proton-coupled-electron process with sluggish kinetics.Thus,highly efficient,cheap catalysts are u... The electrochemical carbon dioxide reduction reaction(CO_(2)RR),which can produce value-added chemical feedstocks,is a proton-coupled-electron process with sluggish kinetics.Thus,highly efficient,cheap catalysts are urgently required.Transition metal oxides such as CoO_(x),FeO_(x),and NiO_(x)are low-cost,low toxicity,and abundant materials for a wide range of electrochemical reactions,but are almost inert for CO_(2)RR.Here,we report for the first time that nitrogen doped carbon nanotubes(N-CNT)have a surprising activation effect on the activity and selectivity of transition metal-oxide(MO_(x)where M=Fe,Ni,and Co)nanoclusters for CO_(2)RR.MO_(x)supported on N-CNT,MO_(x)/N-CNT,achieves a CO yield of 2.6–2.8 mmol cm−2 min−1 at an overpotential of−0.55 V,which is two orders of magnitude higher than MO_(x)supported on acid treated CNTs(MO_(x)/O-CNT)and four times higher than pristine N-CNT.The faraday efficiency for electrochemical CO_(2)-to-CO conversion is as high as 90.3%at overpotential of 0.44 V.Both in-situ XAS measurements and DFT calculations disclose that MO_(x)nanoclusters can be hydrated in CO_(2)saturated KHCO_(3),and the N defects of N-CNT effectively stabilize these metal hydroxyl species under carbon dioxide reduction reaction conditions,which can split the water molecules and provide local protons to inhibit the poisoning of active sites under carbon dioxide reduction reaction conditions. 展开更多
关键词 activation effect electrochemical CO_(2)reduction reaction N defect proton-coupled electron transfer process transition metal oxide nanocluster
下载PDF
Regulation of 2-acetyl-1-pyrroline and grain quality in early-season indica fragrant rice by nitrogen and silicon fertilization under different plantation methods 被引量:1
2
作者 Yongjian Chen Lan Dai +7 位作者 Siren Cheng Yong Ren Huizi Deng Xinyi Wang Yuzhan Li Xiangru Tang Zaiman Wang Zhaowen Mo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期511-535,共25页
Fragrant rice has a high market value,and it is a popular rice type among consumers owing to its pleasant flavor.Plantation methods,nitrogen(N)fertilizers,and silicon(Si)fertilizers can affect the grain yield and frag... Fragrant rice has a high market value,and it is a popular rice type among consumers owing to its pleasant flavor.Plantation methods,nitrogen(N)fertilizers,and silicon(Si)fertilizers can affect the grain yield and fragrance of fragrant rice.However,the core commercial rice production attributes,namely the head rice yield(HRY)and 2-acetyl-1-pyrroline(2-AP)content of fragrant rice,under various nitrogen and silicon(N-Si)fertilization levels and different plantation methods remain unknown.The field experiment in this study was performed in the early seasons of 2018 and 2019 with two popular indica fragrant rice cultivars(Yuxiangyouzhan and Xiangyaxiangzhan).They were grown under six N-Si fertilization treatments(combinations of two levels of Si fertilizer,0 kg Si ha^(−1)(Si0)and 150 kg Si ha^(−1)(Si1),and three levels of N fertilizer,0 kg N ha^(−1)(N0),150 kg N ha^(−1)(N1),and 220 kg N ha^(−1)(N2))and three plantation methods(artificial transplanting(AT),mechanical transplanting(MT),and mechanical direct-seeding(MD)).The results showed that the N-Si fertilization treatments and all the plantation methods significantly affected the HRY and 2-AP content and related parameters of the two different fragrant rice cultivars.Compared with the Si0N0 treatment,the N-Si fertilization treatments resulted in higher HRY and 2-AP contents.The rates of brown rice,milled rice,head rice,and chalky rice of the fragrant rice also improved with the N-Si fertilization treatments.The N-Si fertilization treatments increased the activities of N metabolism enzymes and the accumulation of N and Si in various parts of the fragrant rice,and affected their antioxidant response parameters.The key parameters for the HRY and 2-AP content were assessed by redundancy analysis.Furthermore,the structural equation model revealed that the Si and N accumulation levels indirectly affected the HRY by affecting the N metabolism enzyme activity,N use efficiency,and grain quality of fragrant rice.Moreover,high N and Si accumulation directly promoted the 2-AP content or affected the antioxidant response parameters and indirectly regulated 2-AP synthesis.The interactions of the MT method with the N-Si fertilization treatments varied in the fragrant rice cultivars in terms of the HRY and 2-AP content,whereas the MD method was beneficial to the 2-AP content in both fragrant rice cultivars under the N-Si fertilization treatments. 展开更多
关键词 fragrant rice 2-AP content head rice yield mechanical planting nitrogen silicon
下载PDF
Porous metal oxides in the role of electrochemical CO_(2) reduction reaction 被引量:1
3
