期刊文献+
共找到2,044篇文章
< 1 2 103 >
每页显示 20 50 100
Transgenic approaches for improving use efficiency of nitrogen, phosphorus and potassium in crops 被引量:13
1
作者 TENG Wan HE Xue TONG Yi-ping 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第12期2657-2673,共17页
The success of the Green Revolution largely relies on fertilizers, and a new Green Revolution is very much needed to use fertilizers more economically and efficiently, as well as with more environmental responsibility... The success of the Green Revolution largely relies on fertilizers, and a new Green Revolution is very much needed to use fertilizers more economically and efficiently, as well as with more environmental responsibility. The use efficiency of nitrogen, phosphorus, and potassium is controlled by complex gene networks that co-ordinate uptake, re-distribution, assimilation, and storage of these nutrients. Great progress has been made in breeding nutrient-efficient crops by molecularly engineering root traits desirable for efficient acquisition of nutrients from soil, transporters for uptake, redistribution and homeostasis of nutrients, and enzymes for efficient assimilation. Regulatory and transcription factors modulating these processes are also valuable in breeding crops with improved nutrient use efficiency and yield performance. 展开更多
关键词 nutrient use efficiency nitrogen phosphorus potassium transgenic approach crop
下载PDF
Impact of Nitrogen, Phosphorus and Potassium on Brown Planthopper and Tolerance of Its Host Rice Plants 被引量:12
2
作者 Md Mamunur RASHID Mahbuba JAHAN Khandakar Shariful ISLAM 《Rice science》 SCIE CSCD 2016年第3期119-131,共13页
The brown planthopper(BPH),Nilaparvata lugens(St?l),appeared as a devastating pest of rice in Asia. Experiments were conducted to study the effects of three nutrients,nitrogen(N),phosphorus(P) and potassium(K),on BPH ... The brown planthopper(BPH),Nilaparvata lugens(St?l),appeared as a devastating pest of rice in Asia. Experiments were conducted to study the effects of three nutrients,nitrogen(N),phosphorus(P) and potassium(K),on BPH and its host rice plants. Biochemical constituents of BPH and rice plants with varying nutrient levels at different growth stages,and changes in relative water content(RWC) of rice plants were determined in the laboratory. Feeding of BPH and the tolerance of rice plants to BPH with different nutrient levels were determined in the nethouse. Concentrations of N and P were found much higher in the BPH body than in its host rice plants,and this elemental mismatch is an inherent constraint on meeting nutritional requirements of BPH. Nitrogen was found as a more limiting element for BPH than other nutrients in rice plants. Application of N fertilizers to the rice plants increased the N concentrations both in rice plants and BPH while application of P and K fertilizers increased their concentrations in plant tissues only but not in BPH. Nitrogen application also increased the level of soluble proteins and decreased silicon content in rice plants,which resulted in increased feeding of BPH with sharp reduction of RWC in rice plants ultimately caused susceptible to the pest. P fertilization increased the concentration of P in rice plant tissues but not changed N,K,Si,free sugar and soluble protein contents,which indicated little importance of P to the feeding of BPH and tolerance of plant against BPH. K fertilization increased K content but reduced N,Si,free sugar and soluble protein contents in the plant tissues which resulted in the minimum reduction of RWC in rice plants after BPH feeding,thereby contributed to higher tolerance of rice plants to brown planthopper. 展开更多
关键词 NILAPARVATA LUGENS relative water content HOST tolerance nitrogen phosphorus potassium rice nutrient subsidy
下载PDF
Nitrogen, phosphorus and potassium recycling in an agroforestry ecosystem of Huanghuaihai Plain: with Paulownia elongata intercropped wheat and maize as an example 被引量:3
3
作者 Wu Gang Department of Systems Ecology,Research Center for Eco Environmental Sciences, Chinese Academy of Sciences,Beijing 100085,China 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 1998年第2期62-69,共8页
The studies show that in the whole community, P is deficient, and N and K are basically balanced. N, P and K are accumulated in plant tissues and litters, but depleted in soil. N and P contents in surface soil(0—20 ... The studies show that in the whole community, P is deficient, and N and K are basically balanced. N, P and K are accumulated in plant tissues and litters, but depleted in soil. N and P contents in surface soil(0—20 cm) are the main factors affecting crop growth, and P contents in 20 80 cm soil layer is the major affecting Paulownia elongata growth. The absorption coefficients of N, P and K in the communities are 0 078, 0 014 and 0 052 respectively, their utilization coefficients are 0 95, 0 90 and 0 94, and the recycling coefficients are 0 042, 0 05 and 0 063 respectively. 展开更多
关键词 nitrogen phosphorus potassium RECYCLING agroforestry ecosystem.
