Many nitrogen-containing aromatic compounds (NACs), such as nitrobenzene (NB), 4-nitrophenol (4-NP), aniline (AN), and 2,4-dinitrophenol (2,4-DNP), are environmentally hazardous, and their removal from conta...Many nitrogen-containing aromatic compounds (NACs), such as nitrobenzene (NB), 4-nitrophenol (4-NP), aniline (AN), and 2,4-dinitrophenol (2,4-DNP), are environmentally hazardous, and their removal from contaminated water is one of the main challenges facing wastewater treatment plants. In this study, synthetic wastewater containing NB, 4-NP, 2,4-DNP, and AN at concentrations ranging from 50 to 180 mg/L was fed into a sequencing batch reactor (SBR). Analyses of the SBR system indicated that it simultaneously removed more than 99% of the NACs at loading rates of 0.36 kg NB/(m^3·d), 0.3 kg 4-NP/(m^3·d), 0.25 kg AN/(m^3·d), and 0.1 kg 2,4-DNP/(m^3·d). Bacterial groups of Bacteriodetes, Candidate division TM7, α-Proteobacteria, and β-Proteobacteria were dominant in the clone libraries of 16S rRNA genes retrieved from the microbial communities in the SBR system. "Cycle tests" designed to alter feeding and aeration parameters of the SBR system demonstrated that the resident microbial biome of the SBR system responded rapidly to changing conditions. Consumption of O2 was concomitant with the apparent mineralization of NACs. Aromatic ring-cleaving dioxygenase activities suggested that (1) AN and NB were degraded via catechol 2,3-dioxygenase; (2) 4-NP was degraded via 1,2,4-benzentriol 1,2-dioxygenase; and (3) 2,4-DNP was degraded via an unresolved pathway.展开更多
The adsorptive denitrogenation from fuels over three metal-organic frameworks(MIL-96(Al),MIL-53(Al)and MIL-101(Cr))was studied by batch adsorption experiments.Four nitrogen-containing compounds(NCCs)pyridine,pyrrole,q...The adsorptive denitrogenation from fuels over three metal-organic frameworks(MIL-96(Al),MIL-53(Al)and MIL-101(Cr))was studied by batch adsorption experiments.Four nitrogen-containing compounds(NCCs)pyridine,pyrrole,quinoline and indole were used as model NCCs in fuels to study the adsorption mechanism.The physicochemical properties of the adsorbents were characterized by XRD,N2physical adsorption,FT-IR spectrum and Hammett indicator method.The metal-organic frameworks(MOFs),especially the MIL-101(Cr)containing Lewis acid sites as well as high specific surface area,can adsorb large quantities of NCCs from fuels.In addition,the adsorptive capacity over MIL-101(Cr)will be different for NCCs with different basicity.The stronger basicity of the NCC is,the more it can be absorbed over MIL-101(Cr).Furthermore,pore size and shape also affect the adsorption capacity for a given adsorbate,which can be proved by the adsorption over MIL-53(Al)and MIL-96(Al).The pseudo-second-order kinetic model and Langmuir equation can be used to describe kinetics and thermodynamics of the adsorption process,respectively.Finally,the regeneration of the used adsorbent has been conducted successfully by just washing it with ethanol.展开更多
The DFT-based (density fimctional theory) ab initio quantum mechanical methods have been applied to study the basicity of the nitrogen-containing compounds in petroleum. The results have indicated that there is a di...The DFT-based (density fimctional theory) ab initio quantum mechanical methods have been applied to study the basicity of the nitrogen-containing compounds in petroleum. The results have indicated that there is a distinct relationship between the protonation energy of nitrogen-containing compounds and their basicity. The more negative the protonation energy, the stronger the basicity is. It has been also found that aliphatic amines are more basic than pyridines or aromatic amines, and all these compounds are more basic than pyrroles. The addition of the aromatic rings can influence the basicity of anilines, while the 5- and 6-membered heterocyclic compounds function differently. The solvent properties may affect the basicity of these nitrogen-containing compounds.展开更多
To elucidate the effects of Fe_(2)O_(3) on nitrogen transformation during sludge pyrolysis,thermogravimetry coupled with mass spectrometry(TG-MS)was used to investigate the influences of Fe_(2)O_(3) on the pyrolysis c...To elucidate the effects of Fe_(2)O_(3) on nitrogen transformation during sludge pyrolysis,thermogravimetry coupled with mass spectrometry(TG-MS)was used to investigate the influences of Fe_(2)O_(3) on the pyrolysis characteristics and the release of important gaseous NO_(x) precursors such as HCN and NH_(3) during pyrolysis of three typical amino acids in urban sludge.The results show that after Fe_(2)O_(3) addition,the total weight loss rate of the three amino acids and the initial decomposition temperature of proline are reduced.The release amounts of NH_(3),HCN,CH_(3)CN,and HNCO from these three representative amino acids—glumatic,arginine,and proline,decrease in the order of arginine,glutamic,proline.The generation of Fe-N complexes,reduces the generation of NH_(3),HCN,CH_(3)CN,and HNCO while the catalysis effects of Fe_(2)O_(3) on the formation of H and H2 play a promoting role in the generation of NH_(3),HCN,CH_(3)CN,and HNCO.The results would provide an experimental and theoretical basis for subsequent research on the NOx precursor formation mechanisms during pyrolysis or combustion of Fe-containing sludge or sludge with additives containing Fe.展开更多
