期刊文献+
共找到140,157篇文章
< 1 2 250 >
每页显示 20 50 100
A lightweight nitrogen/oxygen dual-doping carbon nanofiber interlayer with meso-/micropores for high-performance lithium-sulfur batteries 被引量:1
1
作者 Fangyuan Hu Hao Peng +5 位作者 Tianpeng Zhang Wenlong Shao Siyang Liu Jinyan Wang Chenghao Wang Xigao Jian 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期115-123,共9页
Lithium-sulfur(Li-S) batteries are promising energy-storage devices for future generations of portable electronics and electric vehicles because of the outstanding energy density,low cost,and nontoxic nature of S.In t... Lithium-sulfur(Li-S) batteries are promising energy-storage devices for future generations of portable electronics and electric vehicles because of the outstanding energy density,low cost,and nontoxic nature of S.In the past decades,various novel electrodes and electrolytes have been studied to improve the performance of Li-S batteries.However,the very limited lifespan and rate performance of Li-S batteries originating from the dissolution and diffusion of long-chain polysulfides in liquid electrolytes,and the intrinsic poor conductivity of S severely hinder their practical application.Herein,an electrospinning method was developed to fabricate a thin conductive interlayer consisting of meso-/microporous N/O dual-doping carbon nanofiber(CNF).The freestanding 3 D interwoven structure with conductive pathways for electrons and ions can enhance the contact between polysulfides and N/O atoms to realize the highly robust trapping of polysulfides via the extremely polar interaction.Consequently,combining the meso-microporous N/O dual-doping CNF interlayer with a monodispersed S nanoparticle cathode results in a superior electrochemical performance of 862.5 mAh/g after 200 cycles at 0.2 C and a cycle decay as low as 0.08% per cycle.An area specific capacity of 5.22 mAh/cm^(2) can be obtained after 100 cycles at 0.1 C with a high S loading of 7.5 mg/cm^(2). 展开更多
关键词 Lithium-sulfur batteries Cathode interlayer Electrospinning nitrogen/oxygen dual-doped carbon nanofibers Meso-micropore structure
下载PDF
Preparation of hydrophobic flat sheet membranes from PVDF-HFP copolymer for enhancing the oxygen permeance in nitrogen/oxygen gas mixture 被引量:1
2
作者 Bahador Akbari Asghar Lashanizadegan +1 位作者 Parviz Darvishi Abdolrasoul Pouranfard 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第6期1566-1581,共16页
In this study, poly(vinilydene fluoride-co-hexafluoropropylene)(PVDF-HFP) was used for preparation of hydrophobic membranes using non-solvent induced phase inversion(NIPS) technique. PVDF-HFP copolymer with concentrat... In this study, poly(vinilydene fluoride-co-hexafluoropropylene)(PVDF-HFP) was used for preparation of hydrophobic membranes using non-solvent induced phase inversion(NIPS) technique. PVDF-HFP copolymer with concentrations of 10 wt% and 12 wt% was prepared to investigate the effect of polymer concentration on pore structure,morphology, hydrophobicity and performance of prepared membranes. Besides, the use of two coagulation baths with the effects of parameters such as coagulant time, polymer type and concentration, and the amount of nonsolvent were studied. The performance of prepared membranes was evaluated based on the permeability and selectivity of oxygen and nitrogen from a gas mixture of nitrogen/oxygen under operating conditions of feed flow rate(1–5 L·min-1), inlet pressure to membrane module(0.1–0.5 MPa) and temperatures between 25 and 45 °C. The results showed that the use of two coagulation baths with different compositions of distillated water and isopropanol,coagulant time, polymer type and concentration, and the amount of non-solvent additive have the most effect on pore structure, morphology, thickness, roughness and crystallinity of fabricated membranes. Porosity ranges for the three fabricated membranes were determined, where the maximum porosity was 73.889% and the minimum value was 56.837%. Also, the maximum and minimum average thicknesses of membrane were 320.85 μm and115 μm. Besides, the values of 4.7504 × 10-7 mol· m-2· s-1· Pa-1, 0.525 and 902.126 nm were achieved for maximum oxygen permeance, O2/N2 selectivity and roughness, respectively. 展开更多
关键词 oxygen-enriched air Hydrophobic flat sheet membrane PVDF-HFP copolymer Enhancing oxygen permeance Pore structure
下载PDF
Tracing nitrate sources in one of the world's largest eutrophicated bays(Hangzhou Bay):insights from nitrogen and oxygen isotopes
3
作者 Zhi Yang Jianfang Chen +6 位作者 Haiyan Jin Hongliang Li Zhongqiang Ji Yangjie Li Bin Wang Zhenyi Cao Qianna Chen 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第6期86-95,共10页
