A novel composite photocatalyst for photocatalytic decomposition of water for hydrogen evolution was successfully synthesized by in-situ growth of nitrogen and sulfur co-doped coal-based carbon quantum dots(NSCQDs)nan...A novel composite photocatalyst for photocatalytic decomposition of water for hydrogen evolution was successfully synthesized by in-situ growth of nitrogen and sulfur co-doped coal-based carbon quantum dots(NSCQDs)nanoparticles on the surface of sheet cobalt-based metal-organic framework(Co-MOF)and graphitic carbon nitride(g-C_(3)N_(4),CN).The structure and properties of the obtained catalysts were systematically analyzed.NSCQDs effectively broaden the absorption of Co-MOF and CN in the visible region.The new composite photocatalyst has high hydrogen production activity and the hydrogen production rate reaches 6254μmol/(g·h)at pH=9.At the same time,NSCQDs synergy Co-MOF/CN composites have good stability.After four cycles of hydrogen production,the performance remains relatively stable.The tran sient photocurrent response and Nyquist plot experimental results further demonstrate the improvement of carrier separation efficiency in composite catalysts.The semiconductor type(n-type semico nductor)of the single-phase catalyst was determined by the Mott-Schottky test,and the band structure was analyzed.The conductive and valence bands of CN are-0.99 and 1.72 eV,respectively,and the conduction and valence bands of Co-MOF are-1.85 and 1.33 eV,respectively.Th e mechanism of the photocatalytic reaction can be inferred,that is,Z-type heterojunction is formed between CN an d Co-MOF,and NSCQDs was used as cocatalyst.展开更多
基金Project supported by the Ningxia Natural Science Foundation of China(2023AAC03285)National Natural Science Foundation of China(21666001)+1 种基金Innovative Team for Transforming Waste Cooking Oil into Clean Energy and High Value-added Chemicals,ChinaNingxia Low-grade Resource High Value Utilization and Environmental Chemical Integration Technology Innovation Team Project,China。
文摘A novel composite photocatalyst for photocatalytic decomposition of water for hydrogen evolution was successfully synthesized by in-situ growth of nitrogen and sulfur co-doped coal-based carbon quantum dots(NSCQDs)nanoparticles on the surface of sheet cobalt-based metal-organic framework(Co-MOF)and graphitic carbon nitride(g-C_(3)N_(4),CN).The structure and properties of the obtained catalysts were systematically analyzed.NSCQDs effectively broaden the absorption of Co-MOF and CN in the visible region.The new composite photocatalyst has high hydrogen production activity and the hydrogen production rate reaches 6254μmol/(g·h)at pH=9.At the same time,NSCQDs synergy Co-MOF/CN composites have good stability.After four cycles of hydrogen production,the performance remains relatively stable.The tran sient photocurrent response and Nyquist plot experimental results further demonstrate the improvement of carrier separation efficiency in composite catalysts.The semiconductor type(n-type semico nductor)of the single-phase catalyst was determined by the Mott-Schottky test,and the band structure was analyzed.The conductive and valence bands of CN are-0.99 and 1.72 eV,respectively,and the conduction and valence bands of Co-MOF are-1.85 and 1.33 eV,respectively.Th e mechanism of the photocatalytic reaction can be inferred,that is,Z-type heterojunction is formed between CN an d Co-MOF,and NSCQDs was used as cocatalyst.