作者 Ziqi Zhang Jinyun Xu +9 位作者 Yu Zhang Liping Zhao Ming Li Guoqiang Zhong Di Zhao Minjing Li Xudong Hu Wenju Zhu Chunming Zheng Xiaohong Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期373-398,I0009,共27页
The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous me... The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous metal oxide materials in the electrocatalytic reduction of CO_(2)(CO_(2)RR).The focus is on the development of robust and selective catalysts,particularly metal and metal-oxide-based materials.Porous metal oxides offer high surface area,enhancing the accessibility to active sites and improving reaction kinetics.The tunability of these materials allows for tailored catalytic behavior,targeting optimized reaction mechanisms for CO_(2)RR.The work also discusses the various synthesis strategies and identifies key structural and compositional features,addressing challenges like high overpotential,poor selectivity,and low stability.Based on these insights,we suggest avenues for future research on porous metal oxide materials for electrochemical CO_(2) reduction. 展开更多
关键词 CO_(2)reduction Carbon dioxide TRANSFORMATION Porous metal oxides ELECTROCATALYSIS
下载PDF
Boosting oxygen reduction activity and CO_(2) resistance on bismuth ferrite-based perovskite cathode for low-temperature solid oxide fuel cells below 600℃ 被引量:1
4
作者 Juntao Gao Zhiyun Wei +5 位作者 Mengke Yuan Zhe Wang Zhe Lü Qiang Li Lingling Xu Bo Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期600-609,I0013,共11页
Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)... Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs. 展开更多
关键词 Low-temperature solid oxide fuel cell Perovskite cathode DFT calculations CO_(2) tolerance
下载PDF
Could natural phytochemicals be used to reduce nitrogen excretion and excreta‑derived N_(2)O emissions from ruminants?
5
作者 Yuchao Zhao Ming Liu +1 位作者 Linshu Jiang Leluo Guan 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第2期490-508,共19页
Ruminants play a critical role in our food system by converting plant biomass that humans cannot or choose not to consume into edible high-quality food.However,ruminant excreta is a significant source of nitrous oxide... Ruminants play a critical role in our food system by converting plant biomass that humans cannot or choose not to consume into edible high-quality food.However,ruminant excreta is a significant source of nitrous oxide(N_(2)O),a potent greenhouse gas with a long-term global warming potential 298 times that of carbon dioxide.Natural phytochemicals or forages containing phytochemicals have shown the potential to improve the efficiency of nitrogen(N)utilization and decrease N_(2)O emissions from the excreta of ruminants.Dietary inclusion of tannins can shift more of the excreted N to the feces,alter the urinary N composition and consequently reduce N_(2)O emissions from excreta.Essential oils or saponins could inhibit rumen ammonia production and decrease urinary N excretion.In grazed pastures,large amounts of glucosinolates or aucubin can be introduced into pasture soils when animals consume plants rich in these compounds and then excrete them or their metabolites in the urine or feces.If inhibitory compounds are excreted in the urine,they would be directly applied to the urine patch to reduce nitrification and subsequent N_(2)O emissions.The phytochemicals’role in sustainable ruminant production is undeniable,but much uncertainty remains.Inconsistency,transient effects,and adverse effects limit the effectiveness of these phytochemicals for reducing N losses.In this review,we will identify some current phytochemicals found in feed that have the potential to manipulate ruminant N excretion or mitigate N_(2)O production and deliberate the challenges and opportunities associated with using phytochemicals or forages rich in phytochemicals as dietary strategies for reducing N excretion and excreta-derived N_(2)O emissions. 展开更多
关键词 nitrogen metabolism Nitrous oxide Plant bioactive compounds RUMINANT Urine patches
下载PDF
Regeneration of copper catalysts mediated by molybdenum-based oxides
6
作者 Changyu Ding Xiaoli Pan +7 位作者 Isla E.Gow Xia Wu Hongchen Cao Zhounan Yu Xiaoyan Liu Xiaofeng Yang Qinggang Liu Yanqiang Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期618-625,I0013,共9页