下载PDF
Cu_(3)P nanoparticles confined in nitrogen/phosphorus dual-doped porous carbon nanosheets for efficient potassium storage 被引量:3
4
作者 Yuanxing Yun Baojuan Xi +5 位作者 Yu Gu Fang Tian Weihua Chen Jinkui Feng Yitai Qian Shenglin Xiong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期339-347,I0009,共10页
Immobilizing primary electroactive nanomaterials in porous carbon matrix is an effective approach for boosting the electrochemical performance of potassium-ion batteries (PIBs) because of the synergy among functional ... Immobilizing primary electroactive nanomaterials in porous carbon matrix is an effective approach for boosting the electrochemical performance of potassium-ion batteries (PIBs) because of the synergy among functional components. Herein, an integrated hybrid architecture composed of ultrathin Cu_(3)P nanoparticles (~20 nm) confined in porous carbon nanosheets (Cu_(3)P⊂NPCSs) as a new anode material for PIBs is synthesized through a rational self-designed self-templating strategy. Benefiting from the unique structural advantages including more active heterointerfacial sites, intimate and stable electrical contact, effectively relieved volume change, and rapid K^(+) ion migration, the Cu_(3)P⊂NPCSs indicate excellent potassium-storage performance involving high reversible capacity, exceptional rate capability, and cycling stability. Moreover, the strong adsorption of K^(+) ions and fast potassium-ion reaction kinetics in Cu_(3)P⊂NPCSs is verified by the theoretical calculation investigation. Noted, the intercalation mechanism of Cu_(3)P to store potassium ions is, for the first time, clearly confirmed during the electrochemical process by a series of advanced characterization techniques. 展开更多
关键词 Cu_(3)P potassium-ion batteries nitrogen/phosphorus dual-doped porous carbon sheets Intercalation mechanism Heterointerface
下载PDF
Environmental dynamics of nitrogen and phosphorus release from river sediments of arid areas
5
作者 SU Wenhao WU Chengcheng +4 位作者 Sun Xuanxuan LEI Rongrong LEI Li WANG Ling ZHU Xinping 《Journal of Arid Land》 SCIE CSCD 2024年第5期685-698,共14页
Human activities lead to the accumulation of a large amount of nitrogen and phosphorus in sediments in rivers.Simultaneously,nitrogen and phosphorus can be affected by environment and re-enter the upper water body,cau... Human activities lead to the accumulation of a large amount of nitrogen and phosphorus in sediments in rivers.Simultaneously,nitrogen and phosphorus can be affected by environment and re-enter the upper water body,causing secondary pollution of the river water.In this study,laboratory simulation experiments were conducted initially to investigate the release of nitrogen and phosphorus from river sediments in Urumqi City and the surrounding areas in Xinjiang Uygur Autonomous Region of China and determine the factors that influence their release.The results of this study showed significant short-term differences in nitrogen and phosphorus release characteristics from sediments at different sampling points.The proposed secondary kinetics model(i.e.,pseudo-second-order kinetics model)better fitted the release process of sediment nitrogen and phosphorus.The release of nitrogen and phosphorus from sediments is a complex process driven by multiple factors,therefore,we tested the influence of three factors(pH,temperature,and disturbance intensity)on the release of nitrogen and phosphorus from sediments in this study.The most amount of nitrate nitrogen(NO_(3)^(–)-N)was released under neutral conditions,while the most significant release of ammonia nitrogen(NH_(4)^(+)-N)occurred under acidic and alkaline conditions.The release of nitrite nitrogen(NO_(2)^(-)-N)was less affected by pH.The dissolved total phosphorus(DTP)released significantly in the alkaline water environment,while the release of dissolved organic phosphorus(DOP)was more significant in acidic water.The release amount of soluble reactive phosphorus(SRP)increased with an increase in pH.The sediments released nitrogen and phosphorus at higher temperatures,particularly NH_(4)^(+)-N,NO_(3)^(–)-N,and SRP.The highest amount of DOP was released at 15.0℃.An increase in disturbance intensity exacerbated the release of nitrogen and phosphorus from sediments.NH_(4)^(+)-N,DTP,and SRP levels increased linearly with the intensity of disturbance,while NO_(3)^(–)-N and NO_(2)^(–)-N were more stable.This study provides valuable information for protecting and restoring the water environment in arid areas and has significant practical reference value. 展开更多
关键词 SEDIMENT nitrogen and phosphorus environmental dynamics pseudo-second-order kinetics model dissolved organic phosphorus(DOP) Urumqi City
下载PDF
Effects of Nitrogen-phosphorus-potassium Combined Fertilization on Rice Yield and Fertilizer Use Efficiency in Jianghan Plain
6
作者 Xiangping WANG Wei ZHOU +1 位作者 Pubing ZHENG Guilan HUANG 《Agricultural Biotechnology》 CAS 2022年第2期85-90,共6页
[Objectives]This study was conducted to explore the rational formula for rice fertilization in Jianghan Plain.[Methods]An experiment on the combined application of nitrogen,phosphorus and potassium fertilizers was car... [Objectives]This study was conducted to explore the rational formula for rice fertilization in Jianghan Plain.[Methods]An experiment on the combined application of nitrogen,phosphorus and potassium fertilizers was carried out in Jianghan Plain,an important rice producing area in Hubei,with a total of five treatments to study the effects of nitrogen,phosphorus and potassium fertilizers on the fertilizer use efficiency and yield of rice.[Results]Fertilization had a significant effect on improving rice yield,and nitrogen fertilizer had the greatest effect on rice yield,followed by potassium fertilizer and phosphorous fertilizer.[Conclusions]This study provides a scientific basis for the application of rice fertilizers and the reduction and efficiency improvement of chemical fertilizers in Jianghan Plain. 展开更多
