Microstructures determine mechanical properties of steels,but in actual steel product process it is difficult to accurately control the microstructure to meet the requirements.General microstructure characterization m...Microstructures determine mechanical properties of steels,but in actual steel product process it is difficult to accurately control the microstructure to meet the requirements.General microstructure characterization methods are time consuming and results are not rep-resentative for overall quality level as only a fraction of steel sample was selected to be examined.In this paper,a macro and micro coupled 3D model was developed for nondestructively characterization of steel microstructures.For electromagnetic signals analysis,the relative permeability value computed by the micro cellular model can be used in the macro electromagnetic sensor model.The effects of different microstructure components on the relative permeability of duplex stainless steel(grain size,phase fraction,and phase distribu-tion)were discussed.The output inductance of an electromagnetic sensor was determined by relative permeability values and can be val-idated experimentally.The findings indicate that the inductance value of an electromagnetic sensor at low frequency can distinguish dif-ferent microstructures.This method can be applied to real-time on-line characterize steel microstructures in process of steel rolling.展开更多
The effects of deformation temperature on the transformation-induced plasticity(TRIP)-aided 304L,twinning-induced plasti-city(TWIP)-assisted 316L,and highly alloyed stable 904L austenitic stainless steels were compare...The effects of deformation temperature on the transformation-induced plasticity(TRIP)-aided 304L,twinning-induced plasti-city(TWIP)-assisted 316L,and highly alloyed stable 904L austenitic stainless steels were compared for the first time to tune the mechan-ical properties,strengthening mechanisms,and strength-ductility synergy.For this purpose,the scanning electron microscopy(SEM),electron backscattered diffraction(EBSD),X-ray diffraction(XRD),tensile testing,work-hardening analysis,and thermodynamics calcu-lations were used.The induced plasticity effects led to a high temperature-dependency of work-hardening behavior in the 304L and 316L stainless steels.As the deformation temperature increased,the metastable 304L stainless steel showed the sequence of TRIP,TWIP,and weakening of the induced plasticity mechanism;while the disappearance of the TWIP effect in the 316L stainless steel was also observed.However,the solid-solution strengthening in the 904L superaustenitic stainless steel maintained the tensile properties over a wide temper-ature range,surpassing the performance of 304L and 316L stainless steels.In this regard,the dependency of the total elongation on the de-formation temperature was less pronounced for the 904L alloy due to the absence of additional plasticity mechanisms.These results re-vealed the importance of solid-solution strengthening and the associated high friction stress for superior mechanical behavior over a wide temperature range.展开更多
Duplex stainless steels(DSSs)show better corrosion resistance with higher strength than traditional austenite stainless steels in many aggressive environments,and can be welded properly with almost every welding proce...Duplex stainless steels(DSSs)show better corrosion resistance with higher strength than traditional austenite stainless steels in many aggressive environments,and can be welded properly with almost every welding processes,if proper heat input is provided.Progresses of research works on weldability of DSSs in recent years are reviewed in this paper.Balance control of ferrite/austenite phases is most important for DSSs welding.The phases balance can be controlled with filler materials,nitrogen addition in shielding gas,heat input,post weld heat treatment,and alternating magnetic field.Too high cooling rate results in not only extra ferrite,but also chromium nitride precipitation.While too low cooling rate or heating repeatedly results in precipitation of secondary austenite and intermetallic compounds.In both situations,mechanical properties and corrosion resistance of the DSS joints deteriorate.Recommended upper and lower limits of heat input and maximum interpass temperature should be observed.展开更多
Excellent weldability substantially contributes to the intrinsic quality of steels,while appropriate chemical composition plays a primary role in the essential weldability of steels.The poor weldability of ferritic st...Excellent weldability substantially contributes to the intrinsic quality of steels,while appropriate chemical composition plays a primary role in the essential weldability of steels.The poor weldability of ferritic stainless steels could be improved through modification with minor alloy elements while minimally increasing the cost.Therefore,studying the effect of minor alloy elements on the weldability of steels is of considerable importance.In this study,several steels of middle-chromium hyperpure ferritic stainless 00Cr21Ti with different Ni content(0.3%,0.5%,0.8%,and 1.0%)were developed,and their weldabilities of butt joint samples welded using the metal inert gas welding process,including the influence of welded joints on the microstructure,tensile performance,corrosion resistance,and fatigue property,were investigated.Results show that the steels with w(Ni)≥0.8%exhibit excellent mechanical properties compared with those with low-Ni content steels,further,their impact toughness at normal atmospheric temperature meets the industrial application standard and the fatigue property is similar to that of 304 austenitic stainless steel.Moreover,results show that the corrosion resistance of all the samples is almost at the same level.The results acquired in this study are supposed to be useful for the optimization of the chemical composition of stainless steels aiming to improve weldability.展开更多
