期刊文献+
共找到924篇文章
< 1 2 47 >
每页显示 20 50 100
Preparation of nitrogen and sulfur co-doped ultrathin graphitic carbon via annealing bagasse lignin as potential electrocatalyst towards oxygen reduction reaction in alkaline and acid media 被引量:5
1
作者 Yixing Shen Feng Peng +3 位作者 Yonghai Cao Jianliang Zuo Hongjuan Wang Hao Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第7期33-42,共10页
Renewable lignin used for synthesizing materials has been proven to be highly potential in specific electrochemistry.Here,we report a simple method to synthesize nitrogen and sulfur co-doped carbon nanosheets by using... Renewable lignin used for synthesizing materials has been proven to be highly potential in specific electrochemistry.Here,we report a simple method to synthesize nitrogen and sulfur co-doped carbon nanosheets by using bagasse lignin,denoted as lignin-derived carbon(LC).By adjusting the ratio of nitrogen source and annealing temperature,we obtained the ultrathin graphitic lignin carbon(LC-4-1000)with abundant wrinkles with high surface area of 1208 m2g_1 and large pore volume of 1.40 cm3g_1.In alkaline medium,LC-4-1000 has more positive half-wave potential and nearly current density compared to commercial Pt/C for oxygen reduction reaction(ORR).More importantly,LC-4-1000 also exhibits comparable activity and superior stability for ORR in acid medium due to its high graphitic N ratio and a direct four electron pathway for ORR.This study develops a cost-effective and highly efficient method to prepare biocarbon catalyst for ORR in fuel cells. 展开更多
关键词 ELECTROCATALYST Biocarbon LIGNIN nitrogen and sulfur co-dopED carbon Oxygen reduction reaction
下载PDF
Nitrogen and Sulfur Co-doped Porous Carbon Derived from ZIF-8 as Oxygen Reduction Reaction Catalyst for Microbial Fuel Cells 被引量:4
2
作者 HAN Wuli YAN Xuemin +3 位作者 JIANG Yu PING Mei DENG Xiaoqing ZHANG Yan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第2期280-286,共7页
Nitrogen and sulfur co-doped porous nanocarbon (ZIF-C-N-S) catalyst was successfully synthesized derived from ZIF-8 and thiourea precursors.The electrochemical measurements indicate that the as-obtained ZIF-C-N-S cata... Nitrogen and sulfur co-doped porous nanocarbon (ZIF-C-N-S) catalyst was successfully synthesized derived from ZIF-8 and thiourea precursors.The electrochemical measurements indicate that the as-obtained ZIF-C-N-S catalyst exhibits higher electrocatalytic activity for oxygen reduction reaction (ORR) in alkaline electrolyte and superior durability-longer than commercial Pt/C catalyst.The enhancment of electrocatalytic activity mainly be come from the open pore structure,large specific surface area as well as the synergistic effect resulted from the co-doping of N and S atoms.In addition,the ZIF-C-N-S catalyst is also used as the air cathode catalyst in the microbial fuel cell (MFC) device.The maximum power density and stable output voltage of ZIF-C-N-S based MFC are 1315 mW/m2 and 0.48 V,respectively,which is better than that of Pt/C based MFC. 展开更多
关键词 ELECTROCATALYST oxygen reduction reaction microbial fuel cells nitrogen and sulfur co-doped
下载PDF
Controllable active sites and facile synthesis of cobalt nanoparticle embedded in nitrogen and sulfur co-doped carbon nanotubes as efficient bifunctional electrocatalysts for oxygen reduction and evolution reactions 被引量:1
3
作者 Taeseob Oh Kwanwoo Kim Jooheon Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第11期60-67,共8页
Development of efficient and promising bifunctional electrocatalysts for oxygen reduction and evolutionreactions is desirable. Herein, cobalt nanoparticles embedded in nitrogen and sulfur co-doped carbonnanotubes(Co@N... Development of efficient and promising bifunctional electrocatalysts for oxygen reduction and evolutionreactions is desirable. Herein, cobalt nanoparticles embedded in nitrogen and sulfur co-doped carbonnanotubes(Co@NSCNT) were prepared by a facile pyrolytic treatment. The cobalt nanoparticles and co-doping of nitrogen and sulfur can improve the electron donor-acceptor characteristics of the carbon nan-otubes and provide more active sites for catalytic oxygen reduction and evolution reactions. The preparedCo@NSCNT, annealed at 900℃, showed excellent electrocatalytic performance and better durability thancommercial platinum catalysts. Additionally, Co@NSCNT-900 catalysts exhibited comparable onset poten-tials and Tafel slopes to ruthenium oxide. Overall, Co@NSCNT showed high activity and improved dura-bility for both oxygen evolution and reduction reactions. 展开更多
