Changes of a 65Ni25Cu10A1203 catalyst consisting of Ni-enriched and Cu-enriched alloys were investigated in the bulk and on the surface during the growth of nitrogen-doped carbon nanofibers (N-CNFs) by decomposition...Changes of a 65Ni25Cu10A1203 catalyst consisting of Ni-enriched and Cu-enriched alloys were investigated in the bulk and on the surface during the growth of nitrogen-doped carbon nanofibers (N-CNFs) by decomposition of a 50%C2I-I4/50%NH3 mixture using in situ X-ray diffraction (XRD) analysis, ex situ X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) techniques. It was shown that N-CNF growth at 450-650 ℃is accompanied by dissolution of carbon and nitrogen in the Ni-enriched alloy, whereas Cu-enriched alloy remains inactive. A correlation between nickel and copper surface concentrations and properties of N-CNFs in relation to the nitrogen content was found. It was demonstrated that phase composition of the catalyst during N-CNF growth determines the type of N-CNFs structure.展开更多
The oxygen reduction reaction(ORR)electrocatalytic activity of Pt-based catalysts can be significantly improved by supporting Pt and its alloy nanoparticles(NPs)on a porous carbon support with large surface area.Howev...The oxygen reduction reaction(ORR)electrocatalytic activity of Pt-based catalysts can be significantly improved by supporting Pt and its alloy nanoparticles(NPs)on a porous carbon support with large surface area.However,such catalysts are often obtained by constructing porous carbon support followed by depositing Pt and its alloy NPs inside the pores,in which the migration and agglomeration of Pt NPs are inevitable under harsh operating conditions owing to the relatively weak interaction between NPs and carbon support.Here we develop a facile electrospinning strategy to in-situ prepare small-sized PtZn NPs supported on porous nitrogen-doped carbon nanofibers.Electrochemical results demonstrate that the as-prepared PtZn alloy catalyst exhibits excellent initial ORR activity with a half-wave potential(E_(1/2))of 0.911 V versus reversible hydrogen electrode(vs.RHE)and enhanced durability with only decreasing 11 mV after 30,000 potential cycles,compared to a more significant drop of 24 mV in E_(1/2)of Pt/C catalysts(after 10,000 potential cycling).Such a desirable performance is ascribed to the created triple-phase reaction boundary assisted by the evaporation of Zn and strengthened interaction between nanoparticles and the carbon support,inhibiting the migration and aggregation of NPs during the ORR.展开更多
Ingenious design and fabrication of advanced carbon-based sulfur cathodes are extremely important to the development of high-energy lithium-sulfur batteries,which hold promise as the next-generation power source.Herei...Ingenious design and fabrication of advanced carbon-based sulfur cathodes are extremely important to the development of high-energy lithium-sulfur batteries,which hold promise as the next-generation power source.Herein,for the first time,we report a novel versatile hyphae-mediated biological assembly technology to achieve scale production of hyphae carbon fibers(HCFs)derivatives,in which different components including carbon,metal compounds,and semiconductors can be homogeneously assembled with HCFs to form composite networks.The mechanism of biological adsorption assembly is also proposed.As a representative,reduced graphene oxides(rGOs)decorated with hollow carbon spheres(HCSs)successfully co-assemble with HCFs to form HCSs@rGOs/HCFs hosts for sulfur cathodes.In this unique architecture,not only large accommodation space for sulfur but also restrained volume expansion and fast charge transport paths are realized.Meanwhile,multiscale physical barriers plus chemisorption sites are simultaneously established to anchor soluble lithium polysulfides.Accordingly,the designed HCSs@rGOs/HCFs-S cathodes deliver a high capacity(1189 mA h g^(-1)at 0.1 C)and good high-rate capability(686 mA h g^(-1)at 5 C).Our work provides a new approach for the preparation of high-performance carbon-based electrodes for energy storage devices.展开更多
Potassium-ion batteries(KIBs)have been seen as a competitive alternative to lithium-ion batteries(LIBs)due to their natural abundance,low cost and rocking chair-like operating mechanism similar to LIBs.Soft carbon has...Potassium-ion batteries(KIBs)have been seen as a competitive alternative to lithium-ion batteries(LIBs)due to their natural abundance,low cost and rocking chair-like operating mechanism similar to LIBs.Soft carbon has a lower voltage plateau compared to hard carbon and an easily modulated lattice structure compared to graphite,which provides particular advantages in KIBs anodes.Pitch has attracted much attention as a simple,readily available and inexpensive precursor for soft carbon,but its structure is easily damaged during cycling.Herein,the flexible film Pitch@CNF are prepared by uniformly winding reticulated carbon fibers on the surface of pitch-soft carbon via electrostatic spinning technique,which not only enables the pitch to maintain its structure well during cycling and withstand the volume expansion upon K^(+) insertion,but also is conducive to ionic transport of the three-dimensional reticulated structure.Meanwhile,the abundant pores on the carbon fibers can provide more K^(+) active sites.The prepared flexible self-supporting films can be used directly as electrodes without the addition of binders and conductive agents.The reversible capacity is 290 mAh·g^(-1)at a current density of 0.1 A·g^(-1),and the capacity retention rate is 83%after 500 cycles.展开更多
We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surf...We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surface layers. After cross-section observation of the Al/CFs composite sheet, we found that the CFs discretely distributed within the sandwich layer. Besides, the tensile test showed that the contribution of the sandwich CFs layer to tensile strength was less than 11% compared with annealed pure Al sheet. With ex-situ observation of the CFs breakage evolution with-16%,-32%, and-45% rolling reduction during the ARB process, the plastic instability of the Al layer was found to bring shear damages to the CFs. At last, the bridging strengthening mechanism introduced by CFs was sacrificed. We provide new insight into and instruction on Al/CFs composite sheet preparation method and processing parameters.展开更多