Eutrophication caused by inputs of excess nitrogen(N) has become a serious environmental problem in Hangzhou Bay(China),but the sources of this nitrogen are not well understood.In this study,the August 2019 distributi... Eutrophication caused by inputs of excess nitrogen(N) has become a serious environmental problem in Hangzhou Bay(China),but the sources of this nitrogen are not well understood.In this study,the August 2019 distributions of salinity,nutrients [nitrate(NO_(3)^(-)),nitrite,ammonium,and phosphate],and the stable isotopic composition of NO_(3)^(-)(δ^(15)N and δ^(18)O) were used to investigate sources of dissolved inorganic nitrogen(DIN) to Hangzhou B ay.Spatial distributions of nitrate,salinity,and nitrate δ^(18)O indicate that the Qiantang River,the Changjiang River,and nearshore coastal waters may all contribute nitrate to the bay.Based on the isotopic compositions of nitrate in these potential source waters and conservative mixing of nitrate in our study area,we suggest that the NO_(3)^(- )in Hangzhou B ay was likely derived mainly from soils,synthetic N fertilizer,and manure and sewage.End-member modeling indicates that in the upper half of the bay,the Qiantang River was a very important DIN source,possibly contributing more than 50% of DIN in the bay head area.In the lower half of the bay,DIN was sourced mainly from strongly intruding coastal water.DIN coming directly from the Changjiang River made a relatively small contribution to Hangzhou Bay DIN in August 2019. 展开更多
关键词 nitrogen isotopes oxygen isotopes nitrogen cycle nitrate sources Hangzhou Bay
下载PDF
Reversed charge transfer induced by nickel in Fe-Ni/Mo_(2)C@nitrogen-doped carbon nanobox for promoted reversible oxygen electrocatalysis
4
作者 Zhicheng Nie Lei Zhang +4 位作者 Qiliang Zhu Zhifan Ke Yingtang Zhou Thomas Wågberg Guangzhi Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期202-212,I0005,共12页
The interaction between metal and support is critical in oxygen catalysis as it governs the charge transfer between these two entities,influences the electronic structures of the supported metal,affects the adsorption... The interaction between metal and support is critical in oxygen catalysis as it governs the charge transfer between these two entities,influences the electronic structures of the supported metal,affects the adsorption energies of reaction intermediates,and ultimately impacts the catalytic performance.In this study,we discovered a unique charge transfer reversal phenomenon in a metal/carbon nanohybrid system.Specifically,electrons were transferred from the metal-based species to N-doped carbon,while the carbon support reciprocally donated electrons to the metal domain upon the introduction of nickel.This led to the exceptional electrocatalytic performances of the resulting Ni-Fe/Mo_(2)C@nitrogen-doped carbon catalyst,with a half-wave potential of 0.91 V towards oxygen reduction reaction(ORR)and a low overpotential of 290 m V at 10 mA cm^(-2)towards oxygen evolution reaction(OER)under alkaline conditions.Additionally,the Fe-Ni/Mo_(2)C@carbon heterojunction catalyst demonstrated high specific capacity(794 mA h g_(Zn)~(-1))and excellent cycling stability(200 h)in a Zn-air battery.Theoretical calculations revealed that Mo_(2)C effectively inhibited charge transfer from Fe to the support,while secondary doping of Ni induced a charge transfer reversal,resulting in electron accumulation in the Fe-Ni alloy region.This local electronic structure modulation significantly reduced energy barriers in the oxygen catalysis process,enhancing the catalytic efficiency of both ORR and OER.Consequently,our findings underscore the potential of manipulating charge transfer reversal between the metal and support as a promising strategy for developing highly-active and durable bi-functional oxygen electrodes. 展开更多
关键词 Metal-support interaction Charge transfer reversal oxygen reduction reaction oxygen evolution reaction Zinc-air battery
下载PDF
The manipulation of rectifying contact of Co and nitrogen-doped carbon hierarchical superstructures toward high-performance oxygen reduction reaction
5
作者 Jing Li Tingyu Lu +6 位作者 Yu Fang Guangyao Zhou Mingyi Zhang Huan Pang Jun Yang Yawen Tang Lin Xu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第9期338-349,共12页
Rational design and construction of oxygen reduction reaction(ORR)electrocatalysts with high activity,good stability,and low price are essential for the practical applications of renewable energy conversion devices,su... Rational design and construction of oxygen reduction reaction(ORR)electrocatalysts with high activity,good stability,and low price are essential for the practical applications of renewable energy conversion devices,such as metal-air batteries.Electronic modification through constructing metal/semiconductor Schottky heterointerface represents a powerful strategy to enhance the electrochemical performance.Herein,we demonstrate a concept of Schottky electrocatalyst composed of uniform Co nanoparticles in situ anchored on the carbon nanotubes aligned on the carbon nanosheets(denoted as Co@N-CNTs/NSs hereafter)toward ORR.Both experimental findings and theoretical simulation testify that the rectifying contact could impel the voluntary electron flow from Co to N-CNTs/NSs and create an internal electric field,thereby boosting the electron transfer rate and improving the intrinsic activity.As a consequence,the Co@N-CNTs/NSs deliver outstanding ORR activity,impressive long-term durability,excellent methanol tolerance,and good performance as the air-cathode in the Zn-air batteries.The design concept of Schottky contact may provide the innovational inspirations for the synthesis of advanced catalysts in sustainable energy conversion fields. 展开更多