关键词 OXYGEN reduction REACTION OXYGEN EVOLUTION REACTION Nonprecious metal catalyst nitrogen and sulfur co-doping Encapsulated structure
下载PDF
Carbon,Nitrogen,and Sulfur Contents in Marine Phytoplankton Cells and Biomass Conversion
4
作者 CHEN Wenqing YANG Shimin +1 位作者 SHANG Jie WANG Jinwen 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第3期851-862,共12页
In this study,we isolated and cultured phytoplankton along the coast of China and measured the cellular carbon,nitrogen,and sulfur contents under four temperatures.The results showed that the contents of the cellular ... In this study,we isolated and cultured phytoplankton along the coast of China and measured the cellular carbon,nitrogen,and sulfur contents under four temperatures.The results showed that the contents of the cellular elements varied widely among different phytoplankton.We found that temperature is one of the important factors affecting the carbon,nitrogen,and sulfur contents in phytoplankton cells;however,the degree of influence of temperature is different for different kinds of phytoplankton.By measuring the nitrogen content in cells,we found that the C:N ratio indirectly measured in the experiment fluctuated in the range of 3.50-8.97,and the average C:N ratio was 5.52.In this experiment,we accurately measured the cell elemental contents at different temperatures and transformed the cell count results into carbon,nitrogen,and sulfur contents to express the biomass.This method ensures that the contribution of species that are small in number but with a large cell volume in biomass is considered.Moreover,this method comprehensively considers the interspecific differences of species and the uneven distribution of elements in phytoplankton cells,which is of significance in the estimation of marine carbon and nitrogen budget.The distribution of nitrogen content in marine phytoplankton can well indicate the marine eutrophication caused by human activities.Climate change can affect the community structure and element composition of marine phytoplankton,meanwhile marine carbon and nitrogen element can regulate the climate to a certain extent. 展开更多
关键词 PHYTOPLANKTON temperature gradient carbon element nitrogen element sulfur element element content distribution
下载PDF
Enhanced photocatalytic hydrogen production from Co-MOF/CN by nitrogen and sulfur co-doped coal-based carbon quantum dots
5
作者 Shiyong Xu Mei Li +3 位作者 Yijun Wang Caiyun Gao Rongsheng Xu Zhiliang jin 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第5期838-850,I0002,共14页
A novel composite photocatalyst for photocatalytic decomposition of water for hydrogen evolution was successfully synthesized by in-situ growth of nitrogen and sulfur co-doped coal-based carbon quantum dots(NSCQDs)nan... A novel composite photocatalyst for photocatalytic decomposition of water for hydrogen evolution was successfully synthesized by in-situ growth of nitrogen and sulfur co-doped coal-based carbon quantum dots(NSCQDs)nanoparticles on the surface of sheet cobalt-based metal-organic framework(Co-MOF)and graphitic carbon nitride(g-C_(3)N_(4),CN).The structure and properties of the obtained catalysts were systematically analyzed.NSCQDs effectively broaden the absorption of Co-MOF and CN in the visible region.The new composite photocatalyst has high hydrogen production activity and the hydrogen production rate reaches 6254μmol/(g·h)at pH=9.At the same time,NSCQDs synergy Co-MOF/CN composites have good stability.After four cycles of hydrogen production,the performance remains relatively stable.The tran sient photocurrent response and Nyquist plot experimental results further demonstrate the improvement of carrier separation efficiency in composite catalysts.The semiconductor type(n-type semico nductor)of the single-phase catalyst was determined by the Mott-Schottky test,and the band structure was analyzed.The conductive and valence bands of CN are-0.99 and 1.72 eV,respectively,and the conduction and valence bands of Co-MOF are-1.85 and 1.33 eV,respectively.Th e mechanism of the photocatalytic reaction can be inferred,that is,Z-type heterojunction is formed between CN an d Co-MOF,and NSCQDs was used as cocatalyst. 展开更多
关键词 nitrogen and sulfur co-doped Coal-based carbon quantum dots Co-MOF CN Photocatalytic hydrogen evolution Rare earths
原文传递
Visible light induced photodegradation of organic pollutants on nitrogen and fluorine co-doped TiO_2 photocatalyst 被引量:19
6