Carbon nanofiber(CNF)was widely utilized in the field of electrochemical energy storage due to its superiority of conductivity and mechanics.However,CNF was generally prepared at relatively high temperature.Herein,nit...Carbon nanofiber(CNF)was widely utilized in the field of electrochemical energy storage due to its superiority of conductivity and mechanics.However,CNF was generally prepared at relatively high temperature.Herein,nitrogen-doped hard carbon nanofibers(NHCNFs)were prepared by a lowtemperature carbonization treatment assisted with electrospinning technology.Density functional theory analysis elucidates the incorporation of nitrogen heteroatoms with various chemical states into carbon matrix would significantly alter the total electronic configurations,leading to the robust adsorption and efficient diffusion of Na atoms on electrode interface.The obtained material carbonized at 600°C(NHCNF-600)presented a reversible specific capacity of 191.0 mAh g^(−1)and no capacity decay after 200 cycles at 1 A g^(−1).It was found that the sodium-intercalated degree had a correlation with the electrochemical impedance.A sodium-intercalated potential of 0.2 V was adopted to lower the electrochemical impedance.The constructed sodium-ion capacitor with activated carbon cathode and presodiated NHCNF-600 anode can present an energy power density of 82.1 Wh kg^(−1)and a power density of 7.0 kW kg^(−1).展开更多
Ni-Fe alloy was electrodeposited on the surface of polyacrylonitrile (PAN)-based carbon fibers, and catalytic graphitization effect of the heat-treated carbon fibers was investigated by X-ray diffractometry and Rama...Ni-Fe alloy was electrodeposited on the surface of polyacrylonitrile (PAN)-based carbon fibers, and catalytic graphitization effect of the heat-treated carbon fibers was investigated by X-ray diffractometry and Raman spectra. It is found that Ni-Fe alloy exhibits significant catalytic effect on the graphitization of the carbon fibers at low temperatures. The degree of graphitization of the carbon fibers coated with Ni-Fe alloy (57.91% Fe, mass fraction) reaches 69.0% through heat treatment at 1 250 °C. However, the degree of graphitization of the carbon fibers without Ni-Fe alloy is only 30.1% after being heat-treated at 2 800 °C. The catalytic effect of Ni-Fe alloy on graphitization of carbon fibers is better than that of Ni or Fe at the same temperature, indicating that Ni and Fe elements have synergic catalytic function. Furthermore, Fe content in the Ni-Fe alloy also influences catalytic effect. The catalytic graphitization of Ni-Fe alloy follows the dissolution-precipitation mechanism.展开更多
Vapor-grown carbon fibers (VGCFs) were introduced as conductive additives for sulfur-multiwalled carbon nanotubes (S-MWCNTs) composite cathode of lithium-sulfur batteries. The performance of S-MWCNTs composite cat...Vapor-grown carbon fibers (VGCFs) were introduced as conductive additives for sulfur-multiwalled carbon nanotubes (S-MWCNTs) composite cathode of lithium-sulfur batteries. The performance of S-MWCNTs composite cathodes with carbon black and VGCFs as sole conductive additives was investigated using scanning electron microscopy (SEM), galvanostatic charge-discharge tests and electrochemical impedance spectroscopy (EIS). The results show that the S-MWCNTs composite cathode with VGCFs displays a network-like morphology and exhibits higher activity and better cycle durability compared with the composite cathode with carbon black, delivering an initial discharge capacity of 1254 mA·h/g and a capacity of 716 mA·h/g after 40 cycles at 335 mA/g. The interconnected VGCFs can provide a stable conductive network, suppress the aggregation of cathode materials and residual lithium sulfide and maintain the porosity of cathode, and therefore the electrochemical performance of S-MWCNTs composite cathode is enhanced.展开更多
Hierarchical nitrogen-doped carbon nanocages (hNCNC) with large specific surface areas were used as a catalyst support to immobilize Pt nanoparticles by a microwave-assisted polyol method. The Pt/hNCNC catalyst with...Hierarchical nitrogen-doped carbon nanocages (hNCNC) with large specific surface areas were used as a catalyst support to immobilize Pt nanoparticles by a microwave-assisted polyol method. The Pt/hNCNC catalyst with 20 wt% loading has a homogeneous dispersion of Pt nanoparticles with the average size of 3.3 nm, which is smaller than 4.3 and 4.9 nm for the control catalysts with the same loading supported on hierarchical carbon nanocages (hCNC) and commercial Vulcan XC-72, respec- tively. Accordingly, Pt/hNCNC has a larger electrochemical surface area than Pt/hCNC and Pt/XC-72. The Pt/hNCNC catalyst exhibited excellent electrocatalytic activity and stability for methanol oxidation, which was better than the control catalysts. This was attributed to the en- hanced interaction between Pt and hNCNC due to nitrogen participation in the anchoring function. By making use of the unique advantages of the hNCNC support, a heavy Pt loading up to 60 wt% was prepared without serious agglomeration, which gave a high peak-current density per unit mass of catalyst of 95.6 mA/mg for achieving a high power density. These results showed the potential of the Pt/hNCNC catalyst for methanol oxidation and of the new hNCNC support for wide applications.展开更多
The oxygen reduction reaction (ORR) is traditionally performed using noble‐metals catalysts, e.g. Pt. However, these metal‐based catalysts have the drawbacks of high costs, low selectivity, poor stabili‐ties, and...The oxygen reduction reaction (ORR) is traditionally performed using noble‐metals catalysts, e.g. Pt. However, these metal‐based catalysts have the drawbacks of high costs, low selectivity, poor stabili‐ties, and detrimental environmental effects. Here, we describe metal‐free nitrogen‐doped carbon nanoblocks (NCNBs) with high nitrogen contents (4.11%), which have good electrocatalytic proper‐ties for ORRs. This material was fabricated using a scalable, one‐step process involving the pyrolysis of tris(hydroxymethyl)aminomethane (Tris) at 800℃. Rotating ring disk electrode measurements show that the NCNBs give a high electrocatalytic performance and have good stability in ORRs. The onset potential of the catalyst for the ORR is-0.05 V (vs Ag/AgCl), the ORR reduction peak potential is-0.20 V (vs Ag/AgCl), and the electron transfer number is 3.4. The NCNBs showed pronounced electrocatalytic activity, improved long‐term stability, and better tolerance of the methanol crosso‐ver effect compared with a commercial 20 wt%Pt/C catalyst. The composition and structure of, and nitrogen species in, the NCNBs were investigated using Fourier‐transform infrared spectroscopy, scanning electron microscopy, X‐ray photoelectron spectroscopy, and X‐ray diffraction. The pyroly‐sis of Tris at high temperature increases the number of active nitrogen sites, especially pyridinic nitrogen, which creates a net positive charge on adjacent carbon atoms, and the high positive charge promotes oxygen adsorption and reduction. The results show that NCNBs prepared by pyrolysis of Tris as nitrogen and carbon sources are a promising ORR catalyst for fuel cells.展开更多