关键词 RICE nitrogen phosphorus potassium fertilizers Fertilizer use efficiency YIELD
下载PDF
Identification of microRNAs involved in crosstalk between nitrogen, phosphorus and potassium under multiple nutrient deficiency in sorghum 被引量:5
7
作者 Zhenxing Zhu Dan Li +1 位作者 Ling Cong Xiaochun Lu 《The Crop Journal》 SCIE CSCD 2021年第2期465-475,共11页
Nitrogen(N),phosphorus(P),and potassium(K)are important for plant growth and development.MicroRNAs(miRNAs)play important roles in regulating plant response to nutrient(N,P,and K)deficiencies.Several miRNAs have been i... Nitrogen(N),phosphorus(P),and potassium(K)are important for plant growth and development.MicroRNAs(miRNAs)play important roles in regulating plant response to nutrient(N,P,and K)deficiencies.Several miRNAs have been identified under nutrient deficiency conditions in many plant species.However,the manner in which miRNAs regulate the interaction between NPK signaling pathways under multiple nutrient deficiency remains largely unknown.We systematically compared and identified microRNAs involved in both single and triple NPK nutrient deficiency responses.We identified 32 shoot and 17 root miRNAs differentially expressed under potassium deficiency.Several NP starvation-associated miRNAs including miR169s and miR399s,were also regulated by K deficiency.Several identified miRNAs including miR5565c,miR5564,and miR1432 have not previously been associated with respectively N,P,and K deficiency(−N,−P,and−K).Expression correlation analysis between miRNAs and their predicted targets showed that miR169,miR172,and miR160 displayed expression trends exactly opposite to those of their corresponding predicted targets.Of 550 predicted novel miRNAs,novel_mir_42 was upregulated in shoots under−K but was downregulated under−N and−P.The effects of combined NPK starvation were not a simple addition of the individual stresses on sorghum seedlings.The identified common and specific differentially expressed miRNAs were observed under single and combined NPK deficiencies.These findings will help to further elucidate the functions of microRNAs and their interactions under multiple nutrient deficiency. 展开更多
关键词 SORGHUM MicroRNA nitrogen PHOSPHATE potassium
下载PDF
Correlation and Pathway Analysis of the Carbon,Nitrogen,and Phosphorus in Soil-Microorganism-Plant with Main Quality Components of Tea(Camellia sinensis)
8
作者 Chun Mao Ji He +3 位作者 Xuefeng Wen Yangzhou Xiang Jihong Feng Yingge Shu 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第3期487-502,共16页
The contents of carbon(C),nitrogen(N),and phosphorus(P)in soil-microorganisms-plant significantly affect tea quality by altering the main quality components of tea,such as tea polyphenols,amino acids,and caffeine.Howev... The contents of carbon(C),nitrogen(N),and phosphorus(P)in soil-microorganisms-plant significantly affect tea quality by altering the main quality components of tea,such as tea polyphenols,amino acids,and caffeine.However,few studies have quantified the effects of these factors on the main quality components of tea.The study aimed to explore the interactions of C,N,and P in soil-microorganisms-plants and the effects of these factors on the main quality components of tea by using the path analysis method.The results indicated that(1)The contents of C,N,and P in soil,microorganisms,and tea plants were highly correlated and collinear,and showed significant correlations with the main quality components of tea.(2)Optimal regression equations were established to esti-mate tea polyphenol,amino acid,catechin,caffeine,and water extract content based on C,N,and P contents in soil,microorganisms,and tea plants(R^(2)=0.923,0.726,0.954,0.848,and 0.883,respectively).(3)Pathway analysis showed that microbial biomass phosphorus(MBP),root phosphorus,branch nitrogen,and microbial biomass carbon(MBC)were the largest direct impact factors on tea polyphenol,catechin,water extracts,amino acid,and caffeine content,respectively.Leaf carbon,root phosphorus,and leaf nitrogen were the largest indirect impact factors on tea polyphenol,catechin,and water extract content,respectively.Leaf carbon indirectly affected tea polyphenol content mainly by altering MBP content.Root phosphorus indirectly affected catechin content mainly by altering soil organic carbon content.Leaf nitrogen indirectly affected water extract content mainly by altering branch nitrogen content.The research results provide the scientific basis for reasonable fertilization in tea gardens and tea quality improvement. 展开更多
关键词 Soil-microorganisms-plant system CARBON nitrogen phosphorus tea quality path analysis
下载PDF
Effects of tree size and organ age on variations in carbon,nitrogen,and phosphorus stoichiometry in Pinus koraiensis
9
作者 Yanjun Wang Guangze Jin Zhili Liu 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第3期155-165,共11页
