Nitrogen mineralization potentials of 15 soil samples were studied by the methods of soil asrobic incuba-tion, and the correlation between the potentials and the amounts of nitrogen taken up by rye grass (Lolium.multi...Nitrogen mineralization potentials of 15 soil samples were studied by the methods of soil asrobic incuba-tion, and the correlation between the potentials and the amounts of nitrogen taken up by rye grass (Lolium.multifiorum Lam.) in pot culture was calculated. The soils were collected from Hubei Province in Cen-tral China. Soil nitrogen mineralization potentials (N_O) were calculated and optimized by a quick-BASICprogram. N_O ranged from 60 mg kg ̄(-1) to 340 mg kg ̄(-1), which accounted for 9.1% to 34.6% of the totalnitrogen content. Among the examined soils, yellow-brown soil collected from Wuhan had the largest N_Oand brown-red soil from Xianning had the smallest one. The mineralization rate constants (k) ranged from0.00556 d ̄(-1) to 0.01280 d ̄(-1) , in average 0.00882 d ̄(-1) . Chao soil from Wuhan had the greatest k while yellow-cinnamon soil from Zhaoyang had the smallest one. There were apparent differences between mineralizationparameters (N_O and k) optimized and non-optimized ones. Optimized N_O had a better correlation thannon-optimized N_O with the amount of nitrogen accumulated in the aerial parts of rye grass. N_O , N_O × k andN_t(accumulated mineralized nitrogen within time t) could be used as indexes of soil nitrogen supply. Amongthem N_t was the best, which was significantly correlated with the amounts of nitrogen accumulated in theaerial parts of rye grass harvested at three different times.展开更多
The application of nitrogen(N) fertilizer to increase crop yields has a significant influence on soil methane(CH_4) and nitrous oxide(N_2O) emission/uptake.A meta-analysis was carried out on the effect of N appl...The application of nitrogen(N) fertilizer to increase crop yields has a significant influence on soil methane(CH_4) and nitrous oxide(N_2O) emission/uptake.A meta-analysis was carried out on the effect of N application on(i) CH_4 emissions in rice paddies,(ii) CH_4 uptake in upland fields and(iii) N_2O emissions.The responses of CH_4 emissions to N application in rice paddies were highly variable and overall no effects were found.CH_4 emissions were stimulated at low N application rates(〈100 kg N ha^(-1)) but inhibited at high N rates(〉200 kg N ha^(-1)) as compared to no N fertilizer(control).The response of CH_4 uptake to N application in upland fields was 15%lower than control,with a mean CH_4 uptake factor of-0.001 kg CH_4-C kg^(-1) N.The mean N_2O emission factors were 1.00 and 0.94%for maize(Zea mays) and wheat(Triticum aestivum),respectively,but significantly lower for the rice(Oryza sativa)(0.51%).Compared with controls,N addition overall increased global warming potential of CH_4 and N_2O emissions by 78%.Our result revealed that response of CH_4 emission to N input might depend on the CH_4concentration in rice paddy.The critical factors that affected CH_4 uptake and N_2O emission were N fertilizer application rate and the controls of CH_4 uptake and N_2O emission.The influences of application times,cropping systems and measurement frequency should all be considered when assessing CH_4 and N_2O emissions/uptake induced by N fertilizer.展开更多
Investigations into forest soils face the problem of the high level of spatial variability that is an inherent property of all forest soils.In order to investigate the effect of changes in residue management practices...Investigations into forest soils face the problem of the high level of spatial variability that is an inherent property of all forest soils.In order to investigate the effect of changes in residue management practices on soil properties in hoop pine(Araucaria cunninghamii Aiton ex A.Cunn.)plantations of subtropical Australia it was important to understand the intensity of sampling effort required to overcome the spatial variability induced by those changes.Harvest residues were formed into windrows to prevent nitrogen(N)losses through volatilisation and erosion that had previously occurred as a result of pile and burn operations.We selected second rotation(2R)hoop pine sites where the windrows(10-15 m apart)had been formed 1,2 and 3 years prior to sampling in order to examine the spatial variability in soil carbon(C) and N and in potential mineralisable N(PMN)in the areas beneath and between(inter-)the windrows.We examined the implications of soil variability on the number of samples required to detect differences in means for specific soil properties, at different ages and at specified levels of accuracy.Sample size needed to accurately reflect differences between means was not affected by the position where the samples were taken relative to the windrows but differed according to the parameter to be sampled.The relative soil sampling size required for detecting differences between means of a soil property in the inter-windrow and beneath-windrow positions was highly dependent on the soil property assessed and the acceptable relative sampling error.An alternative strategy for soil sampling should be considered,if the estimated sample size exceeds 50 replications.The possible solution to this problem is collection of composite soil samples allowing a substantial reduction in the number of samples required for chemical analysis without loss in the precision of the mean estimates for a particular soil property.展开更多