Cu catalysts,known for their unparalleled catalytic capabilities due to their unique electronic structure,have faced inherent challenges in maintaining long-term effectiveness under harsh hydrogenation conditions.Here... Cu catalysts,known for their unparalleled catalytic capabilities due to their unique electronic structure,have faced inherent challenges in maintaining long-term effectiveness under harsh hydrogenation conditions.Here,we demonstrate a molybdenum-mediated redispersion behavior of Cu under hightemperature oxidation conditions.The oxidized Cu nanoparticles with rich metal-support interfaces tend to dissolve into the MoO_(3)support upon heating to 600℃,which facilitates the subsequent regeneration in a reducing atmosphere.A similar redispersion phenomenon is observed for Cu nanoparticles supported on Zn O-modified MoO_(3).The modification of ZnO significantly improves the performance of the Cu catalyst for CO_(2)hydrogenation to methanol,with the high activity being well maintained after four repeated oxidation-reduction cycles.In situ spectroscopic and theoretical analyses suggest that the interaction involved in the formation of the copper molybdate-like compound is the driving force for the redispersion of Cu.This method is applicable to various Mo-based oxide supports,offering a practical strategy for the regeneration of sintered Cu particles in hydrogenation applications. 展开更多
关键词 Cu-based catalysts AGGREGATION REGENERATION OXIDATION CO_(2)hydrogenation
下载PDF
Refining the Factors Affecting N_(2)O Emissions from Upland Soils with and without Nitrogen Fertilizer Application at a Global Scale
7
作者 Wenqian JIANG Siqi LI +5 位作者 Yong LI Meihui WANG Bo WANG Ji LIU Jianlin SHEN Xunhua ZHENG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第9期1804-1820,共17页
Nitrous oxide(N_(2)O)is a long-lived greenhouse gas that mainly originates from agricultural soils.More and more studies have explored the sources,influencing factors and effective mitigation measures of N_(2)O in rec... Nitrous oxide(N_(2)O)is a long-lived greenhouse gas that mainly originates from agricultural soils.More and more studies have explored the sources,influencing factors and effective mitigation measures of N_(2)O in recent decades.However,the hierarchy of factors influencing N_(2)O emissions from agricultural soils at the global scale remains unclear.In this study,we carry out correlation and structural equation modeling analysis on a global N_(2)O emission dataset to explore the hierarchy of influencing factors affecting N_(2)O emissions from the nitrogen(N)and non-N fertilized upland farming systems,in terms of climatic factors,soil properties,and agricultural practices.Our results show that the average N_(2)O emission intensity in the N fertilized soils(17.83 g N ha^(-1)d^(-1))was significantly greater than that in the non-N fertilized soils(5.34 g N ha^(−1) d^(−1))(p<0.001).Climate factors and agricultural practices are the most important influencing factors on N_(2)O emission in non-N and N fertilized upland soils,respectively.For different climatic zones,without fertilizer,the primary influence factors on soil N_(2)O emissions are soil physical properties in subtropical monsoon zone,whereas climatic factors are key in the temperate zones.With fertilizer,the primary influence factors for subtropical monsoon and temperate continental zones are soil physical properties,while agricultural measures are the main factors in the temperate monsoon zone.Deploying enhanced agricultural practices,such as reduced N fertilizer rate combined with the addition of nitrification and urease inhibitors can potentially mitigate N_(2)O emissions by more than 60%in upland farming systems. 展开更多
关键词 N_(2)O emissions influencing factors nitrogen cycling upland farming systems
下载PDF
Regulation of interlayer channels of graphene oxide nanosheets in ultra-thin Pebax mixed-matrix membranes for CO_(2) capture
8
作者 Feifan Yang Yuanhang Jin +5 位作者 Jiangying Liu Haipeng Zhu Rong Xu Fenjuan Xiangli Gongping Liu Wanqin Jin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期257-267,共11页
For the application of carbon capture by membrane process,it is crucial to develop a highly permeable CO_(2)-selective membrane.In this work,we reported an ultra-thin polyether-block-amide(Pebax)mixedmatrix membranes(... For the application of carbon capture by membrane process,it is crucial to develop a highly permeable CO_(2)-selective membrane.In this work,we reported an ultra-thin polyether-block-amide(Pebax)mixedmatrix membranes(MMMs)incorporated by graphene oxide(GO),in which the interlayer channels were regulated to optimize the CO_(2)/N_(2) separation performance.Various membrane preparation conditions were systematically investigated on the influence of the membrane structure and separation performance,including the lateral size of GO nanosheets,GO loading,thermal reduction temperature,and time.The results demonstrated that the precisely regulated interlayer channel of GO nanosheets can rapidly provide CO_(2)-selective transport channels due to the synergetic effects of size sieving and preferential adsorption.The GO/Pebax ultra-thin MMMs exhibited CO_(2)/N_(2) selectivity of 72 and CO_(2) permeance of 400 GPU(1 GPU=106 cm^(3)(STP)·cm^(2)·s^(-1)·cmHg^(-1)),providing a promising candidate for CO_(2) capture. 展开更多
关键词 Mixed-matrix membrane Ultra-thin membrane Pebax Graphene oxide CO_(2) capture
下载PDF