Carbon fibers (CF) were surface treated with air-oxidation and rare earths (RE), respectively. The effect of RE surface treatment on tensile strength and tribological properties of CF reinforced polytetrafluoroeth...Carbon fibers (CF) were surface treated with air-oxidation and rare earths (RE), respectively. The effect of RE surface treatment on tensile strength and tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites was invest/gated. Experimental results revealed that RE was superior to air ox/dation in improving the tensile strength, elongation, and the tensile modulus of CF reinforced PTFE (CF/PTFE) composite. Compared to the untreated and air-oxidated CF/PTFE composite, the RE treated composite had the lowest friction coefficient and specific wear rate under a given applied load and reciprocating sliding frequency. The RE treatment effectively improved the interfacial adhesion between CF and PTFE. With strong interfacial coupling, the carbon fibers carried most of the load, and direct contact and adhesion between PTFE and the counterpart were reduced, accordingly the friction and wear properties of the composite were improved.展开更多
Micro-coiled chiral carbon fibers are modified by nano-Ni. X-ray diffraction (XRD) and scanning electron microscopy (SEM) are used to compare the composition and morphology of the unmodified and the modified fiber...Micro-coiled chiral carbon fibers are modified by nano-Ni. X-ray diffraction (XRD) and scanning electron microscopy (SEM) are used to compare the composition and morphology of the unmodified and the modified fibers. The results show that electromagnetism parameters of the modified are different from those of the unmodified. After modification by nano-Ni, the micro-coiled chiral carbon fibers have decreased permittivity and electrical loss. The permeability and magnetic loss of the modified carbon fibers become larger than those of the unmodified ones. Moreover, the modification of unmodified chiral carbon fibers into the modified is much like changing hollow electric windings into those with magnetic cores inside. The modifier intensifies the cross polarization of the chiral carbon fibers and makes the permittivity and the permeability get closer to each other which improves the matching performance and enhances absorbability of coatings. In the range of 6-18 GHz, the reflectivity of the coating is 6-8dB and the bandwidth is 12 GHz. The area density of the coating is below 3 kg/m^2.展开更多
The self-monitoring application of asphalt concrete containing graphite and carbon fibers using indirect tensile test and wheel rolling test were introduced. The experiment results indicate that this kind of pitch-bas...The self-monitoring application of asphalt concrete containing graphite and carbon fibers using indirect tensile test and wheel rolling test were introduced. The experiment results indicate that this kind of pitch-based composite is effective for strain/stress self-monitoring. In the indirect tensile test, for a completely conductive asphalt concrete specimen, the piezoresistivity was very weak and slightly positive, which meant the resistivity increase with the increment of tensile strain at all stress/strain amplitudes, with the gage factor as high as 6. The strain self-sensing ability was superior in the case of higher graphite content. However, when the conductive concrete was embedded into common asphalt concrete specimen as a partial structure function, the piezoresistivity was positive at all stress/strain amplitudes and with the gage factor of 13, which was much higher than that of completely conductive specimen. Thus, the strain self-sensing ability was superior when conductive asphalt concrete was taken in as a partial structure function. In the wheel-rolling test, the piezoresistivity was highly positive. At any stress amplitude, the piezoresistivity was strong, with the gage factor as high as 100, which was higher for a stress amplitude of 0.7 MPa than that of 0.5 MPa.展开更多
Fiber supercapacitor(FSC)is a promising power source for wearable/stretchable electronics and high capacitive performance of FSCs is highly desirable for practice flexible applications.Here,we report a composite of ma...Fiber supercapacitor(FSC)is a promising power source for wearable/stretchable electronics and high capacitive performance of FSCs is highly desirable for practice flexible applications.Here,we report a composite of manganese dioxide(Mn O_2)and activated carbon fibers(ACFs)with high MnO_2mass loading and microporous structure(abbreviated as Mn O_2@ACF),which is used as a fiber electrode to produce a FSC with a high capacitive performance and a good flexibility.The MnO_2@ACF composite electrode in FSCs delivers an ultrahigh specific capacitance of 410 mF/cm^2at 0.1 mA/cm^2,corresponding to a high energy density of 36μWh/cm^2and high power density of 726μW/cm^2.Such high capacitive performance and simple fabrication method indicates that the Mn O_2@ACF composite is a very promising electrode material for flexible fiber supercapacitors.展开更多
To find out the high-quality polyacrylonitrile (PAN) fibers, some differences are sought by comparing domestic PAN fibers with the foreign ones. X-ray diffractometer (XRD), transmission electron microscope (TEM), Four...To find out the high-quality polyacrylonitrile (PAN) fibers, some differences are sought by comparing domestic PAN fibers with the foreign ones. X-ray diffractometer (XRD), transmission electron microscope (TEM), Fourier transform infrared (FT-IR) spectrometer, elemental analyzer, tensile-testing machine and high-temperature differential scanning calorimeter (DSC) are used to characterize the individual microstructure, chemical structure, elemental content, mechanical properties and thermal properties. It is found that high-quality PAN fibers have high density, lower titre, higher or adequate tensile strength, and they also have better conglomeration structure, smaller crystal dimension with dispersive distribution, less microvoids and flaws.展开更多
Fiber-supercapacitors(FSCs)are promising power sources for miniature portable and wearable electronic devices.However,the development and practical application of these FSCs have been severely hindered by their low vo...Fiber-supercapacitors(FSCs)are promising power sources for miniature portable and wearable electronic devices.However,the development and practical application of these FSCs have been severely hindered by their low volumetric capacitance and narrow operating voltage.In this work,vertically aligned nickel cobalt sulfide(Ni Co2S4)nanowires grown on carbon nanotube(CNT)fibers were achieved through an in-situ two-step hydrothermal reaction method.The as-prepared Ni Co2S4@CNT fiber electrode exhibits a high volumetric capacitance of 2332 F cm-3,benefiting from its superior electric conductivity,large surface area,and rich Faradic redox reaction sites.Furthermore,a Ni Co2S4@CNT//VN@CNT(vanadium nitride nanosheets grown on CNT fibers)asymmetric fiber-supercapacitor(AFSC)was successfully fabricated.The device exhibits an operating voltage up to 1.6 V and a high volumetric energy density of 30.64m Wh cm-3.The device also possesses outstanding flexibility as evidenced by no obvious performance degradation under various bending angles and maintaining high capacitance after 5000 bending cycles.This work promotes the practical application of flexible wearable energy-storage devices.展开更多