Amino acids are important nitrogen-containing chemicals that have a variety of applications.Currently,fermentation is the widely employed method to produce amino acids;however,the products are mostly limited to natura...Amino acids are important nitrogen-containing chemicals that have a variety of applications.Currently,fermentation is the widely employed method to produce amino acids;however,the products are mostly limited to natural amino acids in the L-configuration.Catalytic synthesis is an alternative approach for the synthesis of amino acids with different types and configurations,where the use of renewable biomass-based feedstocks is highly attractive.To date,several lignocellulose and triacylglycerol-derived intermediates,typicallyα-keto acids andα-hydroxyl acids,have been transformed into amino acids via the amination reaction in the presence of additional nitrogen sources(i.e.,NH3·H2O).Making full use of inherent nitrogen in biomass(i.e.,chitin and protein)to produce amino acids avoids the use of extra nitrogen sources and meets the requirements of green chemistry,which is attracting increasing attention.In this review,we summarize different chemical-catalytic systems for the transformation of biomass to amino acids.An outlook on the challenges and opportunities for more effective production of amino acids from biomass by catalytic methods is provided.展开更多
To characterize how the speed and load of a medium-duty diesel engine affected the organic compounds in diesel particle matter(PM) below 1 μm, four driving conditions were examined. At all four driving conditions, ...To characterize how the speed and load of a medium-duty diesel engine affected the organic compounds in diesel particle matter(PM) below 1 μm, four driving conditions were examined. At all four driving conditions, concentration of identifiable organic compounds in PM ultrafine(34–94 nm) and accumulation(94–1000 nm) modes ranged from 2.9 to 5.7 μg/m3 and 9.5 to 16.4 μg/m3, respectively. As a function of driving conditions, the non-oxygencontaining organics exhibited a reversed concentration trend to the oxygen-containing organics. The identified organic compounds were classified into eleven classes: alkanes,alkenes, alkynes, aromatic hydrocarbons, carboxylic acids, esters, ketones, alcohols, ethers,nitrogen-containing compounds, and sulfur-containing compounds. At all driving conditions,alkane class consistently showed the highest concentration(8.3 to 18.0 μg/m3) followed by carboxylic acid, esters, ketones and alcohols. Twelve polycyclic aromatic hydrocarbons(PAHs)were identified with a total concentration ranging from 37.9 to 174.8 ng/m3. In addition, nine nitrogen-containing polycyclic aromatic compounds(NPACs) were identified with a total concentration ranging from 7.0 to 10.3 ng/m3. The most abundant PAH(phenanthrene)and NPACs(7,8-benzoquinoline and 3-nitrophenanthrene) comprise a similar molecular(3 aromatic-ring) structure under the highest engine speed and engine load.展开更多
Visible-light photoredox catalysis is a powerful and attractive strategy for organic molecule activation and new reaction design owing to its environmental-friendly characteristics and unique catalytic mechanisms,and ...Visible-light photoredox catalysis is a powerful and attractive strategy for organic molecule activation and new reaction design owing to its environmental-friendly characteristics and unique catalytic mechanisms,and has found wide applications in organic synthesis.This catalytic strategy enables controllable generation of diverse nitrogen-centered radicals(NCRs)under mild conditions,providing access to construction of diverse nitrogencontaining compounds.In this review,we critically illustrate the recent advances in the field of visible-light photoredox-catalyzed cyclization of nitrogen-centered radicals,based on the different radical precursors and activation modes.Wherever possible,particular emphasis is also put on working models and synthetic applications.展开更多
基金Project supported by the Pilot Project of Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-G-009)the National Natural Science Foundation of China (No. 20577067, 30230010).