作者 WANGZheng-peng XUJun CAIWei-min ZHOUBao-xue HEZheng-guang CAIChun-guang HONGXiao-ting 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第1期76-80,共5页
The nitrogen and fluorine co doped TiO 2 polycrystalline powder was synthesized by calcinations of the hydrolysis product of tetra butyl titanate with ammonium fluoride. Nitrogen and fluorine co doping causes the abso... The nitrogen and fluorine co doped TiO 2 polycrystalline powder was synthesized by calcinations of the hydrolysis product of tetra butyl titanate with ammonium fluoride. Nitrogen and fluorine co doping causes the absorption edge of TiO 2 to shift to a lower energy region. The photocatalytic activity of co doped TiO 2 with anatase phases was found to be 2 4 times higher than that of the commercial TiO 2 photocatalyst Degussa P25 for phenol decomposition under visible light irradiation. The co doped TiO 2 powders only contain anatase phases even at 1000℃. Apparently, ammonium fluoride added retarded phase transformation of the TiO 2 powders from anatase to rutile. The substitutional fluorine and interstitial nitrogen atoms in co doped TiO 2 polycrystalline powder were responsible for the vis light response and caused the absorption edge of TiO 2 to shift to a lower energy region. 展开更多
关键词 PHOTOCATALYST visible light nitrogen and fluorine co-doped PHENOL band gap
下载PDF
Effect of Nitrogen and Sulfur Supply on Glucosinolates in Brassica campestris ssp.chinensis 被引量:10
7
作者 CHEN Xin-juan ZHU Zhu-jun NI Xiao-lei QIAN Qiong-qiu 《Agricultural Sciences in China》 CAS CSCD 2006年第8期603-608,共6页
Glucosinolates (GSs) are a group of plant secondary metabolites containing abundant nitrogen (N) and sulfur (S) mainly in Brassica and have the beneficial effects on human health including anti-carcinogenic, cho... Glucosinolates (GSs) are a group of plant secondary metabolites containing abundant nitrogen (N) and sulfur (S) mainly in Brassica and have the beneficial effects on human health including anti-carcinogenic, cholesterol-reducing and other pharmacological effects. The objective of this study was to investigate the effect of different concentrations of N (5, 10, and 20 mmol L-a, denoted by N5, N10 and N20) and S (0,5, 1, and 2 mmol L^-1, denoted by S0.5, S1 and S2) on the yield and GSs in pakchoi (Brassica campestris L. ssp. chinensis var. communis) in hydroponics. Results showed that N10 and N20 significantly enhanced the yield compared with N5, however, N20 had a negative effect relative to N10. Only with N10 and N20 low S supply (S0.5) reduced the yield. The concentrations of aliphatic GSs, aromatic GS and total GSs were enhanced by N5 and indolyl GSs were enhanced by N20. S2 enhanced the concentration of individual GS and total GSs. The concentrations of indolyl GSs were maximized in N20S2 treatment, whereas the highest concentrations of aliphatic GSs, aromatic GS and total GSs were found in N5S2 treatment. Effects of N and S on aliphatic GSs were higher than on indolyl GSs. The results suggest that the accumulation of aliphatic GSs and aromatic GS could be enhanced by low N and high S and restricted by high N while that of indolyl GSs could be enhanced by high N and high S. 展开更多
关键词 GLUCOSINOLATE nitrogen sulfur Brassica campestris L. ssp. chinensis var. communis
下载PDF
Influence of nitrogen and sulfur fertilization on quality of canola(Brassica napus L.) under rainfed conditions 被引量:4
8
作者 AHMAD G. JAN A. +2 位作者 ARIF M. JAN M.T. KHATTAK R.A. 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2007年第10期731-737,共7页
Field experiments were conducted at Cereal Crops Research Institute, Pirsabak, Nowshera, Pakistan, during winter 2003~2004 and 2004~2005 to evaluate the effect of nitrogen and sulfur levels and methods of nitrogen app... Field experiments were conducted at Cereal Crops Research Institute, Pirsabak, Nowshera, Pakistan, during winter 2003~2004 and 2004~2005 to evaluate the effect of nitrogen and sulfur levels and methods of nitrogen application on canola (Brassica napus L. cv. Bulbul-98) under rainfed conditions. Four levels of S (0, 10, 20, and 30 kg/ha) and three levels of N (40, 60, and 80 kg/ha) and a control treatment with both nutrients at zero level were included in the experiments. Sulfur levels were applied at sowing while N levels were applied by three methods (100% soil application, 90% soil+10% foliar application, and 80% soil +20% foliar application). The experiments were laid out in randomized complete block (RCB) design having four replications. Oil content increased significantly up to 20 kg S/ha but further increase in S level did not enhance oil content. Glucosinolate content increased from 13.6 to 24.6 μmol/g as S rate was increased from 0 to 30 kg/ha. Protein content increased from 22.4% to 23.2% as S rate was increased from 0 to 20 kg/ha. Oil content responded negatively to the increasing N levels. The highest N level resulted in the highest values for protein (23.5%) and glucosinolate (19.9 μmol/g) contents. Methods of N application had no significant impact on any parameters under study. 展开更多