Preparation of PrFe_(x)Co_(1-x)O_(3)/Mt catalyst and study on degradation of 2-hydroxybenzoic acid wastewater by catalytic wet peroxide oxidation
9
作者 Binxia Zhao Yijia Gao +3 位作者 Tiancheng Hun Xiaoxiao Fan Nan Shao Xiaoqian Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期286-297,共12页
In this study,the perovskite nanocomposite PrFe_(x)Co_(1-x)O_(3)(Pr(S))was successfully synthesized by the sol-gel method;PrFe_(x)Co_(1-x)O_(3)/Al-pillared montmorillonite(Pr(S)/Mt)catalysts were prepared by impregnat... In this study,the perovskite nanocomposite PrFe_(x)Co_(1-x)O_(3)(Pr(S))was successfully synthesized by the sol-gel method;PrFe_(x)Co_(1-x)O_(3)/Al-pillared montmorillonite(Pr(S)/Mt)catalysts were prepared by impregnation(D)method and solid-melting(G)method,respectively,with Pr(S)as the active component and Al-pillared montmorillonite as the carrier.The catalysts were applied to treat the 2-hydroxybenzoic acid(2-HA)-simulated wastewater by catalytic wet peroxide oxidation(CWPO)technique,and the chemical oxygen demand(COD)removal rate and the 2-HA degradation rate were used as indicators to evaluate the catalytic performance.The results of the experiment indicated that the solid-melting method was more conducive to preparing the catalyst when the Co/Fe molar ratio of 7:3 and the optimal structural properties of the catalysts were achieved.The influence of operating parameters,including reaction temperature,catalyst dosage,H_(2)O_(2)dosage,pH,and initial 2-HA concentration,were optimized for the degradation of 2-HA by CWPO.The results showed that 97.64%of 2-HA degradation and 75.23%of COD removal rate were achieved under more suitable experimental conditions.In addition,after the catalyst was used five times,the degradation rate of 2-HA could still reach 76.93%,which implied the high stability and reusability of the catalyst.The high catalytic activity of the catalyst was due to the doping of Co into PrFeO_(3),which could promote the generation of HO·,and the high stability could be attributed to the loading of Pr(S)onto Al-Mt,which reduced the leaching of reactive metals.The study of reaction mechanism and kinetics showed that the whole degradation process conformed to the pseudo-firstorder kinetic equation,and the Langmuir-Hinshelwood method was applied to demonstrate that catalysis was dominant in the degradation process. 展开更多
关键词 MONTMORILLONITE PEROVSKITE Catalytic wet peroxide oxidation(CWPO) 2-Hydroxybenzoic acid
下载PDF
Electrochemical reduction of carbon dioxide to produce formic acid coupled with oxidative conversion of biomass
10
作者 Xi Liu Yifan Wang +2 位作者 Zhiwei Dai Daihong Gao Xuebing Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期705-729,共25页
Electrochemical reduction of CO_(2)(CO_(2)RR)has become a research hot spot in recent years in the context of carbon neutrality.HCOOH is one of the most promising products obtained by electrochemical reduction of CO_(... Electrochemical reduction of CO_(2)(CO_(2)RR)has become a research hot spot in recent years in the context of carbon neutrality.HCOOH is one of the most promising products obtained by electrochemical reduction of CO_(2) due to its high energy value as estimated by market price per energy unit and wide application in chemical industry.Biomass is the most abundant renewable resource in the natural world.Coupling biomass oxidative conversion with CO_(2)RR driven by renewable electricity would well achieve carbon negativity.In this work,we comprehensively reviewed the current research progress on CO_(2)RR to produce HCOOH and coupled system for conversion of biomass and its derivatives to produce value-added products.Sn-and Bi-based electrocatalysts are discussed for CO_(2)RR with regards to the structure of the catalyst and reaction mechanisms.Electro-oxidation reactions of biomass derived sugars,alcohols,furan aldehydes and even polymeric components of lignocellulose were reviewed as alternatives to replace oxygen evolution reaction(OER)in the conventional electrolysis process.It was recommended that to further improve the efficiency of the coupled system,future work should be focused on the development of more efficient and stable catalysts,careful design of the electrolytic cells for improving the mass transfer and development of environment-friendly processes for recovering the formed formate and biomass oxidation products. 展开更多
关键词 Electrochemical reduction of CO_(2) Formic acid Oxidative conversion of biomass LIGNOCELLULOSE Coupled system
下载PDF
Novel Perovskite Oxide Hybrid Nanofibers Embedded with Nanocatalysts for Highly Efficient and Durable Electrodes in Direct CO_(2) Electrolysis
11
作者 Akromjon Akhmadjonov Kyung Taek Bae Kang Taek Lee 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期214-230,共17页