关键词 Co-based ELECTROCATALYSTS oxygen reduction reaction rectifying CONTACT Zn-air BATTERIES
下载PDF
Modulation of Electronic States in Bimetallic-doped Nitrogen-Carbon Based Nanoparticles for Enhanced Oxygen Reduction Kinetics
6
作者 Chen Gong Chenyu Yang +2 位作者 Wanlin Zhou Hui Su Qinghua Liu 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2024年第4期513-521,I0042-I0060,I0094,共29页
Controlling the local electronic structure of active ingredients to improve the adsorption desorption characteristics of oxygen-containing intermediates over the electrochemical liquid-solid interfaces is a critical c... Controlling the local electronic structure of active ingredients to improve the adsorption desorption characteristics of oxygen-containing intermediates over the electrochemical liquid-solid interfaces is a critical challenge in the field of oxygen reduction reaction(ORR)catalysis.Here,we offer a simple approach for modulating the electronic states of metal nanocrystals by bimetal co-doping into carbon-nitrogen substrate,allowing us to modulate the electronic structure of catalytic active centers.To test our strategy,we designed a typical bimetallic nanoparticle catalyst(Fe-Co NP/NC)to flexibly alter the reaction kinetics of ORR.Our results from synchrotron Xray absorption spectroscopy and X-ray photoelectron spectroscopy showed that the co-doping of iron and cobalt could optimize the intrinsic charge distribution of Fe-Co NP/NC catalyst,promoting the oxygen reduction kinetics and ultimately achieving remarkable ORR activity.Consequently,the carefully designed Fe-Co NP/NC exhibits an ultra-high kinetic current density at the operating voltage(71.94 mA/cm^(2)at 0.80 V),and the half-wave potential achieves 0.915 V,which is obviously better than that of the corresponding controls including Fe NP/NC,Co NP/NC.Our findings provide a unique perspective for optimizing the electronic structure of active centers to achieve higher ORR catalytic activity and faster kinetics. 展开更多
关键词 oxygen reduction reaction Reaction kinetics Electronic state modulation CODOPING ELECTROCATALYSIS
下载PDF
Sulfur doped iron-nitrogen-hard carbon nanosheets as efficient and robust noble metal-free catalysts for oxygen reduction reaction in PEMFC
7
作者 Bin Liu Jiawang Li +6 位作者 Bowen Yan Qi Wei Xingyu Wen Huarui Xie Huan He Pei Kang Shen Zhi Qun Tian 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期422-433,I0010,共13页
Transition metal-nitrogen-carbon(M-N-C)as a promising substitute for the conventional noble metalbased catalyst still suffers from low activity and durability for oxygen reduction reaction(ORR)in proton exchange membr... Transition metal-nitrogen-carbon(M-N-C)as a promising substitute for the conventional noble metalbased catalyst still suffers from low activity and durability for oxygen reduction reaction(ORR)in proton exchange membrane fuel cells(PEMFCs).To tackle the issue,herein,a new type of sulfur-doped ironnitrogen-hard carbon(S-Fe-N-HC)nanosheets with high activity and durability in acid media were developed by using a newly synthesized precursor of amide-based polymer with Fe ions based on copolymerizing two monomers of 2,5-thiophene dicarboxylic acid(TDA)as S source and 1,8-diaminonaphthalene(DAN)as N source via an amination reaction.The as-synthesized S-Fe-N-HC features highly dispersed atomic Fe Nxmoieties embedded into rich thiophene-S doped hard carbon nanosheets filled with highly twisted graphite-like microcrystals,which is distinguished from the majority of M-N-C with soft or graphitic carbon structures.These unique characteristics endow S-Fe-N-HC with high ORR activity and outstanding durability in 0.5 M H_(2)SO_(4).Its initial half-wave potential is 0.80 V and the corresponding loss is only 21 m V after 30,000 cycles.Meanwhile,its practical PEMFC performance is a maximum power output of 628.0 mW cm^(-2)and a slight power density loss is 83.0 m W cm^(-2)after 200-cycle practical operation.Additionally,theoretical calculation shows that the activity of Fe Nxmoieties on ORR can be further enhanced by sulfur doping at meta-site near FeN_(4)C.These results evidently demonstrate that the dual effect of hard carbon substrate and S doping derived from the precursor platform of amid-polymers can effectively enhance the activity and durability of Fe-N-C catalysts,providing a new guidance for developing advanced M-N-C catalysts for ORR. 展开更多
关键词 Transition metal-nitrogen-carbon oxygen reduction reaction Hard carbon Amide based polymer reaction Proton exchange membrane cells
下载PDF
Ultrafine MoO_(x)clusters anchored on g-C_(3)N_(4)with nitrogen/oxygen dual defects for synergistic efficient O_(2)activation and tetracycline photodegradation 被引量:4
8