文摘Many nitrogen-containing aromatic compounds (NACs), such as nitrobenzene (NB), 4-nitrophenol (4-NP), aniline (AN), and 2,4-dinitrophenol (2,4-DNP), are environmentally hazardous, and their removal from contaminated water is one of the main challenges facing wastewater treatment plants. In this study, synthetic wastewater containing NB, 4-NP, 2,4-DNP, and AN at concentrations ranging from 50 to 180 mg/L was fed into a sequencing batch reactor (SBR). Analyses of the SBR system indicated that it simultaneously removed more than 99% of the NACs at loading rates of 0.36 kg NB/(m^3·d), 0.3 kg 4-NP/(m^3·d), 0.25 kg AN/(m^3·d), and 0.1 kg 2,4-DNP/(m^3·d). Bacterial groups of Bacteriodetes, Candidate division TM7, α-Proteobacteria, and β-Proteobacteria were dominant in the clone libraries of 16S rRNA genes retrieved from the microbial communities in the SBR system. "Cycle tests" designed to alter feeding and aeration parameters of the SBR system demonstrated that the resident microbial biome of the SBR system responded rapidly to changing conditions. Consumption of O2 was concomitant with the apparent mineralization of NACs. Aromatic ring-cleaving dioxygenase activities suggested that (1) AN and NB were degraded via catechol 2,3-dioxygenase; (2) 4-NP was degraded via 1,2,4-benzentriol 1,2-dioxygenase; and (3) 2,4-DNP was degraded via an unresolved pathway.
基金supported by the Program for New Century Excellent Talents in University (NCET-04-0270)National Basic Research Program of China (2011CB201301)
文摘The adsorptive denitrogenation from fuels over three metal-organic frameworks(MIL-96(Al),MIL-53(Al)and MIL-101(Cr))was studied by batch adsorption experiments.Four nitrogen-containing compounds(NCCs)pyridine,pyrrole,quinoline and indole were used as model NCCs in fuels to study the adsorption mechanism.The physicochemical properties of the adsorbents were characterized by XRD,N2physical adsorption,FT-IR spectrum and Hammett indicator method.The metal-organic frameworks(MOFs),especially the MIL-101(Cr)containing Lewis acid sites as well as high specific surface area,can adsorb large quantities of NCCs from fuels.In addition,the adsorptive capacity over MIL-101(Cr)will be different for NCCs with different basicity.The stronger basicity of the NCC is,the more it can be absorbed over MIL-101(Cr).Furthermore,pore size and shape also affect the adsorption capacity for a given adsorbate,which can be proved by the adsorption over MIL-53(Al)and MIL-96(Al).The pseudo-second-order kinetic model and Langmuir equation can be used to describe kinetics and thermodynamics of the adsorption process,respectively.Finally,the regeneration of the used adsorbent has been conducted successfully by just washing it with ethanol.
基金supported by the"973"project envisaged in the State Key Basic R&D Program(2006CB202505).
文摘The DFT-based (density fimctional theory) ab initio quantum mechanical methods have been applied to study the basicity of the nitrogen-containing compounds in petroleum. The results have indicated that there is a distinct relationship between the protonation energy of nitrogen-containing compounds and their basicity. The more negative the protonation energy, the stronger the basicity is. It has been also found that aliphatic amines are more basic than pyridines or aromatic amines, and all these compounds are more basic than pyrroles. The addition of the aromatic rings can influence the basicity of anilines, while the 5- and 6-membered heterocyclic compounds function differently. The solvent properties may affect the basicity of these nitrogen-containing compounds.
文摘To elucidate the effects of Fe_(2)O_(3) on nitrogen transformation during sludge pyrolysis,thermogravimetry coupled with mass spectrometry(TG-MS)was used to investigate the influences of Fe_(2)O_(3) on the pyrolysis characteristics and the release of important gaseous NO_(x) precursors such as HCN and NH_(3) during pyrolysis of three typical amino acids in urban sludge.The results show that after Fe_(2)O_(3) addition,the total weight loss rate of the three amino acids and the initial decomposition temperature of proline are reduced.The release amounts of NH_(3),HCN,CH_(3)CN,and HNCO from these three representative amino acids—glumatic,arginine,and proline,decrease in the order of arginine,glutamic,proline.The generation of Fe-N complexes,reduces the generation of NH_(3),HCN,CH_(3)CN,and HNCO while the catalysis effects of Fe_(2)O_(3) on the formation of H and H2 play a promoting role in the generation of NH_(3),HCN,CH_(3)CN,and HNCO.The results would provide an experimental and theoretical basis for subsequent research on the NOx precursor formation mechanisms during pyrolysis or combustion of Fe-containing sludge or sludge with additives containing Fe.