The unique characteristics of nanofibers in rational electrode design enable effec-tive utilization and maximizing material properties for achieving highly efficient and sustainable CO_(2) reduction reactions( CO_(2)R... The unique characteristics of nanofibers in rational electrode design enable effec-tive utilization and maximizing material properties for achieving highly efficient and sustainable CO_(2) reduction reactions( CO_(2)RRs)in solid oxide elec-trolysis cells(SOECs).However,practical appli-cation of nanofiber-based electrodes faces chal-lenges in establishing sufficient interfacial contact and adhesion with the dense electrolyte.To tackle this challenge,a novel hybrid nanofiber electrode,La_(0.6)Sr_(0.4)Co_(0.15)Fe_(0.8)Pd_(0.05)O_(3-δ)(H-LSCFP),is developed by strategically incorporating low aspect ratio crushed LSCFP nanofibers into the excess porous interspace of a high aspect ratio LSCFP nanofiber framework synthesized via electrospinning technique.After consecutive treatment in 100% H_(2) and CO_(2) at 700°C,LSCFP nanofibers form a perovskite phase with in situ exsolved Co metal nanocatalysts and a high concentration of oxygen species on the surface,enhancing CO_(2) adsorption.The SOEC with the H-LSCFP electrode yielded an outstanding current density of 2.2 A cm^(-2) in CO_(2) at 800°C and 1.5 V,setting a new benchmark among reported nanofiber-based electrodes.Digital twinning of the H-LSCFP reveals improved contact adhesion and increased reaction sites for CO_(2)RR.The present work demonstrates a highly catalytically active and robust nanofiber-based fuel electrode with a hybrid structure,paving the way for further advancements and nanofiber applications in CO_(2)-SOECs. 展开更多
关键词 NANOFIBERS Fuel electrodes Digital twinning CO_(2)reduction reaction Solid oxide electrolysis cells
下载PDF
Weakly Polarized Organic Cation-Modified Hydrated Vanadium Oxides for High-Energy Efficiency Aqueous Zinc-Ion Batteries
12
作者 Xiaoxiao Jia Chaofeng Liu +2 位作者 Zhi Wang Di Huang Guozhong Cao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期169-186,共18页
Vanadium oxides,par-ticularly hydrated forms like V_(2)O_(5)·nH_(2)O(VOH),stand out as promising cathode candidates for aqueous zinc ion batteries due to their adjustable layered structure,unique electronic chara... Vanadium oxides,par-ticularly hydrated forms like V_(2)O_(5)·nH_(2)O(VOH),stand out as promising cathode candidates for aqueous zinc ion batteries due to their adjustable layered structure,unique electronic characteristics,and high theoretical capacities.However,challenges such as vanadium dissolution,sluggish Zn^(2+)diffusion kinetics,and low operating voltage still hinder their direct application.In this study,we present a novel vanadium oxide([C_(6)H_(6)N(CH_(3))_(3)]_(1.08)V_(8)O_(20)·0.06H_(2)O,TMPA-VOH),developed by pre-inserting trimethylphenylammonium(TMPA+)cations into VOH.The incorporation of weakly polarized organic cations capitalizes on both ionic pre-intercalation and molecular pre-intercalation effects,resulting in a phase and morphology transition,an expansion of the interlayer distance,extrusion of weakly bonded interlayer water,and a substantial increase in V^(4+)content.These modifications synergistically reduce the electrostatic interactions between Zn^(2+)and the V-O lattice,enhancing structural stability and reaction kinetics during cycling.As a result,TMPA-VOH achieves an elevated open circuit voltage and operation voltage,exhibits a large specific capacity(451 mAh g^(-1)at 0.1 A g^(-1))coupled with high energy efficiency(89%),the significantly-reduced battery polarization,and outstanding rate capability and cycling stability.The concept introduced in this study holds great promise for the development of high-performance oxide-based energy storage materials. 展开更多
关键词 Zinc-ion battery Vanadium oxide V_(2)O_(5)·nH_(2)O Pre-intercalation Interlayer engineering
下载PDF
Designing ultrastable P2/O3-type layered oxides for sodium ion batteries by regulating Na distribution and oxygen redox chemistry
13
作者 Jieyou Huang Weiliang Li +3 位作者 Debin Ye Lin Xu Wenwei Wu Xuehang Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期466-476,共11页
P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phas... P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phases remains a necessity.Herein,we design a P2/O3-type Na_(0.76)Ni_(0.31)Zn_(0.07)Mn_(0.50)Ti_(0.12)0_(2)(NNZMT)with high chemical/electrochemical stability by enhancing the coupling between the two phases.For the first time,a unique Na*extraction is observed from a Na-rich O3 phase by a Na-poor P2 phase and systematically investigated.This process is facilitated by Zn^(2+)/Ti^(4+)dual doping and calcination condition regulation,allowing a higher Na*content in the P2 phase with larger Na^(+)transport channels and enhancing Na transport kinetics.Because of reduced Na^(+)in the O3 phase,which increases the difficulty of H^(+)/Na^(+) exchange,the hydrostability of the O3 phase in NNZMT is considerably improved.Furthermore,Zn^(2+)/Ti^(4+)presence in NNZMT synergistically regulates oxygen redox chemistry,which effectively suppresses O_(2)/CO_(2) gas release and electrolyte decomposition,and completely inhibits phase transitions above 4.0 V.As a result,NNZMT achieves a high discharge capacity of 144.8 mA h g^(-1) with a median voltage of 3.42 V at 20 mA g^(-1) and exhibits excellent cycling performance with a capacity retention of 77.3% for 1000 cycles at 2000 mA g^(-1).This study provides an effective strategy and new insights into the design of high-performance layered-oxide cathode materials with enhanced structure/interface stability forSIBs. 展开更多