作者 Huidong Shen Xinyu Zhan +6 位作者 Song Hong Liang Xu Chunming Yang Alex W.Robertson Leiduan Hao Feng Fu Zhenyu Sun 《Nano Research》 SCIE EI CSCD 2023年第8期10713-10723,共11页
Photocatalytic O_(2)activation to generate reactive oxygen species is crucially important for purifying organic pollutants,yet remains a challenge due to poor adsorption of O_(2)and low efficiency of electron transfer... Photocatalytic O_(2)activation to generate reactive oxygen species is crucially important for purifying organic pollutants,yet remains a challenge due to poor adsorption of O_(2)and low efficiency of electron transfer.Herein,we demonstrate that ultrafine MoO_(x)clusters anchored on graphitic carbon nitride(g-C_(3)N_(4))with dual nitrogen/oxygen defects promote the photocatalytic activation of O_(2)to generate·O_(2)−for the degradation of tetracycline hydrochloride(TCH).A range of characterization techniques and density functional theory(DFT)calculations reveal that the introduction of the nitrogen/oxygen dual defects and MoO_(x)clusters enhances the O_(2)adsorption energy from−2.77 to−2.94 eV.We find that MoO_(x)clusters with oxygen vacancies(Ov)and surface Ov-mediated Moδ+(3≥δ≥2)possess unpaired localized electrons,which act as electron capture centers to transfer electrons to the MoO_(x)clusters.These electrons can then transfer to the surface adsorbed O_(2),thus promoting the photocatalytic conversion of O_(2)to·O_(2)−and,simultaneously,realizing the efficient separation of photogenerated electron–hole pairs.Our fully-optimized MoO_(x)/g-C_(3)N_(4)catalyst with dual nitrogen/oxygen defects manifests outstanding photoactivities,achieving 79%degradation efficiency toward TCH within 120 min under visible light irradiation,representing nearly 7 times higher activity than pristine g-C_(3)N_(4).Finally,based on the results of liquid chromatograph mass spectrometry and DFT calculations,the possible photocatalytic degradation pathways of TCH were proposed. 展开更多
关键词 MoO_(x)clusters nitrogen/oxygen dual defects electron-hole separation O_(2)activation tetracycline photodegradation
原文传递
Sources and transformations of nitrite in the Amundsen Sea in summer 2019 and 2020 as revealed by nitrogen and oxygen isotopes 被引量:2
9
作者 Yangjun Chen Jinxu Chen +4 位作者 Yi Wang You Jiang Minfang Zheng Yusheng Qiu Min Chen 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第4期16-24,共9页
In this study,the nitrogen and oxygen isotope compositions of nitrite in the upper 150 m water column of the Amundsen Sea in the summer of 2019 and 2020 were measured to reveal the distribution and transformation of n... In this study,the nitrogen and oxygen isotope compositions of nitrite in the upper 150 m water column of the Amundsen Sea in the summer of 2019 and 2020 were measured to reveal the distribution and transformation of nitrite in the euphotic zone of the Southern Ocean.We found that primary nitrite maxima(PNMs)are widely present in the Amundsen Sea,where the depth of occurrence deepens from east to west and nitrite concentrations increases.Evidence from dual isotopes suggests that the formation of PNMs in all regions of the Amundsen Sea is dominated by ammonia oxidation.More importantly,the nitrogen and oxygen isotope compositions of nitrite in the Amundsen Sea mixed layer are abnormal,and their depth profiles are mirror symmetrical.Isotopic anomalies exhibit spatial variations,with central surface water having the lowest nitrogen isotope composition(−89.9‰±0.2‰)and western surface water having the highest oxygen isotope composition(63.3‰±0.3‰).Isotopic exchange reaction between nitrate and nitrite is responsible for these isotope anomalies,as both nitrogen and oxygen isotopes have large isotopic fractionation and opposite enrichment effects.This proves that isotopic exchange reaction operates extensively in different regions of the Amundsen Sea.Our study highlights the unique role of dual isotopes of nitrite in deepening the understanding of nitrogen cycle.Further studies on ammonia oxidation and isotopic exchange between nitrate and nitrite are warranted in the future to understand their roles in the nitrogen cycle in the Southern Ocean. 展开更多
关键词 nitrogen isotope oxygen isotope NITRITE Amundsen Sea
下载PDF
Oxygen defect modulating the charge behavior in titanium dioxide for boosting photocatalytic nitrogen fixation performance 被引量:1
10
作者 Mengxia Ji Nianhua Liu +6 位作者 Kai Li Qing Xu Gaopeng Liu Bin Wang Jun Di Huaming Li Jiexiang Xia 《Materials Reports(Energy)》 EI 2023年第4期46-51,共6页