Stress corrosion cracking (SCC) of stainless steels and Ni-based alloys in high temperature water coolant is one of the key problems affecting the safe operation of nuclear power plants (NPPs). The nitrogen-added ...Stress corrosion cracking (SCC) of stainless steels and Ni-based alloys in high temperature water coolant is one of the key problems affecting the safe operation of nuclear power plants (NPPs). The nitrogen-added stainless steel is a kind of possible candidate materials for mitigating SCC since reducing the carbon content and adding nitrogen to offset the loss in strength caused by the decrease in carbon content can mitigate the problem of sensitization. However, the reports of SCC of nitrogen-added stainless steels in high temperature water are few available. The effects of applied potential and sensitization treatment on the SCC of a newly developed nitrogen-containing stainless steel (SS) 316LN in high temperature water doped with chloride at 250 ℃ were studied by using slow strain rate tests (SSRTs). The SSRT results are compared with our data previously published for 316 SS without nitrogen and 304NG SS with nitrogen, and the possible mechanism affecting the SCC behaviors of the studied steels is also discussed based on SSRT and microstucture analysis results. The susceptibility to cracking of 316LN SS normally increases with increasing potential. The susceptibility to SCC of 316LN SS was less than that of 316 SS and 304NG SS. Sensitization treatment at 700℃ for 30 h showed little effect on the S CC of 316LN S S and significant effect on the S CC of 316 S S. The predominant cracking mode for the 316LN S S in both annealed state and the state after the sensitization treatment was transgranular. The presented conditions of mitigating stress corrosion cracking are some useful information for the safe use of 316LN SS in NPPs.展开更多
Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimen...Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimental environmental issues.To prevent chromium pollution,the effects of iron oxide on crystallization behavior and spatial distribution of spinel were investigated in this work.The results revealed that FeO was more conducive to the growth of spinels compared with Fe2O3 and Fe3O4.Spinels were found to be mainly distrib-uted at the top and bottom of slag.The amount of spinel phase at the bottom decreased with the increasing FeO content,while that at the top increased.The average particle size of spinel in the slag with 18wt%FeO content was 12.8μm.Meanwhile,no notable structural changes were observed with a further increase in FeO content.In other words,the spatial distribution of spinel changed when the content of iron oxide varied in the range of 8wt%to 18wt%.Finally,less spinel was found at the bottom of slag with a FeO content of 23wt%.展开更多
The grades of ultra-pure ferritic stainless steels, especially the grades used in automobile exhaust system, were reviewed. The dependence of properties on alloying elements, the refining facilities, and the mechanism...The grades of ultra-pure ferritic stainless steels, especially the grades used in automobile exhaust system, were reviewed. The dependence of properties on alloying elements, the refining facilities, and the mechanism of the reactions in steel melts were described in detail. Vacuum, strong stirring, and powder injection proved to be effective technologies in the melting of ultra-pure ferritic stainless steels. The application of the ferritic grades was also briefly introduced.展开更多
The effect of aging temperature on erosion corrosion (E-C) behavior of 17-4PH stainless steels in dilute sulphuric acid slurry containing solid particles was studied by using self-made rotating E-C apparatus. The ef...The effect of aging temperature on erosion corrosion (E-C) behavior of 17-4PH stainless steels in dilute sulphuric acid slurry containing solid particles was studied by using self-made rotating E-C apparatus. The effect of impact velocity on EC behavior of 17 4PH steels at different aging temperatures was analyzed. Surface micrographs of the specimens after E C test were observed by using scanning electron microscope (SEM). The results showed that under the condition of the same solution heat treatment, when aging temperature ranged from 400 ℃ to 610℃, the hardness reached the highest value near the temperature 460℃. The characteristics of E-C for 17-4PH stainless steels at different aging temperatures were as follows: pure erosion (wear) was dominant, corrosion was subordinate and at the same time corrosion promoted erosion. The effect of aging temperature on E-C rate of 17-4PH steels was not significant at low impact velocity, but it was found that E-C resistance of 17-4PH steels aged near 460℃ was the most excellent due to the best precipitation strengthening effect of fine and dispersed e-Cu phase. With a prerequisite of appropriate corrosion resistance, the precipitation hardening could significantly improve the E-C resistance of the materials.展开更多
Pitting corrosion and crevice corrosion behaviors of high nitrogen austenitic stainless steels (HNSS) were investigated by electrochemical and immersion testing methods in chloride solution, respectively. The chemic...Pitting corrosion and crevice corrosion behaviors of high nitrogen austenitic stainless steels (HNSS) were investigated by electrochemical and immersion testing methods in chloride solution, respectively. The chemical constitution and composition in the depth of passive films formed on HNSS were analyzed by X-ray photoelectron spectrum (XPS). HNSS has excellent pitting and crevice corrosion resistance compared to 316L stainless steel. With increasing the nitrogen content in steels, pitting potentials and critical pitting temperature (CPT) increase, and the maximum, average pit depths and average weight loss decrease. The CPT of HNSS is correlated with the alloying element content through the measure of alloying for resistance to corrosion (MARC). The MARC can be expressed as an equation of CPT=2.55MARC-29. XPS results show that HNSS exhibiting excellent corrosion resistance is attributed to the enrichment of nitrogen on the surface of passive films, which forms ammonium ions increasing the local pH value and facilitating repassivation, and the synergistic effects of molybdenum and nitrogen.展开更多