关键词 CANOLA nitrogen (N) sulfur (S) Methods of N application QUALITY
下载PDF
Comparison of Carbon, Nitrogen, and Sulfur in Coastal Wetlands Dominated by Native and Invasive Plants in the Yancheng National Nature Reserve, China 被引量:4
9
作者 WAN Siang LIU Xingtu +1 位作者 MOU Xiaojie ZHAO Yongqiang 《Chinese Geographical Science》 SCIE CSCD 2020年第2期202-216,共15页
The rapid invasion of the plant Spartina alterniflora in coastal wetland areas can threaten the capacity of their soils to store carbon(C),nitrogen(N),and sulfur(S).In this study,we investigated the spatial and tempor... The rapid invasion of the plant Spartina alterniflora in coastal wetland areas can threaten the capacity of their soils to store carbon(C),nitrogen(N),and sulfur(S).In this study,we investigated the spatial and temporal distribution patterns of C,N and S of both soil and(native and invasive)plants in four typical coastal wetlands in the core area of the Yancheng National Nature Reserve,China.The results show that the invasive S.alterniflora greatly influenced soil properties and increased soil C,N and S storage capacity:the stock(mean±standard error)of soil organic carbon(SOC,(3.56±0.36)kg/m^3),total nitrogen(TN,(0.43±0.02)kg/m^3),and total sulfur(TS,(0.69±0.11)kg/m^3)in the S.alterniflora marsh exceeded those in the adjacent bare mudflat,Suaeda salsa marsh,and Phragmites australis marsh.Because of its greater biomass,plant C((1193.7±133.6)g/m^2),N((18.8±2.4)g/m^2),and S((9.4±1.5)g/m^2)storage of S.alterniflora was also larger than those of co-occurring native plants.More biogenic elements circulated in the soil-plant system of the S.alterniflora marsh,and their spatial and temporal distribution patterns were also changed by the S.alterniflora invasion.Soil properties changed by S.alterniflora’s invasion thereby indirectly affected the accumulation of soil C,N and S in this wetland ecosystem.The SOC,TN,and TS contents were positively correlated with soil electrical conductivity and moisture,but negatively correlated with the pH and bulk density of soil.Together,these results indicate that S.alterniflora invasion altered ecosystem processes,resulted in changes in net primary production and litter decomposition,and increased the soil C,N and S storage capacity in the invaded ecosystems in comparison to those with native tallgrass communities in the coastal wetlands of East China. 展开更多
关键词 coastal WETLAND plant invasion SPARTINA alterniflora SOIL CARBON SOIL nitrogen SOIL sulfur
下载PDF
A DFT Study on the Adsorption Behavior of Sulfur and Nitrogen Compounds on the NiMoS Phase 被引量:5
10
作者 Wang Wei Li Huifeng +3 位作者 Han Wei Zhang Le Zhao Xiaoguang Li Mingfeng 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2020年第1期40-48,共9页
The density functional theory(DFT)with dispersion corrections was used to study the adsorption behavior of sulfur and nitrogen compounds on NiMoS phase.The calculations were performed based on a hexagonal cluster mode... The density functional theory(DFT)with dispersion corrections was used to study the adsorption behavior of sulfur and nitrogen compounds on NiMoS phase.The calculations were performed based on a hexagonal cluster model including the Mo-edge,the S-edge,and the rarely mentioned corner site.It was found that the adsorption of quinoline is stronger than that of benzothiophene at all the active sites.It indicated the origin of the inhibition effect of nitrogen compounds on HDS.And Ni atoms located around Mo-edge and corner site exhibit higher adsorption selectivity to sulfur compounds than the nitrogen ones.It means that the increase in Ni-promoting effect may weaken the inhibition effect of nitrogen compounds on HDS. 展开更多
关键词 HYDRODEsulfurIZATION NiMoS sulfur COMPOUNDS nitrogen COMPOUNDS 4 6-dimethyldibenzothiophene ADSORPTION
下载PDF
Ecological stoichiometry of nitrogen, phosphorous, and sulfur in China's forests 被引量:3
11
作者 Yuntao Wu Hongyan Liu +4 位作者 Zhaoliang Song Xiaomin Yang Zichuan Li Qian Hao Linan Liu 《Acta Geochimica》 EI CAS CSCD 2017年第3期525-530,共6页