关键词 Sodium-ion batteries P2/O3-type layered oxides Na distribution Oxygen redox chemistry Hydrostability
下载PDF
Laser-optimized Pt-Y alloy nanoparticles embedded in Pt-Y oxide matrix for high stability and ORR electrocatalytic activity
14
作者 Riccardo Brandiele Andrea Guadagnini +9 位作者 Mattia Parnigotto Federico Pini Vito Coviello Denis Badocco Paolo Pastore Gian Andrea Rizzi Andrea Vittadini Daniel Forrer Vincenzo Amendola Christian Durante 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期508-520,共13页
The development of active yet stable catalysts for oxygen reduction reaction(ORR)is still a major issue for the extensive permeation of fuel cells into everyday technology.While nanostructured Pt catalysts are to date... The development of active yet stable catalysts for oxygen reduction reaction(ORR)is still a major issue for the extensive permeation of fuel cells into everyday technology.While nanostructured Pt catalysts are to date the best available systems in terms of activity,the same is not true for stability,particularly under operating conditions.In this work,Pt_(Х)Y alloy nanoparticles are proposed as active and durable electrocatalysts for ORR.Pt_(Х)Y nanoalloys are synthesized and further optimized by laser ablation in liquid followed by laser fragmentation in liquid.The novel integrated laser-assisted methodology succeeded in producing Pt_(Х)Y nanoparticles with the ideal size(<10 nm)of commercial Pt catalysts,yet resulting remarkably more active with E_(1/2)=0.943 V vs.RHE,specific activity=1095μA cm^(-2) and mass activity>1000 A g^(-1).At the same time,the nanoalloys are embedded in a fine Pt oxide matrix,which allows a greater stability of the catalyst than the commercial Pt reference,as directly verified on a gas diffusion electrode. 展开更多
关键词 ELECTROCATALYSIS GDE ORR Pt_(2)Y Pt_(3)Y LAL LFL oxide support PTO NANOALLOYS
下载PDF
Inhibiting Voltage Decay in Li-Rich Layered Oxide Cathode:From O3-Type to O2-Type Structural Design
15
作者 Guohua Zhang Xiaohui Wen +2 位作者 Yuheng Gao Renyuan Zhang Yunhui Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期81-102,共22页
Li-rich layered oxide(LRLO)cathodes have been regarded as promising candidates for next-generation Li-ion batteries due to their exceptionally high energy density,which combines cationic and anionic redox activities.H... Li-rich layered oxide(LRLO)cathodes have been regarded as promising candidates for next-generation Li-ion batteries due to their exceptionally high energy density,which combines cationic and anionic redox activities.However,continuous voltage decay during cycling remains the primary obstacle for practical applications,which has yet to be fundamentally addressed.It is widely acknowledged that voltage decay originates from the irreversible migration of transition metal ions,which usually further exacerbates structural evolution and aggravates the irreversible oxygen redox reactions.Recently,constructing O2-type structure has been considered one of the most promising approaches for inhibiting voltage decay.In this review,the relationship between voltage decay and structural evolution is systematically elucidated.Strategies to suppress voltage decay are systematically summarized.Additionally,the design of O2-type structure and the corresponding mechanism of suppressing voltage decay are comprehensively discussed.Unfortunately,the reported O2-type LRLO cathodes still exhibit partially disordered structure with extended cycles.Herein,the factors that may cause the irreversible transition metal migrations in O2-type LRLO materials are also explored,while the perspectives and challenges for designing high-performance O2-type LRLO cathodes without voltage decay are proposed. 展开更多
关键词 Lithium-ion batteries Li-rich layered oxide Voltage decay Migration of transition metal ions O2-type structural design
下载PDF
Mixed‑Dimensional Assembly Strategy to Construct Reduced Graphene Oxide/Carbon Foams Heterostructures for Microwave Absorption,Anti‑Corrosion and Thermal Insulation
16
作者 Beibei Zhan Yunpeng Qu +8 位作者 Xiaosi Qi Junfei Ding Jiao‑jing Shao Xiu Gong Jing‑Liang Yang Yanli Chen Qiong Peng Wei Zhong Hualiang Lv 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期1-18,共18页
Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective int... Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective integration of diverse functions into designed EMW absorption materials still faces the huge challenges.Herein,reduced graphene oxide/carbon foams(RGO/CFs)with two-dimensional/three-dimensional(2D/3D)van der Waals(vdWs)heterostructures were meticulously engineered and synthesized utilizing an efficient methodology involving freeze-drying,immersing absorption,secondary freeze-drying,followed by carbonization treatment.Thanks to their excellent linkage effect of amplified dielectric loss and optimized impedance matching,the designed 2D/3D RGO/CFs vdWs heterostructures demonstrated commendable EMW absorption performances,achieving a broad absorption bandwidth of 6.2 GHz and a reflection loss of-50.58 dB with the low matching thicknesses.Furthermore,the obtained 2D/3D RGO/CFs vdWs heterostructures also displayed the significant radar stealth properties,good corrosion resistance performances as well as outstanding thermal insulation capabilities,displaying the great potential in complex and variable environments.Accordingly,this work not only demonstrated a straightforward method for fabricating 2D/3D vdWs heterostructures,but also outlined a powerful mixeddimensional assembly strategy for engineering multifunctional foams for electromagnetic protection,aerospace and other complex conditions. 展开更多
关键词 Multifunctionality Reduced graphene oxide/carbon foams 2D/3D van der Waals heterostructures Electromagnetic wave absorption Thermal insulation
下载PDF
Impact of Different Rates of Nitrogen Supplementation on Soil PhysicochemicalProperties and Microbial Diversity in Goji Berry
17
作者 Xiaojie Liang Wei An +4 位作者 Yuekun Li Yajun Wang Xiaoya Qin Yanhong Cui Shuchai Su 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第3期467-486,共20页
Goji berry(Lycium barbarum L.)is substantially dependent on nitrogen fertilizer application,which can signifi-cantly enhance fruit yield and Goji berry industrial development in Ningxia,China.This study aimed to analyz... Goji berry(Lycium barbarum L.)is substantially dependent on nitrogen fertilizer application,which can signifi-cantly enhance fruit yield and Goji berry industrial development in Ningxia,China.This study aimed to analyze the functions of differential nitrogen application rates including low(N1),medium(N2),and high(N3)levels in soil microbial community structure(bacterial and fungal)at 2 diverse soil depths(0-20,20-40 cm)through high-throughput sequencing technology by targeting 16S RNA gene and ITS1&ITS2 regions.All the observed physicochemical parameters exhibited significant improvement(p<0.05)with increased levels of nitrogen and the highest values for most parameters were observed at N2.However,pH decreased(p<0.05)gradually.The alpha and beta diversity analyses for bacterial and fungal communities’metagenome displayed more similarities than differences among all groups.The top bacterial and fungal phyla and genera suggested no obvious(p>0.05)differences among three group treatments(N1,N2,and N3).Furthermore,the functional enrichment analysis demonstrated significant(p<0.05)enrichment of quorum sensing,cysteine and methionine metabolism,and transcriptional machinery for bacterial communities,while various saprotrophic functional roles for fungal communities.Conclusively,moderately reducing the use of N-supplemented fertilizers is conducive to increasing soil nitrogen utilization rate,which can contribute to sustainable agriculture practices through improved soil quality,and microbial community structure and functions. 展开更多
关键词 Goji berry production Ningxia China differential nitrogen supplementation rates 16S RNA gene and IT1&IT2 region sequencing soil physicochemical properties
下载PDF
Amine-functionalized metal organic framework@graphene oxide as filler in PAEK-containing carboxyl group membrane for ultrafiltration with ultra-high permeability and strong fouling resistance
18
作者 Zhaoli Wang Wenjing Li +6 位作者 Yi Zhang Yanyin Cheng Junjian Yu Tianming Dong Xiaoyu Chi Di Liu Zhe Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期93-103,共11页
Achieving high fouling resistance and permeability using membrane separation technology in water treatment processes remains a challenge.In this work,a novel mixed-matrix membrane(MMM)(poly(arylene ether ketone)[PAEK]... Achieving high fouling resistance and permeability using membrane separation technology in water treatment processes remains a challenge.In this work,a novel mixed-matrix membrane(MMM)(poly(arylene ether ketone)[PAEK]-containing carboxyl groups[PAEK-COOH]/UiO-66-NH_(2)@graphene oxide[GO])with superb fouling resistance and high permeability was prepared by the nonsolvent-induced phase separation method,by in-situ growth of UiO-66-NH_(2) on the GO layer,and by preparing hydrophilic PAEK-COOH.On the basis of the structure and performance analysis of the MMM,the maximum water flux reached 591.25 L·m^(-2)·h^(-1) for PAEK-COOH/UiO-66-NH_(2)@GO,whereas the retention rate for bovine serum albumin increased from 85.40%to 94.87%.As the loading gradually increased,the hydrophilicity of the MMMs increased,significantly enhancing their fouling resistance.The strongest anti-fouling ability observed was 94.74%,which was 2.02 times greater than that of the pure membrane.At the same time,the MMMs contained internal amide and hydrogen bonds during the preparation process,forming a cross-linked structure,which further enhanced the mechanical strength and chemical stability.In summary,the MMMs with high retention rate,strong permeability,and anti-fouling ability were successfully prepared. 展开更多