A simple and feasible method for the production of high nitrogen austenitic stainless steels involves nitrogen gas alloying and adding nitrided ferroalloys under normal atmospheric conditions. Alloying by nitrogen gas...A simple and feasible method for the production of high nitrogen austenitic stainless steels involves nitrogen gas alloying and adding nitrided ferroalloys under normal atmospheric conditions. Alloying by nitrogen gas bubbling in Fe-Cr-Mn-Mo series alloys was carried out in MoSi2 resistance furnace and air induction furnace under normal atmospheric conditions. The results showed that nitrogen alloying could be accelerated by increasing nitrogen gas flow rate, prolonging residence time of bubbles, increasing gas/molten steel interfaces, and decreasing the sulphur and oxygen contents in molten steel. Nitrogen content of 0.69% in 18Crl8Mn was obtained using air induction furnace by bubbling of nitrogen gas from porous plug. In addition, the nickel-free, high nitrogen austenitic stainless steels with sound and compact macrostructure had been produced in the laboratory using vacuum induction furnace and electroslag remelting furnace under nitrogen atmosphere by the addition of nitrided alloy with the maximum nitrogen content of 0.81%. Pores were observed in the ingots obtained by melting and casting in vacuum induction furnace with the addition of nitrided ferroalloys and under nitrogen atmosphere. After electroslag remelting of the cast ingots, they were all sound and were free of pores. The yield of nitrogen increased with the decrease of melting rate in the ESR process. Due to electroslag remelting under nitrogen atmosphere and the consequential addition of aluminum as deoxidizer to the slag, the loss of manganese decreased obviously. There existed mainly irregular Al2O3 inclusions and MnS inclusions in ESR ingots, and the size of most of the inclusions was less than 5 um. After homogenization of the hot rolled plate at 1 150℃ × 1 h followed by water quenching, the microstructure consisted of homogeneous austenite.展开更多
This present study applied gas tungsten arc welding in order to join AISI 304 and AISI 201 stainless steels.The objective was to find the optimum welding condition that gave a weld bead in accordance with DIN EN ISO 2...This present study applied gas tungsten arc welding in order to join AISI 304 and AISI 201 stainless steels.The objective was to find the optimum welding condition that gave a weld bead in accordance with DIN EN ISO 25817 quality level B, pitting corrosion potential of the weld metal of not less than that of the AISI304 base metal and a ratio of delta-ferrite in austenite matrix of the weld metal of not lower than 3%.Such a ratio is a criterion widely accepted to protect the weld metal from solidification cracking. At the welding current of 75 A and by using pure argon as a shielding gas 0 to 8 vol.% and applying a welding speed in the range of 2-3.5 mm·s^(-1) was found to give a complete weld bead with an increased depthper-width ratio(promote weldability). For welding speed in the range of 3 and 3.5 mm·s^(-1)(promote corrosion resistance). Increasing the welding speed in such a range decreased the amount of delta-ferrite in the austenite matrix, and increased the pitting corrosion potential of the weld metal to be 302 mV_(SCE).This value was still lower than the pitting corrosion potential of the AISI 304 base metal. Mixing nitrogen in argon shielding gas increased the nitrogen content in the weld. The optimum condition was found when using a welding speed of 3 mm· s^(-1) and mixing 1 vol.% of nitrogen in the argon shielding gas(promote weldability and corrosion resistance). Pitted areas after potentiodynamic test were observed in the austenite in which its Cr content was relatively low.展开更多
Silver or copper ions are often chosen as antibacterial agents. But a few reports are concerned with these two antibacterial agents for preparation of antibacterial stainless steel (SS). The antibacterial properties...Silver or copper ions are often chosen as antibacterial agents. But a few reports are concerned with these two antibacterial agents for preparation of antibacterial stainless steel (SS). The antibacterial properties and corrosion resistance of AISI 420 stainless steel implanted by silver and copper ions were investigated. Due to the cooperative antibacterial effect of silver and copper ions, the Ag/Cu implanted SS showed excellent antibacterial activities against both Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) at a total implantation dose of 2~ 1017 ions/cm2. Electrochemical polarization curves revealed that the corrosion resistance of Ag/Cu implanted SS was slightly enhanced as compared with that of un-implanted SS, The implanted layer was characterized by X-ray photoelec- tron spectroscopy (XPS). Core level XPS spectra indicate that the implanted silver and copper ions exist in metallic state in the implanted layer.展开更多
A series of high nitrogen austenitic stainless steels were successfully developed with a pressurized electroslag remelting furnace. Nitride additives and deoxidizer were packed into the stainless steel pipes, and then...A series of high nitrogen austenitic stainless steels were successfully developed with a pressurized electroslag remelting furnace. Nitride additives and deoxidizer were packed into the stainless steel pipes, and then the stainless steel pipes were welded on the surface of an electrode with low nitrogen content to prepare a compound electrode. Using Si3N4 as a nitrogen alloying source, the silicon contents in the ingots were prone to be out of the specification range, the electric current fluctuated greatly and the surface qualities of the ingots were poor. The surface qualities of the ingots were improved with FeCrN as a nitrogen alloying source. The sound and compact macrostructure ingot with the maximum nitrogen content of 1.21wt% can be obtained. The 18Cr18Mn2Mo0.9N high nitrogen austenitic stainless steel exhibits high strength and good ductility at room temperature. The steel shows typical ductile-brittle transition behavior and excellent pitting corrosion resistance properties.展开更多
High-nitrogen nickel-free stainless steels were fabricated by the metal injection molding technique using high nitrogen alloying powders and a mixture of three polymers as binders.Mixtures of metal powders and binders...High-nitrogen nickel-free stainless steels were fabricated by the metal injection molding technique using high nitrogen alloying powders and a mixture of three polymers as binders.Mixtures of metal powders and binders with various proportions were also investigated, and an optimum powder loading capacity was determined as 64vol%.Intact injection molded compacts were successfully obtained by regulating the processing parameters.The debinding process for molded compacts was optimized with a combination of thermo-gravimetric analysis and differential scanning calorimetry analysis.An optimum relative density and nitrogen content of the specimens are obtained at 1360℃,which are 97.8%and 0.79wt%,respectively.展开更多
