期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Integrated management strategy for improving the grain yield and nitrogen-use efficiency of winter wheat 被引量:5
1
作者 XU Hai-cheng DAI Xing-long +5 位作者 CHU Jin-peng WANG Yue-chao YIN Li-jun MA Xin DONG Shu-xin HE Ming-rong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第2期315-327,共13页
Understanding of how combinations of agronomic options can be used to improve the grain yield and nitrogen use efficiency(NUE) of winter wheat is limited. A three-year experiment involving four integrated management... Understanding of how combinations of agronomic options can be used to improve the grain yield and nitrogen use efficiency(NUE) of winter wheat is limited. A three-year experiment involving four integrated management strategies was conducted from 2013 to 2015 in Tai'an, Shandong Province, China, to evaluate changes in grain yield and NUE. The integrated management treatments were as follows: current practice(T1); improvement of current practice(T2); high-yield management(T3), which aimed to maximize grain yield regardless of the cost of resource inputs; and integrated soil and crop system management(T4) with a higher seeding rate, delayed sowing date, and optimized nutrient management. Seeding rates increased by 75 seeds m^-2 with each treatment from T1(225 seeds m^-2) to T4(450 seeds m^-2). The sowing dates were delayed from T1(5 th Oct.) to T2 and T3(8 th Oct.), and to T4 treatment(12 th Oct.). T1, T2, T3, and T4 received 315, 210, 315, and 240 kg N ha^-1, 120, 90, 210 and 120 kg P2O5 ha^-1, 30, 75, 90, and 45 kg K2O ha^-1, respectively. The ratio of basal application to topdressing for T1, T2, T3, and T4 was 6:4, 5:5, 4:6, and 4:6, respectively, with the N topdressing applied at regreening for T1 and at jointing stage for T2, T3, and T4. The P fertilizers in all treatments were applied as basal fertilizer. The K fertilizer for T1 and T2 was applied as basal fertilizer while the ratio of basal application to topdressing(at jointing stage) of K fertilizer for both T3 and T4 was 6:4. T1, T2, T3, and T4 were irrigated five, four, four and three times, respectively. Treatment T3 produced the highest grain yield among all treatments over three years and the average yield was 9 277.96 kg ha^-1. Grain yield averaged across three years with the T4 treatment(8 892.93 kg ha^-1) was 95.85% of that with T3 and was 21.72 and 6.10% higher than that with T1(7 305.95 kg ha^-1) and T2(8 381.41 kg ha^-1), respectively. Treatment T2 produced the highest NUE of all the integrated treatments. The NUE with T4 was 95.36% of that with T2 and was 51.91 and 25.62% higher than that with T1 and T3, respectively. The N uptake efficiency(UPE) averaged across three years with T4 was 50.75 and 16.62% higher than that with T1and T3, respectively. The N utilization efficiency(UTE) averaged across three years with T4 was 7.74% higher than that with T3. The increased UPE with T4 compared with T3 could be attributed mostly to the lower available N in T4, while the increased UTE with T4 was mainly due to the highest N harvest index and low grain N concentration, which consequently led to improved NUE. The net profit for T4 was the highest among four treatments and was 174.94, 22.27, and 28.10% higher than that for T1, T2, and T3, respectively. Therefore, the T4 treatment should be a recommendable management strategy to obtain high grain yield, high NUE, and high economic benefits in the target region, although further improvements of NUE are required. 展开更多
关键词 integrated management strategy grain yield winter wheat nitrogen use efficiency nitrogen uptake efficiency nitrogen utilization efficiency
下载PDF
Review grain yield and nitrogen use efficiency in rice production regions in China 被引量:13
2
作者 CHE Sheng-guo ZHAO Bing-qiang +5 位作者 LI Yan-ting YUAN Liang LI Wei LIN Zhi-an HU Shu-wen SHEN Bing 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第12期2456-2466,共11页
As one of the staple food crops, rice(Oryza sativa L.) is widely cultivated across China, which plays a critical role in guaranteeing national food security. Most previous studies on grain yield or/and nitrogen use ... As one of the staple food crops, rice(Oryza sativa L.) is widely cultivated across China, which plays a critical role in guaranteeing national food security. Most previous studies on grain yield or/and nitrogen use efficiency(NUE) of rice in China often involved site-specific field experiments, or small regions with insufficient data, which limited the representation for the current rice production regions. In this study, a database covering a wide range of climate conditions, soil types and field managements across China, was developed to estimate rice grain yield and NUE in various rice production regions in China and to