基金The authors gratefully acknowledge the support of Natural Science Foundation of Chongqing(Grant Nos.cstc2020jcyj-msxmX0672,cstc2020jcyj-msxmX0839)the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202000826)+1 种基金Start-up Foundation of High-level Talents(Grant No.1956037)in Chongqing Technology and Business University,and Key Disciplines of Chemical Engineering and Technology in Chongqing Colleges and Universities during the 13th Five Year Plan(Grant No.950619013)The support from HKBU(RC-SGT2/19-20/SCI/009)is also appreciated.
文摘Amino acids are important nitrogen-containing chemicals that have a variety of applications.Currently,fermentation is the widely employed method to produce amino acids;however,the products are mostly limited to natural amino acids in the L-configuration.Catalytic synthesis is an alternative approach for the synthesis of amino acids with different types and configurations,where the use of renewable biomass-based feedstocks is highly attractive.To date,several lignocellulose and triacylglycerol-derived intermediates,typicallyα-keto acids andα-hydroxyl acids,have been transformed into amino acids via the amination reaction in the presence of additional nitrogen sources(i.e.,NH3·H2O).Making full use of inherent nitrogen in biomass(i.e.,chitin and protein)to produce amino acids avoids the use of extra nitrogen sources and meets the requirements of green chemistry,which is attracting increasing attention.In this review,we summarize different chemical-catalytic systems for the transformation of biomass to amino acids.An outlook on the challenges and opportunities for more effective production of amino acids from biomass by catalytic methods is provided.
基金supported by the Transportation Pollution Research Center, National Institute of Environmental Research in the Republic of Korea and the Korean government overseas study fellowship (Program: 2003-S-20)
文摘To characterize how the speed and load of a medium-duty diesel engine affected the organic compounds in diesel particle matter(PM) below 1 μm, four driving conditions were examined. At all four driving conditions, concentration of identifiable organic compounds in PM ultrafine(34–94 nm) and accumulation(94–1000 nm) modes ranged from 2.9 to 5.7 μg/m3 and 9.5 to 16.4 μg/m3, respectively. As a function of driving conditions, the non-oxygencontaining organics exhibited a reversed concentration trend to the oxygen-containing organics. The identified organic compounds were classified into eleven classes: alkanes,alkenes, alkynes, aromatic hydrocarbons, carboxylic acids, esters, ketones, alcohols, ethers,nitrogen-containing compounds, and sulfur-containing compounds. At all driving conditions,alkane class consistently showed the highest concentration(8.3 to 18.0 μg/m3) followed by carboxylic acid, esters, ketones and alcohols. Twelve polycyclic aromatic hydrocarbons(PAHs)were identified with a total concentration ranging from 37.9 to 174.8 ng/m3. In addition, nine nitrogen-containing polycyclic aromatic compounds(NPACs) were identified with a total concentration ranging from 7.0 to 10.3 ng/m3. The most abundant PAH(phenanthrene)and NPACs(7,8-benzoquinoline and 3-nitrophenanthrene) comprise a similar molecular(3 aromatic-ring) structure under the highest engine speed and engine load.
基金The authors’works in this area have been sponsored by the National Natural Science Foundation of China(Nos.91856119,21971081,21622201,21820102003,91956201 and 21772053)the Program of Introducing Talents of Discipline to Universities of China(111 Program,No.B17019).
文摘Visible-light photoredox catalysis is a powerful and attractive strategy for organic molecule activation and new reaction design owing to its environmental-friendly characteristics and unique catalytic mechanisms,and has found wide applications in organic synthesis.This catalytic strategy enables controllable generation of diverse nitrogen-centered radicals(NCRs)under mild conditions,providing access to construction of diverse nitrogencontaining compounds.In this review,we critically illustrate the recent advances in the field of visible-light photoredox-catalyzed cyclization of nitrogen-centered radicals,based on the different radical precursors and activation modes.Wherever possible,particular emphasis is also put on working models and synthetic applications.