The martensite transformation induced by tensile elongation and its effect onthe behavior of phase electrochemistry of AISI 304 and 316L in 3.5% NaCl solution were studied. Theresults show that the content of α′-mar...The martensite transformation induced by tensile elongation and its effect onthe behavior of phase electrochemistry of AISI 304 and 316L in 3.5% NaCl solution were studied. Theresults show that the content of α′-martensite in stainless steel 304 increases with the truestrain. As α′-martensite content increased, free corrosion potential and pitting potential ofstainless steel 304 in 3.5% NaCl solution appeared the change trend of a minimum. It was also foundthat pitting nucleated preferentially at the phase interfaces between martensite and austenite.There existed apparent difference between electrochemical properties of austenite and of martensitefor stainless steel 304 and 316L in 3.5% NaCl solution.展开更多
This paper has analyzed the influences of the heat input of welding arc, the latent heat of solidifica- tion,fluid flow of liquid metal on the heat conductivity pertaining to welding solidification crack of stainles...This paper has analyzed the influences of the heat input of welding arc, the latent heat of solidifica- tion,fluid flow of liquid metal on the heat conductivity pertaining to welding solidification crack of stainless steels. As a result,two - dimensional heat conduction models with prescribed heat flux mov- ing along the the have been developed that can simulate welding arc, convection and radiation heat loss from top and bottom surfaces of the workpiece. Finally, the finite element model was used to ana- lyze and calculate the temperature field.展开更多
Austenite antibacterial stainless steels have been found to have wide applications in hospitals and food industries. In recent years epsilon copper precipitation in antibacterial stainless steels has obtained much res...Austenite antibacterial stainless steels have been found to have wide applications in hospitals and food industries. In recent years epsilon copper precipitation in antibacterial stainless steels has obtained much research interest due to its antibacterial action. The objective of this study was to determine the effects of nitrogen concentration on the precipitation of epsilon copper and antibacterial property. Two kinds of austenite antibacterial stainless steels containing copper and different nitrogen concentration (0.02 and 0.08 wt pct, respectively) were prepared and the microstructures were characterized by a combination of electron microscopy and thermodynamic analysis. A mathematical expression was deduced to predict the effect of nitrogen concentration on the activity coefficient of copper, In(fCu/f^0cu)=0.53524+4.11xN-0.48x^2N. Higher nitrogen was found to increase the free energy difference of copper concentration distribution between precipitation phase and austenite matrix, stimulate the aggregation of copper atoms from austenite, increase the precipitation amount and consequently enhance the antibacterial property of steel.展开更多
Due to specific properties arising from their structure (high ductility, high toughness,strong tenacious and low heat conductivity), the stainless steels have poor machinability. The drilling of the stainless steels b...Due to specific properties arising from their structure (high ductility, high toughness,strong tenacious and low heat conductivity), the stainless steels have poor machinability. The drilling of the stainless steels becomes the machining difficulty for their serious work-hardening and abrasion of tools. In this paper, the austenitic stainless steel is used as the work-piece to perform the contrastive experiments with the TiN coated and TiAlN-coated high-speed steel drills. The cutting force, torque, cutting temperature, and the abrasion of drills and tool life are tested and analyzed in the process of high-speed drilling. Experiment results show the effect of drilling speed on cutting force, cutting temperature, and drill wear. TiAlN-coated drills demonstrate better performances in high speed drilling. The research results will be of great benefit in the selection of drills and in the control of tool wear in high speed drilling of stainless steels.展开更多
Atmospheric corrosion of 304 and 316 stainless steels was studied by field exposure test, in which rain water was collected and analyzed by atomic absorption spectroscope (AAS). Emphasis was put on the dissolution of ...Atmospheric corrosion of 304 and 316 stainless steels was studied by field exposure test, in which rain water was collected and analyzed by atomic absorption spectroscope (AAS). Emphasis was put on the dissolution of chromium and nickel from the stainless steels by atmospheric corrosion and rain runoff. AAS analyses shows that the amounts of yearly chromium and nickel dissolution were less than 150ng/cm 2 and 50ng/cm 2 respectively for both 304 and 316 stainless steels. XPS analysis reveals the marked Cr enrichment on the 316 stainless steel after one year field exposure. SEM shows the morphology of corrosion pits on the steel surfaces.展开更多
Duplex stainless steels(DSSs)used in subsea structures and desalination industries require high corrosion and erosion resistance as well as excellent mechanical properties.The newly introduced cast duplex grade ASTM A...Duplex stainless steels(DSSs)used in subsea structures and desalination industries require high corrosion and erosion resistance as well as excellent mechanical properties.The newly introduced cast duplex grade ASTM A8907 A has a unique composition and is expected to have a much better resistance to corrosion and erosion compared with the super-duplex grades 5 A and 6 A.This work is a comparative study of the mechanical properties,corrosion,and erosion-corrosion resistance of super-duplex grades 5 A and 6 A and the hyper-duplex grade 7 A.The three DSSs exhibited equiaxial austenite islands in the ferrite matrix and balanced phase ratios.The hardness of the grade 7 A was nearly 15%higher than those of the super-duplex grades,which is attributed to the effect of the higher contents of W and Mn in 7 A.The impact toughness of grade 7 A was found to be lower than those of the super-duplex grades due to the carbide precipitation resulting from the partial substitution of Mo with W.The oxide layer strengthening effect of rare earth elements and the higher pitting resistance equivalent number(PREN)of grade7 A resulted in higher corrosion resistance.The harder and more passive grade 7 A showed a 35%lower material loss during erosion-corrosion.展开更多
基金supported by the National Natural Science Foundation of China(No.52204340)the Natural Science Foundation of Guangxi,China(No.2022GXNSFBA035621)The authors wish to thank the Advanced Manufacturing and Materials Centre from Warwick Manufacturing Group(WMG),University of Warwick for the provision of facilities and equipment.