Extremely high-temperature and high-pressure requirement of Haber-Bosch process motivates the search for a sustainable ammonia synthesis approach under mild conditions.Photocatalytic technology is a potential solution... Extremely high-temperature and high-pressure requirement of Haber-Bosch process motivates the search for a sustainable ammonia synthesis approach under mild conditions.Photocatalytic technology is a potential solution to convert N2 to ammonia.However,the poor light absorption and low charge carrier separation efficiency in conventional semiconductors are bottlenecks for the application of this technology.Herein,a facile synthesis of anatase TiO_(2)nanosheets with an abundance of surface oxygen vacancies(TiO_(2)-OV)via the calcination treatment was reported.Photocatalytic experiments of the prepared anatase TiO_(2)samples showed that TiO_(2)-OV nanosheets exhibited remarkably increased ammonia yield for solar-driven N2 fixation in pure water,without adding any sacrificial agents.EPR,XPS,XRD,UV-Vis DRS,TEM,Raman,and PL techniques were employed to systematically explore the possible enhanced mechanism.Studies revealed that the introduced surface oxygen vacancies significantly extended the light absorption capability in the visible region,decreased the adsorption and activation barriers of inert N2,and improved the separation and transfer efficiency of the photogenerated electronhole pairs.Thus,a high rate of ammonia evolution in TiO_(2)-OV was realized.This work offers a promising and sustainable approach for the efficient artificial photosynthesis of ammonia. 展开更多
关键词 Titanium dioxide oxygen vacancies Artificial photosynthesis nitrogen fixation Charge separation
下载PDF
Co-Ru alloy nanoparticles decorated onto two-dimensional nitrogen doped carbon nanosheets towards hydrogen/oxygen evolution reaction and oxygen reduction reaction 被引量:2
11
作者 Huizhen Wang Pengfei Yang +9 位作者 Xiaoyuan Sun Weiping Xiao Xinping Wang Minge Tian Guangrui Xu Zhenjiang Li Yubing Zhang Fusheng Liu Lei Wang Zexing Wu 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期286-294,I0008,共10页
Constructing highly-efficient electrocatalysts toward hydrogen evolution reaction(HER)/oxygen evolution reaction(OER)/oxygen reduction reaction(ORR)with excellent stability is quite important for the development of re... Constructing highly-efficient electrocatalysts toward hydrogen evolution reaction(HER)/oxygen evolution reaction(OER)/oxygen reduction reaction(ORR)with excellent stability is quite important for the development of renewable energy-related applications.Herein,Co-Ru based compounds supported on nitrogen doped two-dimensional(2D)carbon nanosheets(NCN)are developed via one step pyrolysis procedure(Co-Ru/NCN)for HER/ORR and following low-temperature oxidation process(Co-Ru@RuO_(x)/NCN)for OER.The specific 2D morphology guarantees abundant active sites exposure.Furthermore,the synergistic effects arising from the interaction between Co and Ru are crucial in enhancing the catalytic performance.Thus,the resulting Co-Ru/NCN shows remarkable electrocatalytic performance for HER(70 mV at 10 mA cm^(-2))in 1 M KOH and ORR(half-wave potential E_(1/2)=0.81 V)in 0.1 M KOH.Especially,the Co-Ru@RuO_(x)/NCN obtained by oxidation exhibits splendid OER performance in both acid(230 mV at 10 mA cm^(-2))and alkaline media(270 mV at 10 mA cm^(-2))coupled with excellent stability.Consequently,the fabricated two-electrode water-splitting device exhibits excellent performance in both acidic and alkaline environments.This research provides a promising avenue for the advancement of multifunctional nanomaterials. 展开更多
关键词 ELECTROCATALYST 2D Carbon nanosheet Hydrogen/oxygen evolution reaction oxygen reduction reaction WATER-SPLITTING
下载PDF
Ultralong nitrogen/sulfur Co-doped carbon nano-hollowsphere chains with encapsulated cobalt nanoparticles for highly efficient oxygen electrocatalysis 被引量:5
12
作者 Wei Zhang Xingmei Guo +6 位作者 Cong Li Jiang-Yan Xue Wan-Ying Xu Zheng Niu Hongwei Gu Carl Redshaw Jian-Ping Lang 《Carbon Energy》 SCIE CSCD 2023年第8期15-30,共16页
The development of simple and effective strategies to prepare electrocatalysts,which possess unique and stable structures comprised of metal/nonmetallic atoms for oxygen reduction reaction(ORR)and oxygen evolution rea... The development of simple and effective strategies to prepare electrocatalysts,which possess unique and stable structures comprised of metal/nonmetallic atoms for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),is currently an urgent issue.Herein,an efficient bifunctional electrocatalyst featured by ultralong N,S-doped carbon nano-hollow-sphere chains about 1300 nm with encapsulated Co nanoparticles(Co-CNHSCs)is developed.The multifunctional catalytic properties of Co together with the heteroatom-induced charge redistribution(i.e.,modulating the electronic structure of the active site)result in superior catalytic activities toward OER and ORR in alkaline media.The optimized catalyst Co-CNHSC-3 displays an outstanding electrocatalytic ability for ORR and OER,a high specific capacity of 1023.6 mAh gZn^(-1),and excellent reversibility after 80 h at 10mA cm^(-2)in a Zn-air battery system.This work presents a new strategy for the design and synthesis of efficient multifunctional carbon-based catalysts for energy storage and conversion devices. 展开更多
关键词 Co nanoparticles N S co-doping oxygen electrocatalysts rechargeable Zn-air batteries ultralong carbon nano-hollow-sphere chains
下载PDF
Co/CoO heterojunction rich in oxygen vacancies introduced by O2 plasma embedded in mesoporous walls of carbon nanoboxes covered with carbon nanotubes for rechargeable zinc-air battery 被引量:1
