Effects of residues of 9 plants, lemon eucalyptus (Eucalyptus citriodoraHook., P_1), robust eucalyptus (E. robusta Smith, P_2), Nepal camphortree (Cinnamomum glanduliferum(Wall.) Nees, P_3), tea (Camellia sinensis (Li...Effects of residues of 9 plants, lemon eucalyptus (Eucalyptus citriodoraHook., P_1), robust eucalyptus (E. robusta Smith, P_2), Nepal camphortree (Cinnamomum glanduliferum(Wall.) Nees, P_3), tea (Camellia sinensis (Linn.) O. Ktze. f., P_4), oleander (Nerium indicum Mill,P_5), rape (Brassica campestris L., P_g), Chinese tallow tree (Sapium sebiferum L., P_7), tung(Vernicia fordii (Hemsl.), P_8), and croton (Croton tiglium L., P_9), 7 chemicals, boric acid (C_1),borax (C_2), oxalic acid (C_3), sodium oxalite (C_4), sodium dihydrogen phosphate (C_6), sodiumsilicate (C_7) and sodium citrate (C_8), and a natural organic substance, humic acid (C_5), onurease activity of a neutral purple soil and recovery of urea nitrogen by maize were studied throughincubation and pot experiments. Hydroquinone (HQ) was applied as the reference inhibitor. Afterincubation at 37℃ for 24 h, 7 inhibitors with higher ability to inhibit urease activity wereselected and then incubated for 14 days at 25℃. Results of the incubation experiments showed thatsoil urease activity was greatly inhibited by them, and the inhibition effect followed an order ofP_2>P_4>C_3>C_2>P_3>C_1>HQ>P_1. The 7 selected materials reduced the accumulative amounts of Nreleased from urea and the maximum urease activity by 11.7%~28.4% and 26.7%~39.7%, respectively,and postponed the N release peak by 2~4 days in the incubation period of 14 days under constanttemperature, as compared to the control (no inhibitor). In the pot experiment with the 7 materialsat two levels of addition, low (L) and high (H), the C_1 (H), C_3 (H), C_1 (L), P_4 (L) and C_2 (L)treatments could significantly increase the dry weights of the aboveground parts and the totalbiomass of the maize plants and the apparent recovery rate of urea-N was increased by 6.3%~32.4% ascompared to the control (no hibitor).展开更多
基金the Laboratory of Material Cycling in Pedosphere,the Chinese Academy of Sciences the Chongqing Science and Technology Commission,China.
文摘Effects of residues of 9 plants, lemon eucalyptus (Eucalyptus citriodoraHook., P_1), robust eucalyptus (E. robusta Smith, P_2), Nepal camphortree (Cinnamomum glanduliferum(Wall.) Nees, P_3), tea (Camellia sinensis (Linn.) O. Ktze. f., P_4), oleander (Nerium indicum Mill,P_5), rape (Brassica campestris L., P_g), Chinese tallow tree (Sapium sebiferum L., P_7), tung(Vernicia fordii (Hemsl.), P_8), and croton (Croton tiglium L., P_9), 7 chemicals, boric acid (C_1),borax (C_2), oxalic acid (C_3), sodium oxalite (C_4), sodium dihydrogen phosphate (C_6), sodiumsilicate (C_7) and sodium citrate (C_8), and a natural organic substance, humic acid (C_5), onurease activity of a neutral purple soil and recovery of urea nitrogen by maize were studied throughincubation and pot experiments. Hydroquinone (HQ) was applied as the reference inhibitor. Afterincubation at 37℃ for 24 h, 7 inhibitors with higher ability to inhibit urease activity wereselected and then incubated for 14 days at 25℃. Results of the incubation experiments showed thatsoil urease activity was greatly inhibited by them, and the inhibition effect followed an order ofP_2>P_4>C_3>C_2>P_3>C_1>HQ>P_1. The 7 selected materials reduced the accumulative amounts of Nreleased from urea and the maximum urease activity by 11.7%~28.4% and 26.7%~39.7%, respectively,and postponed the N release peak by 2~4 days in the incubation period of 14 days under constanttemperature, as compared to the control (no inhibitor). In the pot experiment with the 7 materialsat two levels of addition, low (L) and high (H), the C_1 (H), C_3 (H), C_1 (L), P_4 (L) and C_2 (L)treatments could significantly increase the dry weights of the aboveground parts and the totalbiomass of the maize plants and the apparent recovery rate of urea-N was increased by 6.3%~32.4% ascompared to the control (no hibitor).