文摘Microstructures determine mechanical properties of steels,but in actual steel product process it is difficult to accurately control the microstructure to meet the requirements.General microstructure characterization methods are time consuming and results are not rep-resentative for overall quality level as only a fraction of steel sample was selected to be examined.In this paper,a macro and micro coupled 3D model was developed for nondestructively characterization of steel microstructures.For electromagnetic signals analysis,the relative permeability value computed by the micro cellular model can be used in the macro electromagnetic sensor model.The effects of different microstructure components on the relative permeability of duplex stainless steel(grain size,phase fraction,and phase distribu-tion)were discussed.The output inductance of an electromagnetic sensor was determined by relative permeability values and can be val-idated experimentally.The findings indicate that the inductance value of an electromagnetic sensor at low frequency can distinguish dif-ferent microstructures.This method can be applied to real-time on-line characterize steel microstructures in process of steel rolling.
基金Saeed Sadeghpour would like to thank Jane,Aatos Erkon säätiö(JAES),and Tiina ja Antti Herlinin säätiö(TAHS)for their financial support on Advanced Steels for Green Planet Project.The authors would also like to greatly thank the members of the“Formability Laboratory”and“Advanced Steels and Thermomechanically Processed Engineering Ma-terials Laboratory”for their help and support。
文摘The effects of deformation temperature on the transformation-induced plasticity(TRIP)-aided 304L,twinning-induced plasti-city(TWIP)-assisted 316L,and highly alloyed stable 904L austenitic stainless steels were compared for the first time to tune the mechan-ical properties,strengthening mechanisms,and strength-ductility synergy.For this purpose,the scanning electron microscopy(SEM),electron backscattered diffraction(EBSD),X-ray diffraction(XRD),tensile testing,work-hardening analysis,and thermodynamics calcu-lations were used.The induced plasticity effects led to a high temperature-dependency of work-hardening behavior in the 304L and 316L stainless steels.As the deformation temperature increased,the metastable 304L stainless steel showed the sequence of TRIP,TWIP,and weakening of the induced plasticity mechanism;while the disappearance of the TWIP effect in the 316L stainless steel was also observed.However,the solid-solution strengthening in the 904L superaustenitic stainless steel maintained the tensile properties over a wide temper-ature range,surpassing the performance of 304L and 316L stainless steels.In this regard,the dependency of the total elongation on the de-formation temperature was less pronounced for the 904L alloy due to the absence of additional plasticity mechanisms.These results re-vealed the importance of solid-solution strengthening and the associated high friction stress for superior mechanical behavior over a wide temperature range.
文摘Duplex stainless steels(DSSs)show better corrosion resistance with higher strength than traditional austenite stainless steels in many aggressive environments,and can be welded properly with almost every welding processes,if proper heat input is provided.Progresses of research works on weldability of DSSs in recent years are reviewed in this paper.Balance control of ferrite/austenite phases is most important for DSSs welding.The phases balance can be controlled with filler materials,nitrogen addition in shielding gas,heat input,post weld heat treatment,and alternating magnetic field.Too high cooling rate results in not only extra ferrite,but also chromium nitride precipitation.While too low cooling rate or heating repeatedly results in precipitation of secondary austenite and intermetallic compounds.In both situations,mechanical properties and corrosion resistance of the DSS joints deteriorate.Recommended upper and lower limits of heat input and maximum interpass temperature should be observed.
文摘Excellent weldability substantially contributes to the intrinsic quality of steels,while appropriate chemical composition plays a primary role in the essential weldability of steels.The poor weldability of ferritic stainless steels could be improved through modification with minor alloy elements while minimally increasing the cost.Therefore,studying the effect of minor alloy elements on the weldability of steels is of considerable importance.In this study,several steels of middle-chromium hyperpure ferritic stainless 00Cr21Ti with different Ni content(0.3%,0.5%,0.8%,and 1.0%)were developed,and their weldabilities of butt joint samples welded using the metal inert gas welding process,including the influence of welded joints on the microstructure,tensile performance,corrosion resistance,and fatigue property,were investigated.Results show that the steels with w(Ni)≥0.8%exhibit excellent mechanical properties compared with those with low-Ni content steels,further,their impact toughness at normal atmospheric temperature meets the industrial application standard and the fatigue property is similar to that of 304 austenitic stainless steel.Moreover,results show that the corrosion resistance of all the samples is almost at the same level.The results acquired in this study are supposed to be useful for the optimization of the chemical composition of stainless steels aiming to improve weldability.