A total of 15 light-duty diesel vehicles(LDDVs) were tested with the goal of understanding the emission factors of real-world vehicles by conducting on-board emission measurements. The emission characteristics of hy...A total of 15 light-duty diesel vehicles(LDDVs) were tested with the goal of understanding the emission factors of real-world vehicles by conducting on-board emission measurements. The emission characteristics of hydrocarbons(HC) and nitrogen oxides(NOx) at different speeds, chemical species profiles and ozone formation potential(OFP) of volatile organic compounds(VOCs) emitted from diesel vehicles with different emission standards were analyzed. The results demonstrated that emission reductions of HC and NOxhad been achieved as the control technology became more rigorous from Stage I to Stage IV. It was also found that the HC and NOxemissions and percentage of O2 dropped with the increase of speed, while the percentage of CO2 increased. The abundance of alkanes was significantly higher in diesel vehicle emissions, approximately accounting for 41.1%–45.2%, followed by aromatics and alkenes. The most abundant species were propene,ethane, n-decane, n-undecane, and n-dodecane. The maximum incremental reactivity(MIR)method was adopted to evaluate the contributions of individual VOCs to OFP. The results indicated that the largest contributors to O3 production were alkenes and aromatics, which accounted for 87.7%–91.5%. Propene, ethene, 1,2,4-trimethylbenzene, 1-butene, and1,2,3-trimethylbenzene were the top five VOC species based on their OFP, and accounted for 54.0%-64.8% of the total OFP. The threshold dilution factor was applied to analyze the possibility of VOC stench pollution. The majority of stench components emitted from vehicle exhaust were aromatics, especially p-diethylbenzene, propylbenzene, m-ethyltoluene, and p-ethyltoluene.展开更多
文摘Nitrogen mineralization potentials of 15 soil samples were studied by the methods of soil asrobic incuba-tion, and the correlation between the potentials and the amounts of nitrogen taken up by rye grass (Lolium.multifiorum Lam.) in pot culture was calculated. The soils were collected from Hubei Province in Cen-tral China. Soil nitrogen mineralization potentials (N_O) were calculated and optimized by a quick-BASICprogram. N_O ranged from 60 mg kg ̄(-1) to 340 mg kg ̄(-1), which accounted for 9.1% to 34.6% of the totalnitrogen content. Among the examined soils, yellow-brown soil collected from Wuhan had the largest N_Oand brown-red soil from Xianning had the smallest one. The mineralization rate constants (k) ranged from0.00556 d ̄(-1) to 0.01280 d ̄(-1) , in average 0.00882 d ̄(-1) . Chao soil from Wuhan had the greatest k while yellow-cinnamon soil from Zhaoyang had the smallest one. There were apparent differences between mineralizationparameters (N_O and k) optimized and non-optimized ones. Optimized N_O had a better correlation thannon-optimized N_O with the amount of nitrogen accumulated in the aerial parts of rye grass. N_O , N_O × k andN_t(accumulated mineralized nitrogen within time t) could be used as indexes of soil nitrogen supply. Amongthem N_t was the best, which was significantly correlated with the amounts of nitrogen accumulated in theaerial parts of rye grass harvested at three different times.
基金financed by the Chinese Academy of Sciences for Strategic Priority Research Program(XDA05050602)the Key Technologies R&D Program of China during the 12th Five-Year Plan period of China(2012BAD14B01-1)
文摘The application of nitrogen(N) fertilizer to increase crop yields has a significant influence on soil methane(CH_4) and nitrous oxide(N_2O) emission/uptake.A meta-analysis was carried out on the effect of N application on(i) CH_4 emissions in rice paddies,(ii) CH_4 uptake in upland fields and(iii) N_2O emissions.The responses of CH_4 emissions to N application in rice paddies were highly variable and overall no effects were found.CH_4 emissions were stimulated at low N application rates(〈100 kg N ha^(-1)) but inhibited at high N rates(〉200 kg N ha^(-1)) as compared to no N fertilizer(control).The response of CH_4 uptake to N application in upland fields was 15%lower than control,with a mean CH_4 uptake factor of-0.001 kg CH_4-C kg^(-1) N.The mean N_2O emission factors were 1.00 and 0.94%for maize(Zea mays) and wheat(Triticum aestivum),respectively,but significantly lower for the rice(Oryza sativa)(0.51%).Compared with controls,N addition overall increased global warming potential of CH_4 and N_2O emissions by 78%.Our result revealed that response of CH_4 emission to N input might depend on the CH_4concentration in rice paddy.The critical factors that affected CH_4 uptake and N_2O emission were N fertilizer application rate and the controls of CH_4 uptake and N_2O emission.The influences of application times,cropping systems and measurement frequency should all be considered when assessing CH_4 and N_2O emissions/uptake induced by N fertilizer.