Much attention has been paid to the stoichiometry of carbon(C), nitrogen(N), and phosphorus(P) because of their significance for plant growth and climate change. However, other nutrients, such as sulfur(S), are often ... Much attention has been paid to the stoichiometry of carbon(C), nitrogen(N), and phosphorus(P) because of their significance for plant growth and climate change. However, other nutrients, such as sulfur(S), are often ignored. In this study, we analyzed the stoichiometry of N, P, and S in leaves of 348 plant species in China's forests. The results show higher N content and higher molar ratios of N/P and P/S in Angiospermae than in Gymnospermae. At the family level, Ulmaceae absorbed more N and P from soils than other families, and Cupressaceae absorbed more S than other families. In addition,except for bamboo and other tropical forests, leaf N and P content of China's forests generally increased from low to middle latitudes and then slightly decreased or plateaued at high latitudes. Plant ecotypes, taxonomic groups, environmental conditions, atmospheric S precipitation, and soil-available N and P significantly affected the distribution and stoichiometry of leaf N, P, and S in China's forests.Our study indicates that China's forests are likely limited by P and S deficiencies which may increase in the future. 展开更多
关键词 中国森林 化学计量学 热带森林 生态型 氮磷 化学计量比 土壤速效氮
下载PDF
Hierarchically porous nitrogen-doped carbon as cathode for lithium–sulfur batteries 被引量:9
12
作者 Rui Wu Siguo Chen +5 位作者 Jianghai Deng Xun Huang Yujie Song Ruiyi Gan Xiaoju Wan Zidong Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第6期1661-1667,共7页
Porous nitrogen-doped carbon is an especially promising material energy storage due to its excellentconductivity, stable physicochemical properties, easy processability, controllable porosity and low price.Herein, we ... Porous nitrogen-doped carbon is an especially promising material energy storage due to its excellentconductivity, stable physicochemical properties, easy processability, controllable porosity and low price.Herein, we reported a novel well-designed hierarchically porous nitrogen-doped carbon (HPNC) via acombination of salt template (ZnC12) and hard template (SiO2) as sulfur host for lithium-sulfur batter-ies. The low-melting ZnC12 is boiled off and leaves behind micropores and small size mesopores duringpyrolysis process, while the silica spheres are removed by acid leaching to generate interconnected 3Dnetwork of macropores. The HPNC-S electrode exhibits an initial specific capacity of 1355 mAh g^-l at 0.IC (IC= 1675 mAh g^-1 ), a high-rate capability of 623 mAh g-l at 2 C, and a small decay of 0.13% per cycleover 300 cycles at 0.2 C. This excellent rate capability and remarkable long-term cyclability of the HPNC-Selectrode are attributed to its hierarchical porous structures for confining the soluble lithium polysulfideas well as the nitrogen doping for high absorbability of lithium polysulfide. 展开更多
关键词 Hierarchically porous structure nitrogen-doped carbon Lithium-sulfur batteries
下载PDF
A new sulfur-doped source and synergistic effect with nitrogen for carbon dots produced from glucose
13
作者 付丽歌 殷月红 +5 位作者 曹国华 武苹苹 汪舰 闫玲玲 张宝庆 李明 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第12期345-351,共7页
The nitrogen and sulfur co-doped carbon dots(N, S-CDs) with increased luminescence were synthesized by a hydrothermal process in one green pot by using glucose, and a new sulfur-doping source of sodium sulfite was dev... The nitrogen and sulfur co-doped carbon dots(N, S-CDs) with increased luminescence were synthesized by a hydrothermal process in one green pot by using glucose, and a new sulfur-doping source of sodium sulfite was developed.The synergistic effect of the N and S groups was well discussed through the structure analysis of Fourier transform infrared spectra and x-ray photoelectron spectra. The surface states of N, S-CDs embody more complicated functional groups, and S element exists as –SSO3, –C–SO3, and SO-42groups due to the introduction of sodium sulfite. The sulfur-containing groups passivate the surface of the CDs, and the relatively high sulfur groups may reduce the non-radiation centers. The fluorescence is affected by the hydroxyl group of the solvent. The quenching of Fe3+ ion to fluorescence and the sensitivity of fluorescence to p H were also investigated. 展开更多
关键词 carbon dots GLUCOSE sodium sulfite nitrogen and sulfur codoping synergistic effect
下载PDF
The Role of Nitrogen and Sulfur Interaction in Maize Quality(Zea mays L.)