evaluate the relationships between N rates and grain yield, NUE. According to the database for rice, the values of grain yield, plant N accumulation, N harvest index(HIN), indigenous N supply(INS), internal N efficiency(IE_N), reciprocal internal N efficiency(RIE_N), agronomic N use efficiency(AE_N), partial N factor productivity(PEPN), physiological N efficiency(PE_N), and recover efficiency of applied N(RE_N) averaged 7.69 t ha^(–1), 152 kg ha^(–1), 0.64 kg kg^(–1), 94.1 kg kg^(–1), 53.9 kg kg^(–1), 1.98 kg kg^(–1), 12.6 kg kg^(–1), 48.6 kg kg^(–1), 33.8 kg kg^(–1), and 39.3%, respectively. However, the corresponding values all varied tremendously with large variation. Rice planting regions and N rates had significant influence on grain yield, N uptake and NUE values. Considering all observations, N rates of 200 to 250 kg ha^(–1) commonly achieved higher rice grain yield compared to less than 200 kg N ha^(–1) and more than 250 kg N ha^(–1) at most rice planting regions. At N rates of 200 to 250 kg ha^(–1), significant positive linear relationships were observed between rice grain yield and AE_N, PE_N, RE_N, IE_N, and PFPN, and 46.49, 24.64, 7.94, 17.84, and 88.24% of the variation in AE_N, PE_N, RE_N, IE_N, and PFPN could be explained by grain yield, respectively. In conclusion, in a reasonable range of N application, an increase in grain yield can be achieved accompanying by an acceptable NUE. 展开更多
关键词 rice grain yield nitrogen uptake nitrogen use efficiency China
下载PDF
Improving Nitrogen Use Efficiency in Rice through Enhancing Root Nitrate Uptake Mediated by a Nitrate Transporter, NRT1.1B 被引量:7
3
作者 ZhiChang Chen JianFeng Ma 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2015年第9期463-465,共3页
Nitrogen (N) is one of most important nutrients for crop production, which makes up 1%-5% of total plant dry matter (Marschner, 2012). Due to the limited availability of N in soil, application of N fertilizers has... Nitrogen (N) is one of most important nutrients for crop production, which makes up 1%-5% of total plant dry matter (Marschner, 2012). Due to the limited availability of N in soil, application of N fertilizers has been an important agronomic practice to increase crop yield. However, over-application of N fertilizers has caused pollution of N in soil, water and air. It was estimated that the nitrogen use efficiency (NUE, the total biomass or grain yield produced per unit of applied fertilizer N) in cereal crops is as low as 33% (Raun and Johnson, 1999). Therefore, improving NUE together with reducing application of N fertilizers is an important issue for environment and sustainable production of crops. This is especially important for rice, which is a staple food for half population in the world. 展开更多
关键词 NRT1.1B Improving nitrogen Use efficiency in Rice through Enhancing Root Nitrate uptake Mediated by a Nitrate Transporter
原文传递
Function, transport, and regulation of amino acids: What is missing in rice? 被引量:3
4
作者 Nan Guo Shunan Zhang +1 位作者 MingjiGu Guohua Xu 《The Crop Journal》 SCIE CSCD 2021年第3期530-542,共13页
Amino acids are essential plant compounds serving as the building blocks of proteins,the predominant forms of nitrogen(N)distribution,and signaling molecules.Plant amino acids derive from root acquisition,nitrate redu... Amino acids are essential plant compounds serving as the building blocks of proteins,the predominant forms of nitrogen(N)distribution,and signaling molecules.Plant amino acids derive from root acquisition,nitrate reduction,and ammonium assimilation.Many amino acid transporters(AATs)mediating transfer processes of amino acids have been functionally characterized in Arabidopsis,whereas the function and regulation of the vast majority of AATs in rice(Oryza sativa L.)and other crops remain unknown.In this review,we summarize the current understanding of amino acids in the rhizosphere and in metabolism.We describe their function as signal molecules and in regulating plant architecture,flowering time,and defense against abiotic stress and pathogen attack.AATs not only function in root acquisition and translocation of amino acids from source to sink organs,regulating N uptake and use efficiency,but also as transporters of non-amino acid substrates or as amino acid sensors.Several AAT genes show natural variations in their promoter and coding regions that are associated with altered uptake rate of amino acids,grain N content,and tiller number.Development of an amino acid transfer model in plants will advance the manipulation of AATs for improving rice architecture,grain yield and quality,and N-use efficiency. 展开更多
关键词 Amino acids Amino acid transporter Grain quality nitrogen uptake efficiency nitrogen utilization efficiency Rice architecture
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部