Carbon(C),nitrogen(N),and phosphorus(P)are of fundamental importance for growth and nutrient dynamics within plant organs and deserve more attention at regional to global scales.However,our knowledge of how these nutr... Carbon(C),nitrogen(N),and phosphorus(P)are of fundamental importance for growth and nutrient dynamics within plant organs and deserve more attention at regional to global scales.However,our knowledge of how these nutrients vary with tree size,organ age,or root order at the individual level remains limited.We determined C,N,and P contents and their stoichiometric ratios(i.e.,nutrient traits)in needles,branches,and fine roots at different organ ages(0-3-year-old needles and branches)and root orders(1st-4th order roots)from 64 Pinus koraiensis of varying size(Diameter at breast height ranged from 0.3 to 100 cm)in northeast China.Soil factors were also measured.The results show that nutrient traits were regulated by tree size,organ age,or root order rather than soil factors.At a whole-plant level,nutrient traits decreased in needles and fine roots but increased in branches with tree size.At the organ level,age or root order had a negative effect on C,N,and P and a positive effect on stoichiometric ratios.Our results demonstrate that nutrient variations are closely related to organ-specific functions and ecophysiological processes at an individual level.It is suggested that the nutrient acquisition strategy by younger trees and organ fractions with higher nutrient content is for survival.Conversely,nutrient storage strategy in older trees and organ fractions are mainly for steady growth.Our results clarified the nutrient utilization strategies during tree and organ ontogeny and suggest that tree size and organ age or root order should be simultaneously considered to understand the complexities of nutrient variations. 展开更多
关键词 Tree size Organ age(or root order) Carbon(C) nitrogen(N) phosphorus(P) Pinus koraiensis
下载PDF
Nitrogen and Phosphorus Removal from Lake Kinneret Inputs
10
作者 Moshe Gophen 《Open Journal of Ecology》 2024年第2期165-182,共18页
The Hula Valley was drained in 1957. The land use was modified from natural wetland and old shallow lake ecosystems to agricultural development. About half of the drained land area was utilized for aquaculture. Popula... The Hula Valley was drained in 1957. The land use was modified from natural wetland and old shallow lake ecosystems to agricultural development. About half of the drained land area was utilized for aquaculture. Population size was enhanced and the diary was developed intensively resulting in the enhancement of domestic and husbandry sewage production that increased as well. The natural intact Hula Valley-Lake Kinneret ecosystem was heavily anthropogenically interrupted: The Hula was drained and Kinneret became a national source for domestic water supply. Some aspects of the environmental and water quality protection policy of the system are presented. The causation and operational management implications for the reduction of Nitrogen and Phosphorus migration from the Hula Valley are discussed. Drastic (81%) restriction of aquaculture accompanied by sewage totally removed achieved a reasonable improvement in pollution control which was also supported by the Hula Project. The implications of anthropogenic intervention in the process of environmental management design are presented. 展开更多
关键词 Hula Valley JORDAN Kinneret nitrogen phosphorus Peat Soil Fish Ponds Sewage Removal
下载PDF
Effects of Different Nitrogen and Phosphorus Synergistic Fertilizer on Enzymes and Genes Related to Nitrogen Metabolism in Wheat
11
作者 Yajun Li Yihui Wang +2 位作者 Shuang Chen Yu Gao Yan Shi 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第7期2151-2164,共14页
In recent years,in order to improve nutrient use efficiency,especially nitrogen use efficiency,fertilizer valueadded technology has been developed rapidly.However,the mechanism of the effect of synergistic fertilizer ... In recent years,in order to improve nutrient use efficiency,especially nitrogen use efficiency,fertilizer valueadded technology has been developed rapidly.However,the mechanism of the effect of synergistic fertilizer on plant nitrogen utilization is not clear.A study was,therefore,conducted to explore the activities and gene expression of key enzymes for nitrogen assimilation and the gene expression of nitrogen transporters in wheat after the application of synergistic fertilizer.Soil column experiment was set up in Qingdao Agricultural University experimental base from October 2018 to June 2019.Maleic acid and itaconic acid were copolymerized with acrylic acid as cross-linking monomer to make a fluid gel,which was sprayed on the fertilizer surface to make nitrogen and phosphorus synergistic fertilizer.A total of 6 treatments was set according to different nitrogen and phosphorus fertilizer ratios:(1)100%common nitrogen fertilizer+100%common phosphate fertilizer(2)70%nitrogen synergistic fertilizer+100%phosphorus synergistic fertilizer;(3)100%nitrogen synergistic fertilizer+70%phosphorus synergistic fertilizer;(4)100%nitrogen synergistic fertilizer+100%phosphorus synergistic fertilizer;(5)70%nitrogen synergistic fertilizer+70%phosphorus synergistic fertilizer;(6)100%commercial nitrogen synergistic fertilizer+100%commercial phosphorus synergistic fertilizer.The results are as follows:(1)the enzyme activities of wheat plants under synergistic fertilizer condition were higher than those under ordinary fertilizer,except under the treatment that nitrogen and phosphorus synergistic fertilizer were both reduced;(2)the expression level of the genes under the treatment“100%nitrogen synergistic fertilizer+100%phosphorus synergistic fertilizer”was significantly higher than those in other treatments.Combined with the higher performance of nitrogen concentration in various parts of the plant under the condition of applying synergistic fertilizer,this study indicated that the application of synergistic fertilizer can improve the nitrogen metabolism of the plant by increasing the nitrogen level in the rhizosphere soil,inducing the expression of nitrogen transporter genes and key assimilation enzymes genes. 展开更多