Nanocarbon-based materials, such as carbon nanotubes(CNTs) and graphene have been attached much attention by scientific and industrial community. As two representative nanocarbon materials, one-dimensional CNTs and tw...Nanocarbon-based materials, such as carbon nanotubes(CNTs) and graphene have been attached much attention by scientific and industrial community. As two representative nanocarbon materials, one-dimensional CNTs and twodimensional graphene both possess remarkable mechanical properties. In the past years, a large amount of work have been done by using CNTs or graphene as building blocks for constructing novel, macroscopic, mechanically strong fibrous materials. In this review, we summarize the assembly approaches of CNT-based fibers and graphene-based fibers in chronological order, respectively. The mechanical performances of these fibrous materials are compared, and the critical influences on the mechanical properties are discussed. Personal perspectives on the fabrication methods of CNT-and graphene-based fibers are further presented.展开更多
Porous nitrogen-doped carbon is an especially promising material energy storage due to its excellentconductivity, stable physicochemical properties, easy processability, controllable porosity and low price.Herein, we ...Porous nitrogen-doped carbon is an especially promising material energy storage due to its excellentconductivity, stable physicochemical properties, easy processability, controllable porosity and low price.Herein, we reported a novel well-designed hierarchically porous nitrogen-doped carbon (HPNC) via acombination of salt template (ZnC12) and hard template (SiO2) as sulfur host for lithium-sulfur batter-ies. The low-melting ZnC12 is boiled off and leaves behind micropores and small size mesopores duringpyrolysis process, while the silica spheres are removed by acid leaching to generate interconnected 3Dnetwork of macropores. The HPNC-S electrode exhibits an initial specific capacity of 1355 mAh g^-l at 0.IC (IC= 1675 mAh g^-1 ), a high-rate capability of 623 mAh g-l at 2 C, and a small decay of 0.13% per cycleover 300 cycles at 0.2 C. This excellent rate capability and remarkable long-term cyclability of the HPNC-Selectrode are attributed to its hierarchical porous structures for confining the soluble lithium polysulfideas well as the nitrogen doping for high absorbability of lithium polysulfide.展开更多
Rational design of low-cost, highly electrocatalytic activity, and stable bifunctional electrocatalysts for oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) has been a great significant for metal–air...Rational design of low-cost, highly electrocatalytic activity, and stable bifunctional electrocatalysts for oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) has been a great significant for metal–air batteries. Herein, an efficient bifunctional electrocatalyst based on hollow cobalt oxide nanoparticles embedded in nitrogen-doped carbon nanosheets(Co/N-Pg) is fabricated for Zn–air batteries. A lowcost biomass peach gum, consisting of carbon, oxygen, and hydrogen without other heteroatoms, was used as carbon source to form carbon matrix hosting hollow cobalt oxide nanoparticles. Meanwhile, the melamine was applied as nitrogen source and template precursor, which can convert to carbon-based template graphitic carbon nitride by polycondensation process. Owing to the unique structure and synergistic effect between hollow cobalt oxide nanoparticles and Co-N-C species, the proposal Co/N-Pg catalyst displays not only prominent bifunctional electrocatalytic activities for ORR and OER, but also excellent durability. Remarkably, the assembled Zn–air battery with Co/N-Pg air electrode exhibited a low discharge-charge voltage gap(0.81 V at 50 mA cm^-2) and high peak power density(119 mW cm^-2) with long-term cycling stability. This work presents an effective approach for engineering transition metal oxides and nitrogen modified carbon nanosheets to boost the performance of bifunctional electrocatalysts for Zn–air battery.展开更多
The impregnation of a special grade PAN precursor,fibers wus carried out in a 8 wt% KMnO4 aqueous solution to obtain modified PAN precursor fibers. The effects of modification on the chemical stncture and the mechani...The impregnation of a special grade PAN precursor,fibers wus carried out in a 8 wt% KMnO4 aqueous solution to obtain modified PAN precursor fibers. The effects of modification on the chemical stncture and the mechanical properties of precursor fibers thermally stabilized and their resulting carbon fibers u'ere characterized by the combiination use of densities, wide-angle X-ray diffraction (WAXD), X-ray photoelectron speetroscopy (XPS), elemental analysis ( EA ), Fourier traasform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM), etc.KMnO4 as a strong oxidizer can swell, oxidize and corrode the skin of a precursor.fiber, and transform C≡N groups to C≡N ones, meamchile , it can decreuse the crystal .size increuse the orientation index and the costallinity index, furthermore it can increuse the densities of modified PAN precursors and resuhing thermally stabilized fibers. As a result, the carbon fibers developed from modified PAN fibers show an improvement in tensile strength of 31.25 % and an improvement in elongation of 77.78 % , but a decrease of 16. 52% in Young's modulus.展开更多
基金supported by the Federal Target Program "Scientific and Educational Personnel of Innovative Russia" 2009–2013 (Agreement 8429)RFBR Grant No 12-03-01091-a+2 种基金Presidium RAS (Project 2451)Presidium SB RAS (Project 36)Integration Research Projects SB RAS No 75
文摘Changes of a 65Ni25Cu10A1203 catalyst consisting of Ni-enriched and Cu-enriched alloys were investigated in the bulk and on the surface during the growth of nitrogen-doped carbon nanofibers (N-CNFs) by decomposition of a 50%C2I-I4/50%NH3 mixture using in situ X-ray diffraction (XRD) analysis, ex situ X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) techniques. It was shown that N-CNF growth at 450-650 ℃is accompanied by dissolution of carbon and nitrogen in the Ni-enriched alloy, whereas Cu-enriched alloy remains inactive. A correlation between nickel and copper surface concentrations and properties of N-CNFs in relation to the nitrogen content was found. It was demonstrated that phase composition of the catalyst during N-CNF growth determines the type of N-CNFs structure.
