期刊文献+
共找到1,320篇文章
< 1 2 66 >
每页显示 20 50 100
Highly active and stable Co nanoparticles embedded in nitrogen-doped mesoporous carbon nanofibers for aqueous-phase levulinic acid hydrogenation 被引量:1
1
作者 Shuai Shao Ying Yang +5 位作者 Shangwei Guo Shijie Hao Feng Yang Suoying Zhang Yang Ren Yangchuan Ke 《Green Energy & Environment》 SCIE CSCD 2021年第4期567-577,共11页
Developing a highly active and durable non-noble metal catalyst for aqueous-phase levulinic acid(LA)hydrogenation to g-valerolactone(GVL)is an appealing yet challenging task.Herein,we report well-dispersed Co nanopart... Developing a highly active and durable non-noble metal catalyst for aqueous-phase levulinic acid(LA)hydrogenation to g-valerolactone(GVL)is an appealing yet challenging task.Herein,we report well-dispersed Co nanoparticles(NPs)embedded in nitrogen-doped mesoporous carbon nanofibers as an efficient catalyst for aqueous-phase LA hydrogenation to GVL.The Co zeolitic imidazolate framework(ZIF-67)nanocrystals were anchored on the sodium dodecyl sulfate modified wipe fiber(WF-S),yielding one-dimensional(1-D)structured composite(ZIF-67/WF-S).Subsequently,Co NPs were uniformly embedded in nitrogen-doped mesoporous carbon nanofibers(Co^(R)NC/SMCNF)through a pyrolysis-reduction strategy using ZIF-67/WF-S as the precursor.Benefiting from introducing modified wipe fiber WF-S to enhance the dispersion of Co NPs,and Co^(0) with Co-N_xdual active sites,the resulting Co^(R)NC/SMCNF catalyst shows brilliant catalytic activity(206 h^(-1) turnover frequency).Additionally,the strong metal-support interactions greatly inhibited the Co NPs from aggregation and leaching from the mesoporous carbon nanofibers,and thus increasing the reusability of the Co^(R)NC/SMCNF catalyst(reusable nine times without notable activity loss). 展开更多
关键词 Co nanoparticles mesoporous carbon nanofiber Dual active sites Aqueous levulinic acid hydrogenation High stability
下载PDF
Different non-radical oxidation processes of persulfate and peroxymonosulfate activation by nitrogen-doped mesoporous carbon 被引量:2
2
作者 Hai-Bin Qiu Pu-Can Guo +1 位作者 Li Yuan Guo-Ping Sheng 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第10期2614-2618,共5页
Activated persulfate oxidation is an emerging advanced oxidation process for organic pollutant degradation.Own to different molecular structures and oxidation potentials,persulfate(PDS)and peroxymonosulfate(PMS)may sh... Activated persulfate oxidation is an emerging advanced oxidation process for organic pollutant degradation.Own to different molecular structures and oxidation potentials,persulfate(PDS)and peroxymonosulfate(PMS)may show different degradation performances due to various catalytic mechanisms even by the same catalysts.In this study,the nitrogen-doped mesoporous carbon(N-OMC)was applied to activate PDS and PMS for degrading a model organic pollutant phenol to reveal their activation mechanisms.Re sults show that both PDS and PMS could be efficiently activated by N-OMC.The degradation of phenol fitted well with pseudo-first-order kinetics,whose kinetic constants increased with the increase of pH,PDS/PMS dosage,and N-OMC dosage.Based on quenching experiments and electron spin resonance spin-trapping technique,the N-OMC was found to activate PDS and PMS via nonradical process of electron transfer and singlet oxygen formation,respectively,instead of the commonly observed radical process.This wo rk will be useful to understand the activation processes of PDS and PMS,and benefit for the development of catalysts for pollutant degradation. 展开更多
关键词 nitrogen-doped mesoporous carbon PERSULFATE PEROXYMONOSULFATE Non-radical process Electron transfer Singlet oxygen formation
原文传递
Electrocatalytic hydrogen peroxide formation on mesoporous non-metal nitrogen-doped carbon catalyst 被引量:6
3
作者 Frédéric Hasché Mehtap Oezaslan +1 位作者 Peter Strasser Tim-Patrick Fellinger 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第2期249-255,共7页