13
作者 Leijun Ye Weiheng Chen +1 位作者 Zhong-Jie Jiang Zhongqing Jiang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第7期14-25,共12页
Herein,Co/CoO heterojunction nanoparticles(NPs)rich in oxygen vacancies embedded in mesoporous walls of nitrogen-doped hollow carbon nanoboxes coupled with nitrogen-doped carbon nanotubes(P-Co/CoOV@NHCNB@NCNT)are well... Herein,Co/CoO heterojunction nanoparticles(NPs)rich in oxygen vacancies embedded in mesoporous walls of nitrogen-doped hollow carbon nanoboxes coupled with nitrogen-doped carbon nanotubes(P-Co/CoOV@NHCNB@NCNT)are well designed through zeolite-imidazole framework(ZIF-67)carbonization,chemical vapor deposition,and O_(2) plasma treatment.As a result,the threedimensional NHCNBs coupled with NCNTs and unique heterojunction with rich oxygen vacancies reduce the charge transport resistance and accelerate the catalytic reaction rate of the P-Co/CoOV@NHCNB@NCNT,and they display exceedingly good electrocatalytic performance for oxygen reduction reaction(ORR,halfwave potential[EORR,1/2=0.855 V vs.reversible hydrogen electrode])and oxygen evolution reaction(OER,overpotential(η_(OER,10)=377mV@10mA cm^(−2)),which exceeds that of the commercial Pt/C+RuO_(2) and most of the formerly reported electrocatalysts.Impressively,both the aqueous and flexible foldable all-solid-state rechargeable zinc-air batteries(ZABs)assembled with the P-Co/CoOV@NHCNB@NCNT catalyst reveal a large maximum power density and outstanding long-term cycling stability.First-principles density functional theory calculations show that the formation of heterojunctions and oxygen vacancies enhances conductivity,reduces reaction energy barriers,and accelerates reaction kinetics rates.This work opens up a new avenue for the facile construction of highly active,structurally stable,and cost-effective bifunctional catalysts for ZABs. 展开更多
关键词 HETEROJUNCTION oxygen evolution/reduction reaction oxygen vacancies rechargeable zinc–air battery three‐dimensional nitrogen‐doped hollow carbon nanoboxes
下载PDF
Hybrid model for BOF oxygen blowing time prediction based on oxygen balance mechanism and deep neural network 被引量:1
14
作者 Xin Shao Qing Liu +3 位作者 Zicheng Xin Jiangshan Zhang Tao Zhou Shaoshuai Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期106-117,共12页
The amount of oxygen blown into the converter is one of the key parameters for the control of the converter blowing process,which directly affects the tap-to-tap time of converter. In this study, a hybrid model based ... The amount of oxygen blown into the converter is one of the key parameters for the control of the converter blowing process,which directly affects the tap-to-tap time of converter. In this study, a hybrid model based on oxygen balance mechanism (OBM) and deep neural network (DNN) was established for predicting oxygen blowing time in converter. A three-step method was utilized in the hybrid model. First, the oxygen consumption volume was predicted by the OBM model and DNN model, respectively. Second, a more accurate oxygen consumption volume was obtained by integrating the OBM model and DNN model. Finally, the converter oxygen blowing time was calculated according to the oxygen consumption volume and the oxygen supply intensity of each heat. The proposed hybrid model was verified using the actual data collected from an integrated steel plant in China, and compared with multiple linear regression model, OBM model, and neural network model including extreme learning machine, back propagation neural network, and DNN. The test results indicate that the hybrid model with a network structure of 3 hidden layer layers, 32-16-8 neurons per hidden layer, and 0.1 learning rate has the best prediction accuracy and stronger generalization ability compared with other models. The predicted hit ratio of oxygen consumption volume within the error±300 m^(3)is 96.67%;determination coefficient (R^(2)) and root mean square error (RMSE) are0.6984 and 150.03 m^(3), respectively. The oxygen blow time prediction hit ratio within the error±0.6 min is 89.50%;R2and RMSE are0.9486 and 0.3592 min, respectively. As a result, the proposed model can effectively predict the oxygen consumption volume and oxygen blowing time in the converter. 展开更多
关键词 basic oxygen furnace oxygen consumption oxygen blowing time oxygen balance mechanism deep neural network hybrid model
下载PDF
Effects of oxygen/nitrogen co-incorporation on regulation of growth and properties of boron-doped diamond films
15
作者 刘东阳 汤琨 +3 位作者 朱顺明 张荣 郑有炓 顾书林 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期609-615,共7页