基金This work was financially supported by National Key Research and Development Program(2018YFB1502503).
文摘The oxygen reduction reaction(ORR)electrocatalytic activity of Pt-based catalysts can be significantly improved by supporting Pt and its alloy nanoparticles(NPs)on a porous carbon support with large surface area.However,such catalysts are often obtained by constructing porous carbon support followed by depositing Pt and its alloy NPs inside the pores,in which the migration and agglomeration of Pt NPs are inevitable under harsh operating conditions owing to the relatively weak interaction between NPs and carbon support.Here we develop a facile electrospinning strategy to in-situ prepare small-sized PtZn NPs supported on porous nitrogen-doped carbon nanofibers.Electrochemical results demonstrate that the as-prepared PtZn alloy catalyst exhibits excellent initial ORR activity with a half-wave potential(E_(1/2))of 0.911 V versus reversible hydrogen electrode(vs.RHE)and enhanced durability with only decreasing 11 mV after 30,000 potential cycles,compared to a more significant drop of 24 mV in E_(1/2)of Pt/C catalysts(after 10,000 potential cycling).Such a desirable performance is ascribed to the created triple-phase reaction boundary assisted by the evaporation of Zn and strengthened interaction between nanoparticles and the carbon support,inhibiting the migration and aggregation of NPs during the ORR.
基金Natural Science Foundation for Distinguished Young Scholars of Zhejiang Province,Grant/Award Number:LR20E020001Foundation of State Key Laboratory of Coal Conversion,Grant/Award Number:J20-21-909+4 种基金Science and Technology Department of Zhejiang Province,Grant/Award Number:2023C01231National Natural Science Foundation of China,Grant/Award Numbers:52372235,52073252,52002052,22379020,U20A20253,21972127,22279116Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment,Grant/Award Number:SKLPEE-KF202206Key Research and Development Project of Science and Technology Department of Sichuan Province,Grant/Award Number:2022YFSY0004Ministry of Education,Grant/Award Number:KFM 202202。
文摘Ingenious design and fabrication of advanced carbon-based sulfur cathodes are extremely important to the development of high-energy lithium-sulfur batteries,which hold promise as the next-generation power source.Herein,for the first time,we report a novel versatile hyphae-mediated biological assembly technology to achieve scale production of hyphae carbon fibers(HCFs)derivatives,in which different components including carbon,metal compounds,and semiconductors can be homogeneously assembled with HCFs to form composite networks.The mechanism of biological adsorption assembly is also proposed.As a representative,reduced graphene oxides(rGOs)decorated with hollow carbon spheres(HCSs)successfully co-assemble with HCFs to form HCSs@rGOs/HCFs hosts for sulfur cathodes.In this unique architecture,not only large accommodation space for sulfur but also restrained volume expansion and fast charge transport paths are realized.Meanwhile,multiscale physical barriers plus chemisorption sites are simultaneously established to anchor soluble lithium polysulfides.Accordingly,the designed HCSs@rGOs/HCFs-S cathodes deliver a high capacity(1189 mA h g^(-1)at 0.1 C)and good high-rate capability(686 mA h g^(-1)at 5 C).Our work provides a new approach for the preparation of high-performance carbon-based electrodes for energy storage devices.
文摘Potassium-ion batteries(KIBs)have been seen as a competitive alternative to lithium-ion batteries(LIBs)due to their natural abundance,low cost and rocking chair-like operating mechanism similar to LIBs.Soft carbon has a lower voltage plateau compared to hard carbon and an easily modulated lattice structure compared to graphite,which provides particular advantages in KIBs anodes.Pitch has attracted much attention as a simple,readily available and inexpensive precursor for soft carbon,but its structure is easily damaged during cycling.Herein,the flexible film Pitch@CNF are prepared by uniformly winding reticulated carbon fibers on the surface of pitch-soft carbon via electrostatic spinning technique,which not only enables the pitch to maintain its structure well during cycling and withstand the volume expansion upon K^(+) insertion,but also is conducive to ionic transport of the three-dimensional reticulated structure.Meanwhile,the abundant pores on the carbon fibers can provide more K^(+) active sites.The prepared flexible self-supporting films can be used directly as electrodes without the addition of binders and conductive agents.The reversible capacity is 290 mAh·g^(-1)at a current density of 0.1 A·g^(-1),and the capacity retention rate is 83%after 500 cycles.
基金Supported by Innovation and Technology Fund (No.ITP/045/19AP)Commercial Research&Development (CRD) Funding Supported by Hong Kong Productivity Council (No.10008787)。
文摘We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surface layers. After cross-section observation of the Al/CFs composite sheet, we found that the CFs discretely distributed within the sandwich layer. Besides, the tensile test showed that the contribution of the sandwich CFs layer to tensile strength was less than 11% compared with annealed pure Al sheet. With ex-situ observation of the CFs breakage evolution with-16%,-32%, and-45% rolling reduction during the ARB process, the plastic instability of the Al layer was found to bring shear damages to the CFs. At last, the bridging strengthening mechanism introduced by CFs was sacrificed. We provide new insight into and instruction on Al/CFs composite sheet preparation method and processing parameters.