Direct electrochemical formation of hydrogen peroxide(H2O2) from pure O2 and H2on cheap metal-free earth abundant catalysts has emerged as the highest atom-efficient and environmentally friendly reaction pathway and... Direct electrochemical formation of hydrogen peroxide(H2O2) from pure O2 and H2on cheap metal-free earth abundant catalysts has emerged as the highest atom-efficient and environmentally friendly reaction pathway and is therefore of great interest from an academic and industrial point of view. Very recently,novel metal-free mesoporous nitrogen-doped carbon catalysts have attracted large attention due to the unique reactivity and selectivity for the electrochemical hydrogen peroxide formation [1–3]. In this work,we provide deeper insights into the electrocatalytic activity, selectivity and durability of novel metal-free mesoporous nitrogen-doped carbon catalyst for the peroxide formation with a particular emphasis on the influence of experimental reaction parameters such as p H value and electrode potential for three different electrolytes. We used two independent approaches for the investigation of electrochemical hydrogen peroxide formation, namely rotating ring-disk electrode(RRDE) technique and photometric UV–VIS technique. Our electrochemical and photometric results clearly revealed a considerable peroxide formation activity as well as high catalyst durability for the metal-free nitrogen-doped carbon catalyst material in both acidic as well as neutral medium at the same electrode potential under ambient temperature and pressure. In addition, the obtained electrochemical reactivity and selectivity indicate that the mechanisms for the electrochemical formation and decomposition of peroxide are strongly dependent on the p H value and electrode potential. 展开更多
关键词 Electrochemical hydrogen peroxide FORMATION SELECTIVITY mesoporous nitrogen-doped carbon Green synthesis ELECTROCATALYSIS Metal-free catalysis
下载PDF
Nitrogen-doped ordered mesoporous carbon:Effect of carbon precursor on oxygen reduction reactions 被引量:5
4
作者 Xiao-hua Li Kai Wan +3 位作者 Quan-bing Liu Jin-hua Piao Yu-ying Zheng Zhen-xing Liang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第9期1562-1568,共7页
Aniline,pyrrole and phenanthroline,which have different nitrogen compositions,are used as carbon precursors to synthesize nitrogen-doped ordered mesoporous carbons(NOMCs) by the nanocasting method.The effect of the ... Aniline,pyrrole and phenanthroline,which have different nitrogen compositions,are used as carbon precursors to synthesize nitrogen-doped ordered mesoporous carbons(NOMCs) by the nanocasting method.The effect of the precursor on the resultant NOMC is extensively investigated by nitrogen adsorption-desorption measurements,scanning electron microscopy,X-ray photoelectron spectroscopy(XPS),cyclic voltammetry and rotating ring-disk electrode measurements.Salient findings are as follows.First,the precursor has a significant influence on the specific surface area and textural properties.The NOMC materials derived from pyrrole(C-PY-900:765 m^2/) and phenanthroline(C-Phen-900:746 m^2/) exhibit higher specific surface areas than the aniline analog(C-PA-900:569 m^2/).Second,the XPS results indicate that the total nitrogen content(ca.3.1–3.3 at%) is similar for the three carbon sources,except for a slight difference in the nitrogen configuration.Furthermore,the content of the nitrogen-activated carbon atoms is found to closely depend on the precursor,which is the highest for the phenanthroline-derived carbon.Third,the electrochemical results reveal that the electrocatalytic activity follows in the order C-PA-900 C-PY-900 C-Phen-900,confirming that the nitrogen-activated carbon atoms are the active sites for the oxygen reduction reaction(ORR).In summary,the precursor has considerable influence on the composition and textural properties of the NOMC materials,of which the ORR electrocatalytic activity can be enhanced through optimization of the NOMCs. 展开更多
关键词 ELECTROCATALYSIS Fuel cell nitrogen-doped ordered mesoporous carbon Oxygen reduction reaction PRECURSOR
下载PDF
Two-dimensional Nitrogen-doped Mesoporous Carbon/Graphene Nanocomposites from the Self-assembly of Block Copolymer Micelles in Solution 被引量:6
5
作者 Nan Wang Hao Tian +2 位作者 Shu-Yan Zhu De-Yue Yan Yi-Yong Mai 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2018年第3期266-272,共7页