基金supported by National Basic Research Program of China (973 Program, Grant No. 2006CB605005)Shanghai Municipal Committee of Science and Technology of china(Grant No. 005207019,Grant No. 08520708000)
文摘Stress corrosion cracking (SCC) of stainless steels and Ni-based alloys in high temperature water coolant is one of the key problems affecting the safe operation of nuclear power plants (NPPs). The nitrogen-added stainless steel is a kind of possible candidate materials for mitigating SCC since reducing the carbon content and adding nitrogen to offset the loss in strength caused by the decrease in carbon content can mitigate the problem of sensitization. However, the reports of SCC of nitrogen-added stainless steels in high temperature water are few available. The effects of applied potential and sensitization treatment on the SCC of a newly developed nitrogen-containing stainless steel (SS) 316LN in high temperature water doped with chloride at 250 ℃ were studied by using slow strain rate tests (SSRTs). The SSRT results are compared with our data previously published for 316 SS without nitrogen and 304NG SS with nitrogen, and the possible mechanism affecting the SCC behaviors of the studied steels is also discussed based on SSRT and microstucture analysis results. The susceptibility to cracking of 316LN SS normally increases with increasing potential. The susceptibility to SCC of 316LN SS was less than that of 316 SS and 304NG SS. Sensitization treatment at 700℃ for 30 h showed little effect on the S CC of 316LN S S and significant effect on the S CC of 316 S S. The predominant cracking mode for the 316LN S S in both annealed state and the state after the sensitization treatment was transgranular. The presented conditions of mitigating stress corrosion cracking are some useful information for the safe use of 316LN SS in NPPs.
基金the National Natural Science Foundation of China(Nos.52074078 and 52374327)the Applied Fundamental Research Program of Liaoning Province(No.2023JH2/101600002)+2 种基金the Shenyang Young Middle-Aged Scientific and Technological Innovation Talent Support Program(No.RC220491)the Liaoning Province Steel Industry-University-Research Innovation Alliance Cooperation Project of Bensteel Group(No.KJBLM202202)the Fundamental Research Funds for the Central Universities(Nos.N2201023 and N2325009).
文摘Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimental environmental issues.To prevent chromium pollution,the effects of iron oxide on crystallization behavior and spatial distribution of spinel were investigated in this work.The results revealed that FeO was more conducive to the growth of spinels compared with Fe2O3 and Fe3O4.Spinels were found to be mainly distrib-uted at the top and bottom of slag.The amount of spinel phase at the bottom decreased with the increasing FeO content,while that at the top increased.The average particle size of spinel in the slag with 18wt%FeO content was 12.8μm.Meanwhile,no notable structural changes were observed with a further increase in FeO content.In other words,the spatial distribution of spinel changed when the content of iron oxide varied in the range of 8wt%to 18wt%.Finally,less spinel was found at the bottom of slag with a FeO content of 23wt%.
基金Item Sponsored by National Natural Science Foundation of China Baoshan Iron and Steel Co Ltd(50534010)
文摘The grades of ultra-pure ferritic stainless steels, especially the grades used in automobile exhaust system, were reviewed. The dependence of properties on alloying elements, the refining facilities, and the mechanism of the reactions in steel melts were described in detail. Vacuum, strong stirring, and powder injection proved to be effective technologies in the melting of ultra-pure ferritic stainless steels. The application of the ferritic grades was also briefly introduced.
文摘The effect of aging temperature on erosion corrosion (E-C) behavior of 17-4PH stainless steels in dilute sulphuric acid slurry containing solid particles was studied by using self-made rotating E-C apparatus. The effect of impact velocity on EC behavior of 17 4PH steels at different aging temperatures was analyzed. Surface micrographs of the specimens after E C test were observed by using scanning electron microscope (SEM). The results showed that under the condition of the same solution heat treatment, when aging temperature ranged from 400 ℃ to 610℃, the hardness reached the highest value near the temperature 460℃. The characteristics of E-C for 17-4PH stainless steels at different aging temperatures were as follows: pure erosion (wear) was dominant, corrosion was subordinate and at the same time corrosion promoted erosion. The effect of aging temperature on E-C rate of 17-4PH steels was not significant at low impact velocity, but it was found that E-C resistance of 17-4PH steels aged near 460℃ was the most excellent due to the best precipitation strengthening effect of fine and dispersed e-Cu phase. With a prerequisite of appropriate corrosion resistance, the precipitation hardening could significantly improve the E-C resistance of the materials.
基金supported by the National Natural Science Foundation of China and Baosteel Group Corporation (No.50534010)
文摘Pitting corrosion and crevice corrosion behaviors of high nitrogen austenitic stainless steels (HNSS) were investigated by electrochemical and immersion testing methods in chloride solution, respectively. The chemical constitution and composition in the depth of passive films formed on HNSS were analyzed by X-ray photoelectron spectrum (XPS). HNSS has excellent pitting and crevice corrosion resistance compared to 316L stainless steel. With increasing the nitrogen content in steels, pitting potentials and critical pitting temperature (CPT) increase, and the maximum, average pit depths and average weight loss decrease. The CPT of HNSS is correlated with the alloying element content through the measure of alloying for resistance to corrosion (MARC). The MARC can be expressed as an equation of CPT=2.55MARC-29. XPS results show that HNSS exhibiting excellent corrosion resistance is attributed to the enrichment of nitrogen on the surface of passive films, which forms ammonium ions increasing the local pH value and facilitating repassivation, and the synergistic effects of molybdenum and nitrogen.