关键词 nitrogen and phosphorus synergistic fertilizer nitrogen transporter gene nitrogen assimilation enzyme activity
下载PDF
Effects of nitrogen and phosphorus additions on soil microbial community structure and ecological processes in the farmland of Chinese Loess Plateau
12
作者 KOU Zhaoyang LI Chunyue +5 位作者 CHANG Shun MIAO Yu ZHANG Wenting LI Qianxue DANG Tinghui WANG Yi 《Journal of Arid Land》 SCIE CSCD 2023年第8期960-974,共15页
Microorganisms regulate the responses of terrestrial ecosystems to anthropogenic nutrient inputs.The escalation of anthropogenic activities has resulted in a rise in the primary terrestrial constraining elements,namel... Microorganisms regulate the responses of terrestrial ecosystems to anthropogenic nutrient inputs.The escalation of anthropogenic activities has resulted in a rise in the primary terrestrial constraining elements,namely nitrogen(N)and phosphorus(P).Nevertheless,the specific mechanisms governing the influence of soil microbial community structure and ecological processes in ecologically vulnerable and delicate semi-arid loess agroecosystems remain inadequately understood.Therefore,we explored the effects of different N and P additions on soil microbial community structure and its associated ecological processes in the farmland of Chinese Loess Plateau based on a 36-a long-term experiment.Nine fertilization treatments with complete interactions of high,medium,and low N and P gradients were set up.Soil physical and chemical properties,along with the microbial community structure were measured in this study.Additionally,relevant ecological processes such as microbial biomass,respiration,N mineralization,and enzyme activity were quantified.To elucidate the relationships between these variables,we examined correlation-mediated processes using statistical techniques,including redundancy analysis(RDA)and structural equation modeling(SEM).The results showed that the addition of N alone had a detrimental effect on soil microbial biomass,mineralized N accumulation,andβ-1,4-glucosidase activity.Conversely,the addition of P exhibited an opposing effect,leading to positive influences on these soil parameters.The interactive addition of N and P significantly changed the microbial community structure,increasing microbial activity(microbial biomass and soil respiration),but decreasing the accumulation of mineralized N.Among them,N24P12 treatment showed the greatest increase in the soil nutrient content and respiration.N12P12 treatment increased the overall enzyme activity and total phospholipid fatty acid(PLFA)content by 70.93%.N and P nutrient contents of the soil dominate the microbial community structure and the corresponding changes in hydrolytic enzymes.Soil microbial biomass,respiration,and overall enzyme activity are driven by mineralized N.Our study provides a theoretical basis for exploring energy conversion processes of soil microbial community and environmental sustainability under long-term N and P additions in semi-arid loess areas. 展开更多
关键词 nitrogen and phosphorus additions microbial community structure farmland ecosystem nitrogen mineralization soil enzyme activity
下载PDF
Drip fertigation and plant hedgerows significantly reduce nitrogen and phosphorus losses and maintain high fruit yields in intensive orchards 被引量:2
13
作者 SONG Ke QIN Qin +5 位作者 YANG Ye-feng SUN Li-juan SUN Ya-fei ZHENG Xian-qing Lü Wei-guang XUE Yong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第2期598-610,共13页
A field experiment was carried out to evaluate the effects of drip fertigation combined with plant hedgerows on nitrogen and phosphorus runoff losses in intensive pear orchards in the Tai Lake Basin.Nitrogen and phosp... A field experiment was carried out to evaluate the effects of drip fertigation combined with plant hedgerows on nitrogen and phosphorus runoff losses in intensive pear orchards in the Tai Lake Basin.Nitrogen and phosphorus runoff over a whole year were measured by using successional runoff water collection devices.The four experimental treatments were conventional fertilization(CK),drip fertigation(DF),conventional fertilization combined with plant hedgerows(C+H),and drip fertigation combined with plant hedgerows(D+H).The results from one year of continuous monitoring showed a significant positive correlation between precipitation and surface runoff discharge.Surface runoff discharge under the treatments without plant hedgerows totaled 15.86%of precipitation,while surface runoff discharge under the treatments with plant hedgerows totaled 12.82%of precipitation.Plant hedgerows reduced the number of runoff events and the amount of surface runoff.Precipitation is the main driving force for the loss of nitrogen and phosphorus in surface runoff,and fertilization is an important factor affecting the losses of nitrogen and phosphorus.In