基金supported by the National Natural Science Foundation of China(No.51907193,51822706,and 51777200)the Key Research Program of Frontier Sciences,CAS(No.ZDBS-LY-JSC047)the Youth Innovation Promotion Association,CAS(No.2020145)
文摘Carbon nanofiber(CNF)was widely utilized in the field of electrochemical energy storage due to its superiority of conductivity and mechanics.However,CNF was generally prepared at relatively high temperature.Herein,nitrogen-doped hard carbon nanofibers(NHCNFs)were prepared by a lowtemperature carbonization treatment assisted with electrospinning technology.Density functional theory analysis elucidates the incorporation of nitrogen heteroatoms with various chemical states into carbon matrix would significantly alter the total electronic configurations,leading to the robust adsorption and efficient diffusion of Na atoms on electrode interface.The obtained material carbonized at 600°C(NHCNF-600)presented a reversible specific capacity of 191.0 mAh g^(−1)and no capacity decay after 200 cycles at 1 A g^(−1).It was found that the sodium-intercalated degree had a correlation with the electrochemical impedance.A sodium-intercalated potential of 0.2 V was adopted to lower the electrochemical impedance.The constructed sodium-ion capacitor with activated carbon cathode and presodiated NHCNF-600 anode can present an energy power density of 82.1 Wh kg^(−1)and a power density of 7.0 kW kg^(−1).
基金Project (2006CB600903) supported by the National Basic Research Program of ChinaProject (2010GK3208) supported by Science and Technology Program of Hunan Province, China
文摘Ni-Fe alloy was electrodeposited on the surface of polyacrylonitrile (PAN)-based carbon fibers, and catalytic graphitization effect of the heat-treated carbon fibers was investigated by X-ray diffractometry and Raman spectra. It is found that Ni-Fe alloy exhibits significant catalytic effect on the graphitization of the carbon fibers at low temperatures. The degree of graphitization of the carbon fibers coated with Ni-Fe alloy (57.91% Fe, mass fraction) reaches 69.0% through heat treatment at 1 250 °C. However, the degree of graphitization of the carbon fibers without Ni-Fe alloy is only 30.1% after being heat-treated at 2 800 °C. The catalytic effect of Ni-Fe alloy on graphitization of carbon fibers is better than that of Ni or Fe at the same temperature, indicating that Ni and Fe elements have synergic catalytic function. Furthermore, Fe content in the Ni-Fe alloy also influences catalytic effect. The catalytic graphitization of Ni-Fe alloy follows the dissolution-precipitation mechanism.
基金Project(JCYJ20120618164543322)supported by Strategic Emerging Industries Program of Shenzhen,ChinaProject(2013JSJJ027)supported by the Teacher Research Fund of Central South University,China
文摘Vapor-grown carbon fibers (VGCFs) were introduced as conductive additives for sulfur-multiwalled carbon nanotubes (S-MWCNTs) composite cathode of lithium-sulfur batteries. The performance of S-MWCNTs composite cathodes with carbon black and VGCFs as sole conductive additives was investigated using scanning electron microscopy (SEM), galvanostatic charge-discharge tests and electrochemical impedance spectroscopy (EIS). The results show that the S-MWCNTs composite cathode with VGCFs displays a network-like morphology and exhibits higher activity and better cycle durability compared with the composite cathode with carbon black, delivering an initial discharge capacity of 1254 mA·h/g and a capacity of 716 mA·h/g after 40 cycles at 335 mA/g. The interconnected VGCFs can provide a stable conductive network, suppress the aggregation of cathode materials and residual lithium sulfide and maintain the porosity of cathode, and therefore the electrochemical performance of S-MWCNTs composite cathode is enhanced.
基金supported by the National Natural Science Foundation of China(21473089,51232003,21373108,51571110,21573107)the Nation-al Basic Research Program of China(973 Program,2013CB932902)+2 种基金Suzhou Science and Technology Projects(ZXG2013025)Changzhou Science and Technology Projects(CE20130032)supported by a Project Funded by the Technology Support Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Hierarchical nitrogen-doped carbon nanocages (hNCNC) with large specific surface areas were used as a catalyst support to immobilize Pt nanoparticles by a microwave-assisted polyol method. The Pt/hNCNC catalyst with 20 wt% loading has a homogeneous dispersion of Pt nanoparticles with the average size of 3.3 nm, which is smaller than 4.3 and 4.9 nm for the control catalysts with the same loading supported on hierarchical carbon nanocages (hCNC) and commercial Vulcan XC-72, respec- tively. Accordingly, Pt/hNCNC has a larger electrochemical surface area than Pt/hCNC and Pt/XC-72. The Pt/hNCNC catalyst exhibited excellent electrocatalytic activity and stability for methanol oxidation, which was better than the control catalysts. This was attributed to the en- hanced interaction between Pt and hNCNC due to nitrogen participation in the anchoring function. By making use of the unique advantages of the hNCNC support, a heavy Pt loading up to 60 wt% was prepared without serious agglomeration, which gave a high peak-current density per unit mass of catalyst of 95.6 mA/mg for achieving a high power density. These results showed the potential of the Pt/hNCNC catalyst for methanol oxidation and of the new hNCNC support for wide applications.