基金Item Sponsored by National Natural Science Foundation of China(50534010)
文摘A simple and feasible method for the production of high nitrogen austenitic stainless steels involves nitrogen gas alloying and adding nitrided ferroalloys under normal atmospheric conditions. Alloying by nitrogen gas bubbling in Fe-Cr-Mn-Mo series alloys was carried out in MoSi2 resistance furnace and air induction furnace under normal atmospheric conditions. The results showed that nitrogen alloying could be accelerated by increasing nitrogen gas flow rate, prolonging residence time of bubbles, increasing gas/molten steel interfaces, and decreasing the sulphur and oxygen contents in molten steel. Nitrogen content of 0.69% in 18Crl8Mn was obtained using air induction furnace by bubbling of nitrogen gas from porous plug. In addition, the nickel-free, high nitrogen austenitic stainless steels with sound and compact macrostructure had been produced in the laboratory using vacuum induction furnace and electroslag remelting furnace under nitrogen atmosphere by the addition of nitrided alloy with the maximum nitrogen content of 0.81%. Pores were observed in the ingots obtained by melting and casting in vacuum induction furnace with the addition of nitrided ferroalloys and under nitrogen atmosphere. After electroslag remelting of the cast ingots, they were all sound and were free of pores. The yield of nitrogen increased with the decrease of melting rate in the ESR process. Due to electroslag remelting under nitrogen atmosphere and the consequential addition of aluminum as deoxidizer to the slag, the loss of manganese decreased obviously. There existed mainly irregular Al2O3 inclusions and MnS inclusions in ESR ingots, and the size of most of the inclusions was less than 5 um. After homogenization of the hot rolled plate at 1 150℃ × 1 h followed by water quenching, the microstructure consisted of homogeneous austenite.
基金the Thai Government scholarship given via Rajamangala University of Technology Krungthep (UTK), Bangkok, Thailand, for their financial support through this funded research project
文摘This present study applied gas tungsten arc welding in order to join AISI 304 and AISI 201 stainless steels.The objective was to find the optimum welding condition that gave a weld bead in accordance with DIN EN ISO 25817 quality level B, pitting corrosion potential of the weld metal of not less than that of the AISI304 base metal and a ratio of delta-ferrite in austenite matrix of the weld metal of not lower than 3%.Such a ratio is a criterion widely accepted to protect the weld metal from solidification cracking. At the welding current of 75 A and by using pure argon as a shielding gas 0 to 8 vol.% and applying a welding speed in the range of 2-3.5 mm·s^(-1) was found to give a complete weld bead with an increased depthper-width ratio(promote weldability). For welding speed in the range of 3 and 3.5 mm·s^(-1)(promote corrosion resistance). Increasing the welding speed in such a range decreased the amount of delta-ferrite in the austenite matrix, and increased the pitting corrosion potential of the weld metal to be 302 mV_(SCE).This value was still lower than the pitting corrosion potential of the AISI 304 base metal. Mixing nitrogen in argon shielding gas increased the nitrogen content in the weld. The optimum condition was found when using a welding speed of 3 mm· s^(-1) and mixing 1 vol.% of nitrogen in the argon shielding gas(promote weldability and corrosion resistance). Pitted areas after potentiodynamic test were observed in the austenite in which its Cr content was relatively low.
基金supported by the National Natural Science Foundation of China (Nos. 50771075 and 51171133) the Program for New Century Excellent Talents in University of Ministries of the Education of China (No.NECT-07-0650)
文摘Silver or copper ions are often chosen as antibacterial agents. But a few reports are concerned with these two antibacterial agents for preparation of antibacterial stainless steel (SS). The antibacterial properties and corrosion resistance of AISI 420 stainless steel implanted by silver and copper ions were investigated. Due to the cooperative antibacterial effect of silver and copper ions, the Ag/Cu implanted SS showed excellent antibacterial activities against both Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) at a total implantation dose of 2~ 1017 ions/cm2. Electrochemical polarization curves revealed that the corrosion resistance of Ag/Cu implanted SS was slightly enhanced as compared with that of un-implanted SS, The implanted layer was characterized by X-ray photoelec- tron spectroscopy (XPS). Core level XPS spectra indicate that the implanted silver and copper ions exist in metallic state in the implanted layer.
基金supported by the National Natural Science Foundation of China(No.50534010)
文摘A series of high nitrogen austenitic stainless steels were successfully developed with a pressurized electroslag remelting furnace. Nitride additives and deoxidizer were packed into the stainless steel pipes, and then the stainless steel pipes were welded on the surface of an electrode with low nitrogen content to prepare a compound electrode. Using Si3N4 as a nitrogen alloying source, the silicon contents in the ingots were prone to be out of the specification range, the electric current fluctuated greatly and the surface qualities of the ingots were poor. The surface qualities of the ingots were improved with FeCrN as a nitrogen alloying source. The sound and compact macrostructure ingot with the maximum nitrogen content of 1.21wt% can be obtained. The 18Cr18Mn2Mo0.9N high nitrogen austenitic stainless steel exhibits high strength and good ductility at room temperature. The steel shows typical ductile-brittle transition behavior and excellent pitting corrosion resistance properties.