CK,approximately 7.36%of nitrogen and 2.63%of phosphorus from fertilization entered the surface water through runoff.Drip fertigation reduced the accumulation of nitrogen and phosphorus in the surface soil and lowered the runoff loss concentrations of total nitrogen(TN)and total phosphorus(TP).Drip fertigation combined with plant hedgerows significantly reduced the overall TN and TP losses by 45.38 and 36.81%,respectively,in comparison to the CK totals.Drip fertigation increased the vertical migration depth of nitrogen and phosphorus nutrients and reduced the accumulation of nitrogen and phosphorus in the surface soil,which increased the pear yield.The promotion of drip fertigation combined with plant hedgerows will greatly reduce the losses of nitrogen and phosphorus to runoff and maintain the high fruit yields in the intensive orchards of the Tai Lake Basin. 展开更多
关键词 drip fertigation plant hedgerows surface runoff nitrogen and phosphorus losses fruit yields
下载PDF
Deciphering the potassium storage phase conversion mechanism of phosphorus by combined solid-state NMR spectroscopy and density functional theory calculations
14
作者 Huixin Chen Lingyi Meng +4 位作者 Hongjun Yue Chengxin Peng Qiaobao Zhang Guiming Zhong Ding Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期45-53,共9页
Phosphorus is the potential anode material for emerging potassium-ion batteries(PIBs)owing to the highest specific capacity and relatively low operation plateau.However,the reversible delivered capacities of phosphoru... Phosphorus is the potential anode material for emerging potassium-ion batteries(PIBs)owing to the highest specific capacity and relatively low operation plateau.However,the reversible delivered capacities of phosphorus-based anodes,in reality,are far from the theoretical capacity corresponding to the formation of K3P alloy.And,their underlying potassium storage mechanisms remain poorly understood.To address this issue,for the first time,we perform high-resolution solid-state31P NMR combined with XRD measurements,and density functional theory calculations to yield a systemic quantitative understanding of(de)potassiation reaction mechanism of phosphorus anode.We explicitly reveal a previously unknown asymmetrical nanocrystalline-to-amorphous transition process via rP←→(K_(3)P_(11),K_(3)P_(7),beta-K_(4)P_(6))←→(alpha-K4P6)←→(K_(1-x)P,KP,K_(4-x)P3,K_(1+x)P)←→(amorphous K4P3,amorphous K3P)that are proceed along with the electrochemical potassiation/depotassiation processes.Additionally,the corresponding KP alloys intermediates,such as the amorphous phases of K_(4)P_(3),K_(3)P,and the nonstoichiometric phases of“K_(1-x)P”,“K_(1+x)P”,“K_(4-x)P_(3)”are experimentally detected,which indicating various complicated K-P alloy species are coexisted and evolved with the sluggish electrochemical reaction kinetics,resulting in lower capacity of phosphorus-based anodes.Our findings offer some insights into the specific multi-phase evolution mechanism of alloying anodes that may be generally involved in conversion-type electrode materials for PIBs. 展开更多
关键词 Red phosphorus Phase conversion Solid-state NMR potassium ion batteries
下载PDF
Removal of nitrogen and phosphorus in a combined A^2/O-BAF system with a short aerobic SRT 被引量:15
15
作者 DING Yong-wei WANG Lin +1 位作者 WANG Bao-zhen WANG Zheng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第6期1082-1087,共6页
A bench-scale anaerobic/anoxic/aerobic process-biological aerated filter (A^2/O-BAF) combined system was carded out to treat wastewater with lower C/N and C/P ratios. The A^2/O process was operated in a short aerobi... A bench-scale anaerobic/anoxic/aerobic process-biological aerated filter (A^2/O-BAF) combined system was carded out to treat wastewater with lower C/N and C/P ratios. The A^2/O process was operated in a short aerobic sludge retention time (SRT) for organic pollutants and phosphorus removal, and denitrification. The subsequent BAF process was mainly used for nitrification. The BAF effluent was partially returned to anoxic zone of the A^2/O process to provide electron acceptors for denitrification and anoxic P uptake. This unique system formed an environment for reproducing the denitdfying phosphate-accumulating organisms (DPAOs). The ratio of DPAOs to phosphorus accumulating organisms (PAOs) could be maintained at 28% by optimizing the organic loads in the anaerobic zone and the nitrate loads into the anoxic zone in the A^2/O process. The aerobic phosphorus over-uptake and discharge of excess activated sludge was the main mechanism of phosphorus removal in the combined system. The aerobic SRT of the A^2/O process should meet the demands for the development of aerobic PAOs and the restraint on the nitrifiers growth, and the contact time in the aerobic zone of the A^2/O process should be longer than 30 min, which ensured efficient phosphorus removal in the combined system. The adequate BAF effluent return rates should be controlled with 1--4 mg/L nitrate nitrogen in the anoxic zone effluent of A^2/O process to achieve the optimal nitrogen and phosphorus removal efficiencies. 展开更多
关键词 nitrogen and phosphorus removal denitrifying phosphorus removal denitrifying phosphorus accumulating organisms (DPAOs) anaerobic/anoxic/aerobic process (A^2/O) biological aerated filter (BAF) aerobic sludge retention time (SRT)
下载PDF
Phosphorus/nitrogen co-doped hollow carbon fibers enabling high-rate potassium storage 被引量:1
16