The self-assembly of block copolymer in solution has proven to be an effective strategy for building up a wide range of nanomaterials with diverse structures and applications.This paper reports a facile self-assembly ... The self-assembly of block copolymer in solution has proven to be an effective strategy for building up a wide range of nanomaterials with diverse structures and applications.This paper reports a facile self-assembly approach towards two-dimensional(2D)sandwich-like mesoporous nitrogen-doped carbon/reduced graphene oxide nanocomposites(denoted as mNC/rGO)with well-defined large mesopores.The strategy involves the synergistic self-assembly ofpolystyrene-block-poly(ethylene oxide)(PS-b-PEO)spherical micelles,m-phenylenediamine(mPD)monomers and GO in solution and the subsequent carbonization at 900~C.The resultant mNC/rGO nanosheets have an average pore size of 19 nm,a high specific surface of 812 m^(2)'g^(-1)and a nitrogen content of 2.2 wt%.As an oxygen reduction reaction(ORR)catalyst,the unique structural features render the metal-free nanosheets excellent electrocatalytic performance.In a 0.1 mol.L-~KOH alkaline medium,mNC/rGO exhibits a four-electron transfer pathway with a high half-wave-potential(El/2)of+0.77 V versus reversible hydrogen electrode(RHE)and a limiting current density(JL)of 5.2 mA'cm^(-2),which are well comparable with those of the commercial Pt/C catalysts. 展开更多
关键词 Block copolymer SELF-ASSEMBLY 2D materials mesoporous carbon ORR
原文传递
Nitrogen-doped cobalt nanoparticles/nitrogen-doped plate-like ordered mesoporous carbons composites as noble-metal free electrocatalysts for oxygen reduction reaction 被引量:2
6
作者 Vincent Mirai Bau Xiangjie Bo Liping Guo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第1期63-71,共9页
In this work, nitrogen-doped cobalt nanoparticlesinitrogen-doped plate-like ordered mesoporous carbons (N/Co/OMCs) were used as noble-metal free electrocatalysts with high catalytic efficiency. Compared with OMCs with... In this work, nitrogen-doped cobalt nanoparticlesinitrogen-doped plate-like ordered mesoporous carbons (N/Co/OMCs) were used as noble-metal free electrocatalysts with high catalytic efficiency. Compared with OMCs with long channel length, due to more entrances for catalytic target accessibility and a short pathway for rapid diffusion, the utilization efficiency of cobalt nanoparticles inside the plate-like OMCs with short pore length is well improved, which can take full advantage of porous structure in electrocatalysis and increase the utilization of catalysts. The active sites in N/Co/OMCs for oxygen reduction reaction (ORR) are highly exposed to oxygen molecule, which results in a high activity for ORR. By combination of the catalytic properties of nitrogen dopant, incorporation of Co nanoparticles, and structural properties of OMCs, the N/Co/plate-like OMCs are highly active noble-metal free catalysts for ORR in alkaline solution. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved. 展开更多
关键词 Ordered mesoporous carbons Nitrogen doping Cobalt nanoparticles Oxygen reduction reaction
下载PDF
NiPS_(3)quantum sheets modified nitrogen-doped mesoporous carbon with boosted bifunctional oxygen electrocatalytic performance 被引量:8
7
作者 Kai Huang Yuyang Xu +7 位作者 Yanpeng Song Ruyue Wanga Hehe Wei Yuanzheng Long Ming Lei Haolin Tang Jiangang Guo Hui Wu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第6期1-6,共6页
Electrocatalysts for oxygen reduction reactions(ORR)and oxygen evolution reactions(OER)are highly crucial and challenging toward the energy storage and conversion technologies such as fuel cells,metal-air batteries an... Electrocatalysts for oxygen reduction reactions(ORR)and oxygen evolution reactions(OER)are highly crucial and challenging toward the energy storage and conversion technologies such as fuel cells,metal-air batteries and water electrolysis.To replace noble-metal based catalysts and boost catalytic performance of carbon-based materials,we initially develop the nickel,phospho rus,sulfur and nitrogen co-modified mesoporous carbon(NiPS_(3)@NMC)as