Regulation with nitrogen and oxygen co-doping on growth and properties of boron doped diamond films is studied by using laughing gas as dopant. As the concentration of laughing gas(N2O/C) increases from 0 to 10%, the ... Regulation with nitrogen and oxygen co-doping on growth and properties of boron doped diamond films is studied by using laughing gas as dopant. As the concentration of laughing gas(N2O/C) increases from 0 to 10%, the growth rate of diamond film decreases gradually, and the nitrogen-vacancy(NV) center luminescence intensity increases first and then weakens. The results show that oxygen in laughing gas has a strong inhibitory effect on formation of NV centers, and the inhibitory effect would be stronger as the concentration of laughing gas increases. As a result, the film growth rate and nitrogen-related compensation donor decrease, beneficial to increase the acceptor concentration(~3.2×10^(19)cm^(-3)) in the film. Moreover, it is found that the optimal regulation with the quality and electrical properties of boron doped diamond films could be realized by adding appropriate laughing gas, especially the hole mobility(~700cm^(2)/V·s), which is beneficial to the realization of high-quality boron doped diamond films and high-level optoelectronic device applications in the future. 展开更多
关键词 boron doped diamond nitrogen and oxygen co-doping crystal quality Hall effect measurement acceptor doping concentration
下载PDF
Increased dependence on nitrogen-fixation of a native legume in competition with an invasive plant 被引量:1
16
作者 Meixu Han Haiyang Zhang +12 位作者 Mingchao Liu Jinqi Tang Xiaocheng Guo Weizheng Ren Yong Zhao Qingpei Yang Binglin Guo Qinwen Han Yulong Feng Zhipei Feng Honghui Wu Xitian Yang Deliang Kong 《Plant Diversity》 SCIE CAS CSCD 2024年第4期510-518,共9页
Suppression of roots and/or their symbiotic microorganisms,such as mycorrhizal fungi and rhizobia,is an effective way for alien plants to outcompete native plants.However,little is known about how invasive and native ... Suppression of roots and/or their symbiotic microorganisms,such as mycorrhizal fungi and rhizobia,is an effective way for alien plants to outcompete native plants.However,little is known about how invasive and native plants interact with the quantity and activity of nutrient-acquisition agents.Here a pot experiment was conducted with monoculture and mixed plantings of an invasive plant,Xanthium strumarium,and a common native legume,Glycine max.We measured traits related to root and nodule quantity and activity and mycorrhizal colonization.Compared to the monoculture,fine root quantity(biomass,surface area)and activity(root nitrogen(N)concentration,acid phosphatase activity)of G.max decreased in mixed plantings;nodule quantity(biomass)decreased by 45%,while nodule activity in Nfixing via rhizobium increased by 106%;mycorrhizal colonization was unaffected.Contribution of N fixation to leaf N content in G.max increased in the mixed plantings,and this increase was attributed to a decrease in the rhizosphere soil N of G.max in the mixed plantings.Increased root quantity and activity,along with a higher mycorrhizal association was observed in X.strumarium in the mixed compared to monoculture.Together,the invasive plant did not directly scavenge N from nodule-fixed N,but rather depleted the rhizosphere soil N of the legume,thereby stimulating the activity of N-fixation and increasing the dependence of the native legume on this N source.The quantity-activity framework holds promise for future studies on how native legumes respond to alien plant invasions. 展开更多
关键词 Mycorrhizal strategy nitrogen depletion Plant invasion Root nutrient acquisition strategy Symbiotic nitrogen fixation
下载PDF
Strong synergy between physical and chemical properties:Insight into optimization of atomically dispersed oxygen reduction catalysts 被引量:4
17
作者 Yifan Zhang Linsheng Liu +4 位作者 Yuxuan Li Xueqin Mu Shichun Mu Suli Liu Zhihui Dai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期36-49,共14页
Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utiliz... Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered. 展开更多
关键词 Atomically dispersed catalysts Coordination environment Electronic orbitals Inter-site distance effect oxygen reduction reaction
下载PDF
A defective iron-based perovskite cathode for high-performance IT-SOFCs:Tailoring the oxygen vacancies using Nb/Ta co-doping 被引量:2
18
作者 Bayu Admasu Beshiwork Xinyu Wan +6 位作者 Min Xu Haoran Guo Birkneh Sirak Teketel Yu Chen Jun Song Chen Tingshuai Li Enrico Traversa 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期306-316,I0008,共12页
The sluggish kinetics of the electrochemical oxygen reduction reaction(ORR)in intermediatetemperature solid oxide fuel cells(IT-SOFCs)greatly limits the overall cell performance.In this study,an efficient and durable ... The sluggish kinetics of the electrochemical oxygen reduction reaction(ORR)in intermediatetemperature solid oxide fuel cells(IT-SOFCs)greatly limits the overall cell performance.In this study,an efficient and durable cathode material for IT-SOFCs is designed based on density functional theory(DFT)calculations by co-doping with Nb and Ta the B-site of the SrFeO_(3-δ)perovskite oxide.The DFT calculations suggest that Nb/Ta co-doping can regulate the energy band of the parent SrFeO_(3-δ)and help electron transfer.In symmetrical cells,such cathode with a SrFe_(0.8)Nb_(0.1)Ta_(0.1)O_(3-δ)(SFNT)detailed formula achieves a low cathode polarization resistance of 0.147Ωcm^(2) at 650℃.Electron spin resonance(ESR)and X-ray photoelectron spectroscopy(XPS)analysis confirm that the co-doping of Nb/Ta in SrFeO_(3-δ)B-site increases the balanced concentration of oxygen vacancies,enhancing the electrochemical performance when compared to 20 mol%Nb single-doped perovskite oxide.The cathode button cell with NiSDC|SDC|SFNT configuration achieves an outstanding peak power density of 1.3 W cm^(-2)at 650℃.Moreover,the button cell shows durability for 110 h under 0.65 V at 600℃ using wet H_(2) as fuel. 展开更多