作者 Yu Zhou Shuang Tian +6 位作者 Min-Yu Jia Pei-Bo Gao Guang-Chao Yin Xiao-Mei Wang Jing-Lin Mu Jin Zhou Tong Zhou 《Rare Metals》 SCIE EI CAS CSCD 2023年第8期2622-2632,共11页
Potassium-ion hybrid capacitors(PIHCs)reconcile the advantages of batteries and supercapacitors,exhibiting both good energy density and high-power density.However,the low-rate performance and poor cycle stability of b... Potassium-ion hybrid capacitors(PIHCs)reconcile the advantages of batteries and supercapacitors,exhibiting both good energy density and high-power density.However,the low-rate performance and poor cycle stability of battery-type anodes hinder their practical application.Herein,phosphorus/nitrogen co-doped hollow carbon fibers(P-HCNFs)are prepared by a facile template method.The stable grape-like structure with continuous and interconnected cavity structure is an ideal scaffold for shortening the ion transport and relieving volume expansion,while the introduction of P atoms and intrinsic N atoms can create abundant extrinsic/intrinsic defects and additional active sites,reducing the K+diffusion barrier and improving the capacitive-controlled capacity.The P-HCNFs delivers a high specific capacity of 310 mAh·g^(-1)at 0.1 A·g^(-1)with remarkable ultra-high-rate performance(140 mAh·g^(-1)at 50 A·g^(-1))and retains an impressive capacity retention of 87%after 10,000 cycles at 10 A·g^(-1).As expected,the as-assembled PIHCs present a high energy density(115.8 Wh·kg^(-1)at 378.0 W·kg^(-1))and excellent capacity retention of 91%after 20,000 cycles.This work not only shows great potential for utilizing heteroatom-doping and structural design strategies to boost potassium storage,but also paves the way for advancing the practicality of high-energy PIHCs devices. 展开更多
关键词 potassium-ion hybrid capacitors(PIHCs) Hollow carbon anodes phosphorus/nitrogen cooping High-rate performance
原文传递
Spatio-Temporal Patterns of Nitrogen and Phosphorus Stoichiometry in Cascade Ponds in an Agricultural Small Watershed and Their Influencing Factors
17
作者 Jiaogen Zhou 《Journal of Water Resource and Protection》 CAS 2022年第12期759-772,共14页
Ecological stoichiometry of nitrogen and phosphorus is an important indicator to characterize the nitrogen and phosphorus trophic status in aquatic ecosystems. The study of the spatio-temporal patterns of nitrogen and... Ecological stoichiometry of nitrogen and phosphorus is an important indicator to characterize the nitrogen and phosphorus trophic status in aquatic ecosystems. The study of the spatio-temporal patterns of nitrogen and phosphorus stoichiometry is beneficial to the nitrogen and phosphorus pollution management in pond ecosystems. In this study, 18 groups (36 in total) of typical cascade ponds were selected as long-term observations to investigate the spatial distribution patterns of nitrogen and phosphorus component ratios (ratio of total nitrogen to phosphorus: TN:TP, ratio of dissolved nitrogen to phosphorus: TDN:TDP, ratio of particulate nitrogen to phosphorus: PN:PP) in water bodies in the tropical agricultural watershed of Jinjing. The results showed that the average values of TN:TP and TDN:TDP in the upstream ponds were 26.4 and 53.4, respectively, and were more than those in the downstream (22.95 and 48.1, respectively). In contrast, the PN:PP (13.78) in the upstream was significantly lower than that of the downstream (30.39). Furthermore, the factors of rainfall, agricultural land use and fish farming influenced the spatio-temporal variability of the N:P ratios. The ratios of TN:TP and TDN:TDP were higher in the wet season and lower in the dry season. Agricultural land use and fish farming reduced the ratios of the above three nitrogen and phosphorus components in cascade ponds in the study area. Our results show that strengthening agricultural land pollution control and aquaculture management could help to improve water quality of pond ecosystems in the study area. 展开更多
关键词 Agricultural Land Use Fish Farming Pond Ecosystems nitrogen and phosphorus Component nitrogen and phosphorus Stoichiometry
下载PDF
Nitrogen and phosphorus changes and optimal drainage time of flooded paddy field based on environmental factors 被引量:4
18
作者 Meng-hua XIAO Shuang-en YU +1 位作者 Yan-yan WANG Rong HUANG 《Water Science and Engineering》 EI CAS CSCD 2013年第2期164-177,共14页
While many controlled irrigation and drainage techniques have been adopted in China, the environmental effects of these techniques require further investigation. This study was conducted to examine the changes of nitr... While many controlled irrigation and drainage techniques have been adopted in China, the environmental effects of these techniques require further investigation. This study was conducted to examine the changes of nitrogen and phosphorus of a flooded paddy water system after fertilizer application and at each growth stage so as to obtain the optimal drainage time at each growth stage. Four treatments with different water level management methods at each growth stage were conducted under the condition of ten-day continuous flooding. Results show that the ammonia nitrogen ( NH4-N ) concentration reached the peak value once the fertilizer was applied, and then decreased to a relatively low level seven to ten days later, and that the nitrate nitrogen (NO^-N) concentration gradually rose to its peak value, which appeared later in subsurface water than in surface water. Continuous flooding could effectively reduce the concentrations of NH^-N , NO3-N, and total phosphorus (TP) in surface water. However, the paddy water disturbance, in the process of soil surface adsorption and nitrification, caused NH]-N to be released and increased the concentrations of NH4-N and NO^-N in surface water. A multi-objective controlled drainage model based on environmental factors was established in order to obtain the optimal drainage time at each growth stage and better guide the drainage practices of farmers. The optimal times for surface drainage are the fourth, sixth, fifth, and sixth days after flooding at the tillering, jointing-booting, heading-flowering, and milking stages, respectively. 展开更多