基金supported by the National High-Tech Research and Development Program of China(No.2006AA03Z502)
文摘High-nitrogen nickel-free stainless steels were fabricated by the metal injection molding technique using high nitrogen alloying powders and a mixture of three polymers as binders.Mixtures of metal powders and binders with various proportions were also investigated, and an optimum powder loading capacity was determined as 64vol%.Intact injection molded compacts were successfully obtained by regulating the processing parameters.The debinding process for molded compacts was optimized with a combination of thermo-gravimetric analysis and differential scanning calorimetry analysis.An optimum relative density and nitrogen content of the specimens are obtained at 1360℃,which are 97.8%and 0.79wt%,respectively.
文摘The martensite transformation induced by tensile elongation and its effect onthe behavior of phase electrochemistry of AISI 304 and 316L in 3.5% NaCl solution were studied. Theresults show that the content of α′-martensite in stainless steel 304 increases with the truestrain. As α′-martensite content increased, free corrosion potential and pitting potential ofstainless steel 304 in 3.5% NaCl solution appeared the change trend of a minimum. It was also foundthat pitting nucleated preferentially at the phase interfaces between martensite and austenite.There existed apparent difference between electrochemical properties of austenite and of martensitefor stainless steel 304 and 316L in 3.5% NaCl solution.
文摘This paper has analyzed the influences of the heat input of welding arc, the latent heat of solidifica- tion,fluid flow of liquid metal on the heat conductivity pertaining to welding solidification crack of stainless steels. As a result,two - dimensional heat conduction models with prescribed heat flux mov- ing along the the have been developed that can simulate welding arc, convection and radiation heat loss from top and bottom surfaces of the workpiece. Finally, the finite element model was used to ana- lyze and calculate the temperature field.
文摘Austenite antibacterial stainless steels have been found to have wide applications in hospitals and food industries. In recent years epsilon copper precipitation in antibacterial stainless steels has obtained much research interest due to its antibacterial action. The objective of this study was to determine the effects of nitrogen concentration on the precipitation of epsilon copper and antibacterial property. Two kinds of austenite antibacterial stainless steels containing copper and different nitrogen concentration (0.02 and 0.08 wt pct, respectively) were prepared and the microstructures were characterized by a combination of electron microscopy and thermodynamic analysis. A mathematical expression was deduced to predict the effect of nitrogen concentration on the activity coefficient of copper, In(fCu/f^0cu)=0.53524+4.11xN-0.48x^2N. Higher nitrogen was found to increase the free energy difference of copper concentration distribution between precipitation phase and austenite matrix, stimulate the aggregation of copper atoms from austenite, increase the precipitation amount and consequently enhance the antibacterial property of steel.
文摘Due to specific properties arising from their structure (high ductility, high toughness,strong tenacious and low heat conductivity), the stainless steels have poor machinability. The drilling of the stainless steels becomes the machining difficulty for their serious work-hardening and abrasion of tools. In this paper, the austenitic stainless steel is used as the work-piece to perform the contrastive experiments with the TiN coated and TiAlN-coated high-speed steel drills. The cutting force, torque, cutting temperature, and the abrasion of drills and tool life are tested and analyzed in the process of high-speed drilling. Experiment results show the effect of drilling speed on cutting force, cutting temperature, and drill wear. TiAlN-coated drills demonstrate better performances in high speed drilling. The research results will be of great benefit in the selection of drills and in the control of tool wear in high speed drilling of stainless steels.
文摘Atmospheric corrosion of 304 and 316 stainless steels was studied by field exposure test, in which rain water was collected and analyzed by atomic absorption spectroscope (AAS). Emphasis was put on the dissolution of chromium and nickel from the stainless steels by atmospheric corrosion and rain runoff. AAS analyses shows that the amounts of yearly chromium and nickel dissolution were less than 150ng/cm 2 and 50ng/cm 2 respectively for both 304 and 316 stainless steels. XPS analysis reveals the marked Cr enrichment on the 316 stainless steel after one year field exposure. SEM shows the morphology of corrosion pits on the steel surfaces.
文摘Duplex stainless steels(DSSs)used in subsea structures and desalination industries require high corrosion and erosion resistance as well as excellent mechanical properties.The newly introduced cast duplex grade ASTM A8907 A has a unique composition and is expected to have a much better resistance to corrosion and erosion compared with the super-duplex grades 5 A and 6 A.This work is a comparative study of the mechanical properties,corrosion,and erosion-corrosion resistance of super-duplex grades 5 A and 6 A and the hyper-duplex grade 7 A.The three DSSs exhibited equiaxial austenite islands in the ferrite matrix and balanced phase ratios.The hardness of the grade 7 A was nearly 15%higher than those of the super-duplex grades,which is attributed to the effect of the higher contents of W and Mn in 7 A.The impact toughness of grade 7 A was found to be lower than those of the super-duplex grades due to the carbide precipitation resulting from the partial substitution of Mo with W.The oxide layer strengthening effect of rare earth elements and the higher pitting resistance equivalent number(PREN)of grade7 A resulted in higher corrosion resistance.The harder and more passive grade 7 A showed a 35%lower material loss during erosion-corrosion.