14
作者 XIE Rui-zhi, DONG Shu-ting, HU Chang-hao and WANG Kong-junAgronomy College , Shandong Agricultural University, Tai’an 271018 , P.R.China 《Agricultural Sciences in China》 CAS CSCD 2003年第5期527-532,共6页
Two hybrids of maize with different responses to sulfur were used in the pool experiment. The effects of nitrogen and sulfur on the grain quality of maize were evaluated. The results indicated that grain quality chang... Two hybrids of maize with different responses to sulfur were used in the pool experiment. The effects of nitrogen and sulfur on the grain quality of maize were evaluated. The results indicated that grain quality changed with the nutrition supply. The contents of proteins, amino acids, soluble sugar, crude fat, oil, N, P, K, S and microelements in the grain were improved due to nitrogen and sulfur fertilizer addition. But the effects of nitrogen and sulfur were not the same. Nitrogen increased starch content of the grain, but S decreased the content. Both N and S enhanced the proportion of amylopectin in starch. Sulfur nutrition significantly improved the grain quality of maize when a large amount of nitrogen was used together. Both hybrids had similar response to N and S treatments. 展开更多
关键词 Maize (Zea mays L.) Grain quality nitrogen sulfur
下载PDF
Photocatalytic Destruction of Nitrogen Monoxide over La^(3+) and N Co-doped SrTiO_3 Powders under Visible Light Irradiation
15
作者 王金淑 马淑云 王国红 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第5期591-595,共5页
Lanthanum and nitrogen co-doped SrTiO_3 was prepared by a mechanochemical reaction using SrTiO_3, urea and La_2O_3 as the raw materials. The samples were characterized by X-ray diffraction, X-ray photoelectron spectro... Lanthanum and nitrogen co-doped SrTiO_3 was prepared by a mechanochemical reaction using SrTiO_3, urea and La_2O_3 as the raw materials. The samples were characterized by X-ray diffraction, X-ray photoelectron spectrometer, transmission electron microscopy, and nitrogen adsorption-desorption isotherm measurements. Lanthanum doping could increase the doping content of nitrogen in the sample. The sample prepared with 0.2 mol% La_2O_3, 22 mol% urea and 77.8 mol% SrTiO_3 by mechanochemical reaction, which has nearly the same nitrogen and lanthanum doping fractions, exhibited high photocatalytic activities. Under the irradiation of light with wavelength larger than 400, and 290 nm, the photocatalytic activity of nitrogen and lanthanum co-doped SrTiO_3 were 2.6 and 2 times greater than that of pure SrTiO_3. 展开更多
关键词 LANTHANUM nitrogen co-doping SrTiO_3 visible active PHOTOCATALYST rare earths
下载PDF
Effective exposure of nitrogen heteroatoms in 3D porous graphene framework for oxygen reduction reaction and lithium–sulfur batteries 被引量:12
16
作者 Jia-Le Shi Cheng Tang +2 位作者 Jia-Qi Huang Wancheng Zhu Qiang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第1期167-175,共9页
The introduction of nitrogen heteroatoms into carbon materials is a facile and efficient strategy to regulate their reactivities and facilitate their potential applications in energy conversion and storage. However,mo... The introduction of nitrogen heteroatoms into carbon materials is a facile and efficient strategy to regulate their reactivities and facilitate their potential applications in energy conversion and storage. However,most of nitrogen heteroatoms are doped into the bulk phase of carbon without site selectivity, which significantly reduces the contacts of feedstocks with the active dopants in a conductive scaffold. Herein we proposed the chemical vapor deposition of a nitrogen-doped graphene skin on the 3D porous graphene framework and donated the carbon/carbon composite as surface N-doped grapheme(SNG). In contrast with routine N-doped graphene framework(NGF) with bulk distribution of N heteroatoms, the SNG renders a high surface N content of 1.81 at%, enhanced electrical conductivity of 31 S cm^(-1), a large surface area of 1531 m^2 g^(-1), a low defect density with a low I_D/I_G ratio of 1.55 calculated from Raman spectrum, and a high oxidation peak of 532.7 ℃ in oxygen atmosphere. The selective distribution of N heteroatoms on the surface of SNG affords the effective exposure of active sites at the interfaces of the electrode/electrolyte, so that more N heteroatoms are able to contact with oxygen feedstocks in oxygen reduction reaction or serve as polysulfide anchoring sites to retard the shuttle of polysulfides in a lithium–sulfur battery. This work opens a fresh viewpoint on the manipulation of active site distribution in a conductive scaffolds for multi-electron redox reaction based energy conversion and storage. 展开更多