关键词 Solid oxide fuel cell CATHODE oxygen reduction reaction Power density DFT calculation
下载PDF
Valence electronic engineering of superhydrophilic Dy-evoked Ni-MOF outperforming RuO_(2) for highly efficient electrocatalytic oxygen evolution 被引量:1
19
作者 Zhiyang Huang Miao Liao +6 位作者 Shifan Zhang Lixia Wang Mingcheng Gao Zuyang Luo Tayirjan Taylor Isimjan Bao Wang Xiulin Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期244-252,I0007,共10页
Tackling the problem of poor conductivity and catalytic stability of pristine metal-organic frameworks(MOFs) is crucial to improve their oxygen evolution reaction(OER) performance.Herein,we introduce a novel strategy ... Tackling the problem of poor conductivity and catalytic stability of pristine metal-organic frameworks(MOFs) is crucial to improve their oxygen evolution reaction(OER) performance.Herein,we introduce a novel strategy of dysprosium(Dy) doping,using the unique 4f orbitals of this rare earth element to enhance electrocatalytic activity of MOFs.Our method involves constructing Dy-doped Ni-MOF(Dy@Ni-MOF) nanoneedles on carbon cloth via a Dy-induced valence electronic perturbation approach.Experiments and density functional theory(DFT) calculations reveal that Dy doping can effectively modify the electronic structure of the Ni active centers and foster a strong electronic interaction between Ni and Dy.The resulting benefits include a reduced work function and a closer proximity of the d-band center to the Fermi level,which is conducive to improving electrical conductivity and promoting the adsorption of oxygen-containing intermediates.Furthermore,the Dy@Ni-MOF achieves superhydrophilicity,ensuring effective electrolyte contact and thus accelerating reaction kinetics,Ex-situ and in-situ analysis results manifest Dy_(2)O_(3)/NiOOH as the actual active species.Therefore,Dy@Ni-MOF shows impressive OER performance,significantly surpassing Ni-MOF.Besides,the overall water splitting device with Dy@NiMOF as an anode delivers a low cell voltage of 1.51 V at 10 mA cm^(-2) and demonstrates long-term stability for 100 h,positioning it as a promising substitute for precious metal catalysts. 展开更多
关键词 Dy@Ni-MOF Dy incorporation Electronic interaction SUPERHYDROPHILICITY oxygen evolution reaction
下载PDF
Microwave shock motivating the Sr substitution of 2D porous GdFeO_(3) perovskite for highly active oxygen evolution 被引量:1
20
作者 Jinglin Xian Huiyu Jiang +10 位作者 Zhiao Wu Huimin Yu Kaisi Liu Miao Fan Rong Hu Guangyu Fang Liyun Wei Jingyan Cai Weilin Xu Huanyu Jin Jun Wan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期232-241,I0006,共11页
The incorporation of partial A-site substitution in perovskite oxides represents a promising strategy for precisely controlling the electronic configuration and enhancing its intrinsic catalytic activity.Conventional ... The incorporation of partial A-site substitution in perovskite oxides represents a promising strategy for precisely controlling the electronic configuration and enhancing its intrinsic catalytic activity.Conventional methods for A-site substitution typically involve prolonged high-temperature processes.While these processes promote the development of unique nanostructures with highly exposed active sites,they often result in the uncontrolled configuration of introduced elements.Herein,we present a novel approach for synthesizing two-dimensional(2D)porous GdFeO_(3) perovskite with A-site strontium(Sr)substitution utilizing microwave shock method.This technique enables precise control of the Sr content and simultaneous construction of 2D porous structures in one step,capitalizing on the advantages of rapid heating and cooling(temperature~1100 K,rate~70 K s^(-1)).The active sites of this oxygen-rich defect structure can be clearly revealed through the simulation of the electronic configuration and the comprehensive analysis of the crystal structure.For electrocatalytic oxygen evolution reaction application,the synthesized 2D porous Gd_(0.8)Sr_(0.2)FeO_(3) electrocatalyst exhibits an exceptional overpotential of 294 mV at a current density of 10 mA cm^(-2)and a small Tafel slope of 55.85 mV dec^(-1)in alkaline electrolytes.This study offers a fresh perspective on designing crystal configurations and the construction of nanostructures in perovskite. 展开更多
关键词 2D materials PEROVSKITE MICROWAVE ELECTROCATALYSIS oxygen evolution reaction
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部