基金Project supported by a scholarship grant from the Cooperative Research Centre for Sustainable Production Forestry,Australia.
文摘Investigations into forest soils face the problem of the high level of spatial variability that is an inherent property of all forest soils.In order to investigate the effect of changes in residue management practices on soil properties in hoop pine(Araucaria cunninghamii Aiton ex A.Cunn.)plantations of subtropical Australia it was important to understand the intensity of sampling effort required to overcome the spatial variability induced by those changes.Harvest residues were formed into windrows to prevent nitrogen(N)losses through volatilisation and erosion that had previously occurred as a result of pile and burn operations.We selected second rotation(2R)hoop pine sites where the windrows(10-15 m apart)had been formed 1,2 and 3 years prior to sampling in order to examine the spatial variability in soil carbon(C) and N and in potential mineralisable N(PMN)in the areas beneath and between(inter-)the windrows.We examined the implications of soil variability on the number of samples required to detect differences in means for specific soil properties, at different ages and at specified levels of accuracy.Sample size needed to accurately reflect differences between means was not affected by the position where the samples were taken relative to the windrows but differed according to the parameter to be sampled.The relative soil sampling size required for detecting differences between means of a soil property in the inter-windrow and beneath-windrow positions was highly dependent on the soil property assessed and the acceptable relative sampling error.An alternative strategy for soil sampling should be considered,if the estimated sample size exceeds 50 replications.The possible solution to this problem is collection of composite soil samples allowing a substantial reduction in the number of samples required for chemical analysis without loss in the precision of the mean estimates for a particular soil property.
基金supported by the Natural Sciences Foundation of China(Nos.91544232&51408015)the Ministry of Environmental Protection Special Funds for Scientific Research on Public Causes(No.201409006)+4 种基金the Beijing municipal science and technology plan projects(No.Z131100001113029)the 13th graduate students of science and technology fund of Beijing University of Technology(ykj-2014-11484)the projects supported by Beijing Municipal Commission of Science and Technology(No.Z141100001014002)Beijing Municipal Commission of Education(No.PXM2016_014204_001029)National Science and Technology Support Project of China(No.2014BAC23B02)
文摘A total of 15 light-duty diesel vehicles(LDDVs) were tested with the goal of understanding the emission factors of real-world vehicles by conducting on-board emission measurements. The emission characteristics of hydrocarbons(HC) and nitrogen oxides(NOx) at different speeds, chemical species profiles and ozone formation potential(OFP) of volatile organic compounds(VOCs) emitted from diesel vehicles with different emission standards were analyzed. The results demonstrated that emission reductions of HC and NOxhad been achieved as the control technology became more rigorous from Stage I to Stage IV. It was also found that the HC and NOxemissions and percentage of O2 dropped with the increase of speed, while the percentage of CO2 increased. The abundance of alkanes was significantly higher in diesel vehicle emissions, approximately accounting for 41.1%–45.2%, followed by aromatics and alkenes. The most abundant species were propene,ethane, n-decane, n-undecane, and n-dodecane. The maximum incremental reactivity(MIR)method was adopted to evaluate the contributions of individual VOCs to OFP. The results indicated that the largest contributors to O3 production were alkenes and aromatics, which accounted for 87.7%–91.5%. Propene, ethene, 1,2,4-trimethylbenzene, 1-butene, and1,2,3-trimethylbenzene were the top five VOC species based on their OFP, and accounted for 54.0%-64.8% of the total OFP. The threshold dilution factor was applied to analyze the possibility of VOC stench pollution. The majority of stench components emitted from vehicle exhaust were aromatics, especially p-diethylbenzene, propylbenzene, m-ethyltoluene, and p-ethyltoluene.