基金supported by the National Natural Science Foundation of China (21375088,21575090)Scientific Research Project of Beijing Educational Committee (KM201410028006)+1 种基金Scientific Research Base Development Program of the Beijing Municipal Commission of EducationYouth Talent Project of the Beijing Municipal Commission of Education (CIT & TCD201504072)~~
文摘The oxygen reduction reaction (ORR) is traditionally performed using noble‐metals catalysts, e.g. Pt. However, these metal‐based catalysts have the drawbacks of high costs, low selectivity, poor stabili‐ties, and detrimental environmental effects. Here, we describe metal‐free nitrogen‐doped carbon nanoblocks (NCNBs) with high nitrogen contents (4.11%), which have good electrocatalytic proper‐ties for ORRs. This material was fabricated using a scalable, one‐step process involving the pyrolysis of tris(hydroxymethyl)aminomethane (Tris) at 800℃. Rotating ring disk electrode measurements show that the NCNBs give a high electrocatalytic performance and have good stability in ORRs. The onset potential of the catalyst for the ORR is-0.05 V (vs Ag/AgCl), the ORR reduction peak potential is-0.20 V (vs Ag/AgCl), and the electron transfer number is 3.4. The NCNBs showed pronounced electrocatalytic activity, improved long‐term stability, and better tolerance of the methanol crosso‐ver effect compared with a commercial 20 wt%Pt/C catalyst. The composition and structure of, and nitrogen species in, the NCNBs were investigated using Fourier‐transform infrared spectroscopy, scanning electron microscopy, X‐ray photoelectron spectroscopy, and X‐ray diffraction. The pyroly‐sis of Tris at high temperature increases the number of active nitrogen sites, especially pyridinic nitrogen, which creates a net positive charge on adjacent carbon atoms, and the high positive charge promotes oxygen adsorption and reduction. The results show that NCNBs prepared by pyrolysis of Tris as nitrogen and carbon sources are a promising ORR catalyst for fuel cells.
基金Project supported by the National Natural Science Foundation of China (50275093)
文摘Carbon fibers (CF) were surface treated with air-oxidation and rare earths (RE), respectively. The effect of RE surface treatment on tensile strength and tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites was invest/gated. Experimental results revealed that RE was superior to air ox/dation in improving the tensile strength, elongation, and the tensile modulus of CF reinforced PTFE (CF/PTFE) composite. Compared to the untreated and air-oxidated CF/PTFE composite, the RE treated composite had the lowest friction coefficient and specific wear rate under a given applied load and reciprocating sliding frequency. The RE treatment effectively improved the interfacial adhesion between CF and PTFE. With strong interfacial coupling, the carbon fibers carried most of the load, and direct contact and adhesion between PTFE and the counterpart were reduced, accordingly the friction and wear properties of the composite were improved.
文摘Micro-coiled chiral carbon fibers are modified by nano-Ni. X-ray diffraction (XRD) and scanning electron microscopy (SEM) are used to compare the composition and morphology of the unmodified and the modified fibers. The results show that electromagnetism parameters of the modified are different from those of the unmodified. After modification by nano-Ni, the micro-coiled chiral carbon fibers have decreased permittivity and electrical loss. The permeability and magnetic loss of the modified carbon fibers become larger than those of the unmodified ones. Moreover, the modification of unmodified chiral carbon fibers into the modified is much like changing hollow electric windings into those with magnetic cores inside. The modifier intensifies the cross polarization of the chiral carbon fibers and makes the permittivity and the permeability get closer to each other which improves the matching performance and enhances absorbability of coatings. In the range of 6-18 GHz, the reflectivity of the coating is 6-8dB and the bandwidth is 12 GHz. The area density of the coating is below 3 kg/m^2.
基金the Outstanding Youth Foundation of Hubei Province(No.2004ABB019)Program for New Century Excellent Talents in University,China(No.NCET-05-0665)
文摘The self-monitoring application of asphalt concrete containing graphite and carbon fibers using indirect tensile test and wheel rolling test were introduced. The experiment results indicate that this kind of pitch-based composite is effective for strain/stress self-monitoring. In the indirect tensile test, for a completely conductive asphalt concrete specimen, the piezoresistivity was very weak and slightly positive, which meant the resistivity increase with the increment of tensile strain at all stress/strain amplitudes, with the gage factor as high as 6. The strain self-sensing ability was superior in the case of higher graphite content. However, when the conductive concrete was embedded into common asphalt concrete specimen as a partial structure function, the piezoresistivity was positive at all stress/strain amplitudes and with the gage factor of 13, which was much higher than that of completely conductive specimen. Thus, the strain self-sensing ability was superior when conductive asphalt concrete was taken in as a partial structure function. In the wheel-rolling test, the piezoresistivity was highly positive. At any stress amplitude, the piezoresistivity was strong, with the gage factor as high as 100, which was higher for a stress amplitude of 0.7 MPa than that of 0.5 MPa.
基金supported by the National Natural Science Foundation of China (No. 51702229, and No. 51525204)the National Key Basic Research Program of China (2014CB932400)
文摘Fiber supercapacitor(FSC)is a promising power source for wearable/stretchable electronics and high capacitive performance of FSCs is highly desirable for practice flexible applications.Here,we report a composite of manganese dioxide(Mn O_2)and activated carbon fibers(ACFs)with high MnO_2mass loading and microporous structure(abbreviated as Mn O_2@ACF),which is used as a fiber electrode to produce a FSC with a high capacitive performance and a good flexibility.The MnO_2@ACF composite electrode in FSCs delivers an ultrahigh specific capacitance of 410 mF/cm^2at 0.1 mA/cm^2,corresponding to a high energy density of 36μWh/cm^2and high power density of 726μW/cm^2.Such high capacitive performance and simple fabrication method indicates that the Mn O_2@ACF composite is a very promising electrode material for flexible fiber supercapacitors.
文摘To find out the high-quality polyacrylonitrile (PAN) fibers, some differences are sought by comparing domestic PAN fibers with the foreign ones. X-ray diffractometer (XRD), transmission electron microscope (TEM), Fourier transform infrared (FT-IR) spectrometer, elemental analyzer, tensile-testing machine and high-temperature differential scanning calorimeter (DSC) are used to characterize the individual microstructure, chemical structure, elemental content, mechanical properties and thermal properties. It is found that high-quality PAN fibers have high density, lower titre, higher or adequate tensile strength, and they also have better conglomeration structure, smaller crystal dimension with dispersive distribution, less microvoids and flaws.