关键词 ammonia nitrogen nitrate nitrogen phosphorus optimal drainage time flooded paddy field
下载PDF
Identifying Nonpoint Sources of Phosphorus and Nitrogen: A Case Study of Pollution That Enters a Freshwater Wetland (Laguna Cartagena, Puerto Rico) 被引量:1
19
作者 Yashira Marie Sánchez-Colón Fred Charles Schaffner 《Journal of Water Resource and Protection》 2021年第8期588-604,共17页
Point and nonpoint sources of phosphorus (P) and nitrogen (N) can cause reductions in water quality, including eutrophication. Nonpoint pollution represents a special challenge because of dispersed not easily identifi... Point and nonpoint sources of phosphorus (P) and nitrogen (N) can cause reductions in water quality, including eutrophication. Nonpoint pollution represents a special challenge because of dispersed not easily identifiable sources such as the runoff from soil, nutrients, and other chemicals from agricultural fields and residential areas. Laguna Cartagena is a tropical freshwater wetland, situated in southwestern Puerto Rico. It is a eutrophic ecosystem, and its eutrophication is caused by both external nutrient loading and internal, mainly by phosphorus. This wetland has been affected by phosphorus loading from inorganic agricultural fertilizer in this historically oligotrophic wetland system until the end of subsidized fertilizer use and sugar cane cultivation in the late 1990s. This study identifies: 1) nonpoint sources of phosphorus (SRP, Soluble Reactive Phosphorus and TP, Total Phosphorus) and nitrogen (nitrate, nitrite, and ammonia) that enter Laguna Cartagena;and 2) the role of precipitation events on the contributions of phosphorus and nitrogen loading to ecosystems. Herein we assess water samples from five channelized external sources of P and N that enter Laguna Cartagena at two-week intervals from October 2013 through November 2014. Rainfall data were obtained weekly from a rain gauge. Standard methods were used for all chemical analyses. Results showed that the channelized waterways that carry water to the lagoon can be classified as hypereutrophic (>100 μg/L) for TP concentrations and oligotrophic (<200 μg/L) for nitrogen concentrations. Currently agriculture (rice and cattle) is the predominant land use at the nearby University of Puerto Rico (UPR) Lajas Agricultural Experiment Substation, the predominant nonpoint source of nutrient pollution (SRP, TP and ammonia) in the principal channelized water sources to the lagoon. Current nutrient loads are likely derived from fertilizers applied to the Substation’s rice fields, and a high density livestock. The second important cause of external surface water degradation (SRP, TP and ammonia) is the discharge from rural households in the drainage basin that discharge greywater directly to the environment, as indicated by the results from Cerro Alto hills immediately to the north of the lagoon. Precipitation also was associated with SRP, TP and ammonia loads. 展开更多
关键词 Nonpoint Sources Soluble Reactive phosphorus Total phosphorus nitrogen Depleted EUTROPHICATION
下载PDF
Nitrogen and phosphorus removal in pilot-scale anaerobic-anoxic oxidation ditch system 被引量:35
20
作者 PENG Yongzhen HOU Hongxun +2 位作者 WANG Shuying CUI Youwei Zhiguo Yuan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第4期398-403,共6页
To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal (SNDPR), a whole course of SNDPR damage and recovery was... To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal (SNDPR), a whole course of SNDPR damage and recovery was studied in a pilot-scale, anaerobicanoxic oxidation ditch (OD), where the volumes of anaerobic zone, anoxic zone, and ditches zone of the OD system were 7, 21, and 280 L, respectively. The reactor was fed with municipal wastewater with a flow rate of 336 L/d. The concept of simultaneous nitrification and denitrification (SND) rate (rSND) was put forward to quantify SND. The results indicate that: (1) high nitrogen and phosphorus removal efficiencies were achieved during the stable SND phase, total nitrogen (TN) and total phosphate (TP) removal rates were 80% and 85%, respectively; (2) when the system was aerated excessively, the stability of SND was damaged, and rSND dropped from 80% to 20% or less; (3) the natural logarithm of the ratio of NOx to NH4^+ in the effluent had a linear correlation to oxidation-reduction potential (ORP); (4) when NO3^- was less than 6 mg/L, high phosphorus removal efficiency could be achieved; (5) denitrifying phosphorus removal (DNPR) could take place in the anaerobic-anoxic OD system. The major innovation was that the SND rate was devised and quantified. 展开更多
关键词 oxidation ditch biological nitrogen removal biological phosphorus removal simultaneous nitrification and denitrification (SND) pilot scale municipal wastewater
下载PDF
上一页 1 2 103 下一页 到第
使用帮助 返回顶部