关键词 nitrogen-doped graphene Chemical vapor deposition Oxygen reduction reaction Lithium-sulfur battery Porous carbon materials Exposure of active sites
下载PDF
Soybean Nodulation and Plant Response to Nitrogen and Sulfur Fertilization in the Northern US
17
作者 Benjamin D. Cigelske Hans Kandel Thomas M. DeSutter 《Agricultural Sciences》 2020年第6期592-607,共16页
Soybean [<em>Glycine max</em> (L.) Merrill] seed yields in the northern United States may increase with the application of fertilizers;however Nitrogen (N) may decrease root nodulation. This study was cond... Soybean [<em>Glycine max</em> (L.) Merrill] seed yields in the northern United States may increase with the application of fertilizers;however Nitrogen (N) may decrease root nodulation. This study was conducted to understand the impact of N and sulfur (S) fertilization on soybean nodulation, plant, shoot and root biomass. Two cultivars were planted in experiments across ten site-years during 2015-2016. Plant observations took place at the V4 and R4 soybean growth stages. There were 41% more nodules per plant at R4 compared to V4 (38.3 vs 27.2 nodules, respectively). Cultivars responded differently to N and S fertilizer. The nodules per plant between the cultivars (30.3 vs 24.4) were different as well as the percent medium and large-sized nodules, which indicates the need to evaluate additional genotypes. Adding N decreased root nodulation (from 31.8 to 23.7 nodules per plant) and decreased nodule size but had no effect on plant, shoot or root mass. Averaged across N rates total plant mass was 2.26 and 11.36 g per plant at V4 and R4, respectively. Shoot mass, average across N rates was 1.77 and 9.65 g per plant at V4 and R4, respectively, and root mass, average across N rates was 0.49 and 1.71 g per plant at V4 and R4, respectively. Sulfur did not have an effect on nodules per plant but increased the percent medium size nodules at the R4 observation. There was no N by S interaction observed for nodule number, size of the nodules, and plant, root and shoot mass. As cultivars differed in their nodulation response to N and S, additional research would be helpful to screen other cultivars. 展开更多
关键词 SOYBEAN nitrogen sulfur NODULATION Shoot Mass Root Mass
下载PDF
Removal of Nitrogen Dioxide and Sulfur Dioxide from Air Streams by Absorption in Urea Solution
18
作者 Mahmood M. Barbooti Neran K. Ibraheem Awni H. Ankosh 《Journal of Environmental Protection》 2011年第2期175-185,共11页
The study focuses on the absorption rates of NO2, SO2 and a mixture of these two acid gases into urea solution in packed bed column. The absorption rate was studied as a function of absorbent temperature, urea concent... The study focuses on the absorption rates of NO2, SO2 and a mixture of these two acid gases into urea solution in packed bed column. The absorption rate was studied as a function of absorbent temperature, urea concentration and acid gas concentration. The influence of liquid temperature between 10 - 40?C, urea concentration between 0.1 - 0.5 M and acid gas concentration NO2 between 100 - 1000 ppm (191 - 1910 mg/m3), SO2 between 500 - 2500 ppm (1310 - 6530 mg/m3) were investigated. The mass gas flow rate of 20.646 (kg/m2.min) at 25?C and the absorption rate were determined by measuring the NO2 and SO2 concentrations in the inlet and outlet streams of the absorptioncolumn. The absorption rate of SO2 increases with the decrease of temperature of absorbent (urea solution) and with the increase of the urea concentration. The presence of NO2 in the effluent gas stream lowers the absorption rate of SO2 in urea solution due to the fast reaction of NO2 with urea as compared with SO2. The absorption rate of NO2 decreases as the urea concentration exceeds 0.4 mol/l and for NO2 gas concentration of 100 ppm due to the decrease the diffusivity of the gas. The experimental data were analyzed using dimensionless analysis to find the correlation of mass transfer coefficient in the packed column Sh (H / dp)1.2 = 4.19*10–2 *(G' dp / μg)0.87 (μg / ρg DAB)0.60 The results confirmed the hypothesis that the absorption is accompanied with chemical reaction. Also it is found the increasing the temperature of absorbent solution the absorption rate of two gases is decreases. The mass transfer coefficient models are in good agreements with the Kramer’s equation. 展开更多
关键词 sulfur Dioxide REMOVAL nitrogen Dioxide REMOVAL COLUMN ABSORPTION REMOVAL of Acid Gases AIR Pollution Prevention