基金funding support from the CASQueensland Collaborative Science Fund(121E32KYSB20160032)the National Natural Science Foundation of China(No.21403287,No.21433013,51402345,21773291)+1 种基金the National Key R&D Program of China(2016YFB0100100)the CAS-DOE Joint Research Program(121E32KYSB20150004)。
文摘Fiber-supercapacitors(FSCs)are promising power sources for miniature portable and wearable electronic devices.However,the development and practical application of these FSCs have been severely hindered by their low volumetric capacitance and narrow operating voltage.In this work,vertically aligned nickel cobalt sulfide(Ni Co2S4)nanowires grown on carbon nanotube(CNT)fibers were achieved through an in-situ two-step hydrothermal reaction method.The as-prepared Ni Co2S4@CNT fiber electrode exhibits a high volumetric capacitance of 2332 F cm-3,benefiting from its superior electric conductivity,large surface area,and rich Faradic redox reaction sites.Furthermore,a Ni Co2S4@CNT//VN@CNT(vanadium nitride nanosheets grown on CNT fibers)asymmetric fiber-supercapacitor(AFSC)was successfully fabricated.The device exhibits an operating voltage up to 1.6 V and a high volumetric energy density of 30.64m Wh cm-3.The device also possesses outstanding flexibility as evidenced by no obvious performance degradation under various bending angles and maintaining high capacitance after 5000 bending cycles.This work promotes the practical application of flexible wearable energy-storage devices.
基金supported by the National Natural Science Foundation of China (Nos. 21325417, 51533008)the MOST National Key Research and Development Plan (2016YFA0200200)+1 种基金the National Postdoctoral Program for Innovative Talents (No. BX201700209)the State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University (No. LK1403)
文摘Nanocarbon-based materials, such as carbon nanotubes(CNTs) and graphene have been attached much attention by scientific and industrial community. As two representative nanocarbon materials, one-dimensional CNTs and twodimensional graphene both possess remarkable mechanical properties. In the past years, a large amount of work have been done by using CNTs or graphene as building blocks for constructing novel, macroscopic, mechanically strong fibrous materials. In this review, we summarize the assembly approaches of CNT-based fibers and graphene-based fibers in chronological order, respectively. The mechanical performances of these fibrous materials are compared, and the critical influences on the mechanical properties are discussed. Personal perspectives on the fabrication methods of CNT-and graphene-based fibers are further presented.
基金financially supported by the National Key Research and Development Program of China (2016YFB0101202)the NSFC of China (Grants 91534205,21436003 and 21576031)Graduate Research and Innovation Foundation of Chongqing China (Grant No.CYB17021)
文摘Porous nitrogen-doped carbon is an especially promising material energy storage due to its excellentconductivity, stable physicochemical properties, easy processability, controllable porosity and low price.Herein, we reported a novel well-designed hierarchically porous nitrogen-doped carbon (HPNC) via acombination of salt template (ZnC12) and hard template (SiO2) as sulfur host for lithium-sulfur batter-ies. The low-melting ZnC12 is boiled off and leaves behind micropores and small size mesopores duringpyrolysis process, while the silica spheres are removed by acid leaching to generate interconnected 3Dnetwork of macropores. The HPNC-S electrode exhibits an initial specific capacity of 1355 mAh g^-l at 0.IC (IC= 1675 mAh g^-1 ), a high-rate capability of 623 mAh g-l at 2 C, and a small decay of 0.13% per cycleover 300 cycles at 0.2 C. This excellent rate capability and remarkable long-term cyclability of the HPNC-Selectrode are attributed to its hierarchical porous structures for confining the soluble lithium polysulfideas well as the nitrogen doping for high absorbability of lithium polysulfide.
基金financially supported by the National Natural Science Foundation of China (Nos. 21506081, 21705058, 21676126)the Provincial Natural Science Foundation of Jiangsu (Nos. BK20170524, BK20160492)+2 种基金China Postdoctoral Science Foundation (No. 2018T110450)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education InstitutionsThe financial support from an ARC Discovery Project (No. DP180102003)
文摘Rational design of low-cost, highly electrocatalytic activity, and stable bifunctional electrocatalysts for oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) has been a great significant for metal–air batteries. Herein, an efficient bifunctional electrocatalyst based on hollow cobalt oxide nanoparticles embedded in nitrogen-doped carbon nanosheets(Co/N-Pg) is fabricated for Zn–air batteries. A lowcost biomass peach gum, consisting of carbon, oxygen, and hydrogen without other heteroatoms, was used as carbon source to form carbon matrix hosting hollow cobalt oxide nanoparticles. Meanwhile, the melamine was applied as nitrogen source and template precursor, which can convert to carbon-based template graphitic carbon nitride by polycondensation process. Owing to the unique structure and synergistic effect between hollow cobalt oxide nanoparticles and Co-N-C species, the proposal Co/N-Pg catalyst displays not only prominent bifunctional electrocatalytic activities for ORR and OER, but also excellent durability. Remarkably, the assembled Zn–air battery with Co/N-Pg air electrode exhibited a low discharge-charge voltage gap(0.81 V at 50 mA cm^-2) and high peak power density(119 mW cm^-2) with long-term cycling stability. This work presents an effective approach for engineering transition metal oxides and nitrogen modified carbon nanosheets to boost the performance of bifunctional electrocatalysts for Zn–air battery.
基金Founded by the National Natural Science Foundation of China(No.50333070)
文摘The impregnation of a special grade PAN precursor,fibers wus carried out in a 8 wt% KMnO4 aqueous solution to obtain modified PAN precursor fibers. The effects of modification on the chemical stncture and the mechanical properties of precursor fibers thermally stabilized and their resulting carbon fibers u'ere characterized by the combiination use of densities, wide-angle X-ray diffraction (WAXD), X-ray photoelectron speetroscopy (XPS), elemental analysis ( EA ), Fourier traasform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM), etc.KMnO4 as a strong oxidizer can swell, oxidize and corrode the skin of a precursor.fiber, and transform C≡N groups to C≡N ones, meamchile , it can decreuse the crystal .size increuse the orientation index and the costallinity index, furthermore it can increuse the densities of modified PAN precursors and resuhing thermally stabilized fibers. As a result, the carbon fibers developed from modified PAN fibers show an improvement in tensile strength of 31.25 % and an improvement in elongation of 77.78 % , but a decrease of 16. 52% in Young's modulus.