关键词 Poly(arylene ether ketone)-containing Carboxyl groups(PAEK-COOH) UiO-66-NH_(2)@graphene oxide Hydrophilic modification Ultra-high selectivity Strong anti-fouling
下载PDF
Novel sandwich structured glass fiber Cloth/Poly(ethylene oxide)-MXene composite electrolyte
19
作者 Yu-Qin Mao Guang-He Dong +3 位作者 Wei-Bin Zhu Yuan-Qing Li Pei Huang Shao-Yun Fu 《Nano Materials Science》 EI CAS CSCD 2024年第1期60-67,共8页
Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performa... Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performance all-solid-state lithium metal batteries.In this article,a novel sandwich structured solid-state PEO composite electrolyte is developed for high performance all-solid-state lithium metal batteries.The PEO-based composite electrolyte is fabricated by hot-pressing PEO,LiTFSI and Ti_(3)C_(2)T_(x) MXene nanosheets into glass fiber cloth(GFC).The as-prepared GFC@PEO-MXene electrolyte shows high mechanical properties,good electrochemical stability,and high lithium-ion migration number,which indicates an obvious synergistic effect from the microscale GFC and the nanoscale MXene.Such as,the GFC@PEO-1 wt%MXene electrolyte shows a high tensile strength of 43.43 MPa and an impressive Young's modulus of 496 MPa,which are increased by 1205%and 6048%over those of PEO.Meanwhile,the ionic conductivity of GFC@PEO-1 wt%MXene at 60℃ reaches 5.01×10^(-2) S m^(-1),which is increased by around 200%compared with that of GFC@PEO electrolyte.In addition,the Li/Li symmetric battery based on GFC@PEO-1 wt%MXene electrolyte shows an excellent cycling stability over 800 h(0.3 mA cm^(-2),0.3 mAh cm^(-2)),which is obviously longer than that based on PEO and GFC@PEO electrolytes due to the better compatibility of GFC@PEO-1 wt%MXene electrolyte with Li anode.Furthermore,the solid-state Li/LiFePO_(4) battery with GFC@PEO-1 wt%MXene as electrolyte demonstrates a high capacity of 110.2–166.1 mAh g^(-1) in a wide temperature range of 25–60C,and an excellent capacity retention rate.The developed sandwich structured GFC@PEO-1 wt%MXene electrolyte with the excellent overall performance is promising for next generation high performance all-solid-state lithium metal batteries. 展开更多
关键词 Solid polymer electrolyte Ti_(3)C_(2)T_(x)MXene Poly(ethylene oxide) Glass fiber cloth All-solid-state Li metal Battery
下载PDF
Sensitivity of Total-Dose Radiation Hardness of SIMOX Buried Oxides to Doses of Nitrogen Implantation into Buried Oxides 被引量:2
20
作者 郑中山 刘忠立 +6 位作者 张国强 李宁 李国花 马红芝 张恩霞 张正选 王曦 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2005年第5期862-866,共5页
In order to improve the total-dose radiation har dness of the buried oxides(BOX) in the structure of separation-by-implanted-oxygen(SIMOX) silicon-on-insulator(SOI),nitrogen ions are implanted into the buried oxides w... In order to improve the total-dose radiation har dness of the buried oxides(BOX) in the structure of separation-by-implanted-oxygen(SIMOX) silicon-on-insulator(SOI),nitrogen ions are implanted into the buried oxides with two different doses,2×10 15 and 3×10 15 cm -2 ,respectively.The experimental results show that the radiation hardness of the buried oxides is very sensitive to the doses of nitrogen implantation for a lower dose of irradiation with a Co-60 source.Despite the small difference between the doses of nitrogen implantation,the nitrogen-implanted 2×10 15 cm -2 BOX has a much higher hardness than the control sample (i.e.the buried oxide without receiving nitrogen implantation) for a total-dose irradiation of 5×104rad(Si),whereas the nitrogen-implanted 3×10 15 cm -2 BOX has a lower hardness than uhe control sample.However,this sensitivity of radiation hardness to the doses of nitrogen implantation reduces with the increasing total-dose of irradiation (from 5×104 to 5×105rad (Si)).The radiation hardness of BOX is characterized by MOS high-frequency (HF) capacitance-voltage (C-V) technique after the top silicon layers are removed.In addition,the abnormal HF C-V curve of the metal-silicon-BOX-silicon(MSOS) structure is observed and explained. 展开更多
关键词 SIMOX buried oxide radiation-hardness nitrogen implantation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部