下载PDF
Fire Self-Extinguishing Cotton Fabric: Development of Piperazine Derivatives Containing Phosphorous-Sulfur-Nitrogen and Their Flame Retardant and Thermal Behaviors 被引量:1
19
作者 Thach-Mien Nguyen SeChin Chang +1 位作者 Brian Condon Jade Smith 《Materials Sciences and Applications》 2014年第11期789-802,共14页
Recent studies have shown interest in flame retardants containing phosphorus, nitrogen and sulfur a combination small molecule with a promising new approach in preparing an important class of flame retardant materials... Recent studies have shown interest in flame retardants containing phosphorus, nitrogen and sulfur a combination small molecule with a promising new approach in preparing an important class of flame retardant materials. Tetraethyl piperazine-1,4-diyldiphosphonate (TEPP) and O,O,O’,O’- tetramethyl piperazine-1,4-diyldiphosphonothioate (TMPT), based on Piperazine derivatives, were prepared successfully and their structures were proved by means of 1H, 13C and 31P NMR. Cotton twill fabric was treated with both compounds to provide different add-on levels. Thermogravimetric Analysis (TGA), microscale combustion calorimeter (MCC), vertical and 45° flame test and limiting oxygen index (LOI) were performed on the treated cotton fabrics and showed promising results. When the treated twill fabrics (5 wt% - 7 wt% add-ons) were tested using the vertical flammability test (ASTMD6413-11), we observed that the ignited fabrics self extinguished and left behind a streak of char. Limiting oxygen index (LOI, ASTM 2863-09) was utilized to determine the effectiveness of the flame retardant on the treated fabrics. LOI values increased from 18 vol% oxygen in nitrogen for untreated twill fabric to a maximum of 30 vol% for the highest add-on of twill. Furthermore, Scanning Electron Microscope (SEM), Attenuated Total Reflection-Infrared (ATR-IR), and Thermogravimetric Analysis-Fourier Transform Infrared (TGA-FTIR) spectroscopy were employed to characterize the chemical structure on the treated fabrics, as well as, the surface morphology of char areas of treated and untreated fabrics. Additionally, analysis of the release gas products by TGA-FTIR shows some distinctive detail in the degradation of the treated fabrics during the burning process. 展开更多
关键词 Flame Retardant Cotton Twill Fabric Phosphorus-nitrogen-sulfur THERMOGRAVIMETRIC Analysis-Fourier Transform Infrared (TGA-FTIR) MICROSCALE Combustion CALORIMETER (MCC)
下载PDF
Simultaneous nitrification and autotrophic denitrification in fluidized bed reactors using pyrite and elemental sulfur as electron donors
20
作者 Maria F.Carboni Sonia Arriaga Piet N.L.Lens 《Water Science and Engineering》 EI CAS CSCD 2023年第2期143-153,共11页
In this study, simultaneous nitrification and autotrophic denitrification (SNAD) with either elemental sulfur or pyrite were investigated in fluidized bed reactors in mesophilic conditions. The reactor performance was... In this study, simultaneous nitrification and autotrophic denitrification (SNAD) with either elemental sulfur or pyrite were investigated in fluidized bed reactors in mesophilic conditions. The reactor performance was evaluated at different ammonium (12-40 mg/L of NH4+-N), nitrate (35-45 mg/L of NO3--N), and dissolved oxygen (DO) (0.1-1.5 mg/L) concentrations, with a hydraulic retention time of 12 h. The pyrite reactor supported the SNAD process with a maximum nitrogen removal efficiency of 139.5 mg/(L·d) when the DO concentration was in the range of 0.8-1.5 mg/L. This range, however, limited the denitrification efficiency of the reactor, which decreased from 90.0% ± 5.3% in phases II-V to 67.9% ± 7.2% in phases VI and VII. Sulfate precipitated as iron sulfate (FeSO4/Fe2(SO4)3) and sodium sulfate (Na2SO4) minerals during the experiment. The sulfur reactor did not respond well to nitrification with a low and unstable ammonium removal efficiency, while denitrification occurred with a nitrate removal efficiency of 97.8%. In the pyrite system, the nitrifying bacterium Nitrosomonas sp. was present, and its relative abundance increased from 0.1% to 1.1%, while the autotrophic denitrifying genera Terrimonas, Ferruginibacter, and Denitratimonas dominated the community. Thiobacillus, Sulfurovum, and Trichlorobacter were the most abundant genera in the sulfur reactor during the entire experiment. 展开更多
关键词 PYRITE Elemental sulfur Simultaneous nitrification and denitrification nitrogen removal 16S rRNA
下载PDF
上一页 1 2 47 下一页 到第
使用帮助 返回顶部