a bifunctional oxygen electrocatalyst.The perfo rmance for ORR(half-wave potential at 0.90 V)and OER(10 mA cm^(-2)at 1.48 V)surpasses those of Pt/C coupled with IrO_(2)catalysts and most of the non-precious metal based bifunctional electrocatalysts reported in related literature.Moreover,the electrochemical durability is also confirmed by accelerated durability tests(ADTs)and long-term chronoamperometry(CA)tests.We demonstrated that the interfacial effect between NiPS_(3)quantum sheets(QS s)and NMC substrates by thermal activation contributed to the enhanced oxygen electrode bifunctionality with more active sites,due to the electrons-donating from nickel,phosphorus and sulfur elements and relatively enriched pyridinic type N.Such excellent overall performance highlights the potential application of NiPS3 QSs and NMC composites as the materials on energy conversion and storage. 展开更多
关键词 NiPS_(3)quantum sheets N-doped mesoporous carbon Bifunctional oxygen electrocatalysts Liquid exfoliation Thermal annealing
原文传递
Nitrogen-doped carbon encapsulated in mesoporous TiO2 nanotubes for fast capacitive sodium storage 被引量:3
8
作者 Baosong Li Shoaib Anwer +3 位作者 Xinhua Huang Shaohong Luo Jing Fu Kin Liao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期202-210,共9页
Controllable synthesis of insertion-type anode materials with beneficial micro-and nanostructures is a promising approach for the synthesis of sodium-ion storage devices with high-reactivity and excellent electrochemi... Controllable synthesis of insertion-type anode materials with beneficial micro-and nanostructures is a promising approach for the synthesis of sodium-ion storage devices with high-reactivity and excellent electrochemical performance.In this study,we developed a sacrificial-templating route to synthesize TiO_(2)@N-doped carbon nanotubes(TiO_(2)@NC-NTs)with excellent electrochemical performance.The asprepared mesoporous TiO_(2)@NC-NTs with tiny nanocrystals of anatase TiO_(2) wrapped in N-doped carbon layers showed a well-defined tube structure with a large specific surface area of 198 m^(2) g^(-1) and a large pore size of~5 nm.The TiO_(2)@NC-NTs delivered high reversible capacities of 158 m A h g^(-1) at 2 C(1 C=335 m A g^(-1))for 2200 cycles and 146 m A h g^(-1) at 5 C for 4000 cycles,as well as an ultrahigh rate capability of up to 40 C with a capacity of 98 m A h g^(-1).Even at a high current density of 10 C,a capacity of 138 m A h g^(-1) could be delivered over 10,000 cycles.Thus,the synthesis of mesoporous TiO_(2)@NC-NTs was demonstrated to be an efficient approach for developing electrode materials with high sodium storage and long cycle life. 展开更多
关键词 TiO2 nanotubes MoO3 template nitrogen-doped carbon ANODE Sodium-ion battery
下载PDF
Controllable assembly of nitrogen-doped mesoporous carbon with different pore structures onto CNTs for excellent lithium storage 被引量:2
9
作者 Haitao Li Xiao Fang +3 位作者 Fengting Lv Wei Yu Hui Cheng Haijiao Zhang 《Nano Research》 SCIE EI CSCD 2023年第3期3879-3887,共9页
Mesoporous carbon nanomaterials have shown a great application potential in energy storage and conversion fields due to their outstanding conductivity,tunable pore structure,and good chemical stability.Nevertheless,ho... Mesoporous carbon nanomaterials have shown a great application potential in energy storage and conversion fields due to their outstanding conductivity,tunable pore structure,and good chemical stability.Nevertheless,how to accurately control the pore structure,especially directly assembling the mesoporous carbon onto different substrates remains a big challenge.Herein,we have successfully assembled two kinds of highly nitrogen-doped mesoporous carbon onto carbon nanotubes(NMC/CNTs)based on a facile cooperative assembly process assisted by triblock PEO_(20)PPO_(70)PEO_(20)(P123)and PEO_(106)PPO_(70)PEO_(106)(F127)copolymers.The experimental results indicate that the P_(123)/F_(127)mass ratio has a profound effect on the pore structure,leading to the formation of NMC/CNTs composites with spherical pore structure(S-NMC/CNTs)and cylindrical pore structure(CNMC/CNTs).In virtue of fast electron/ion transfer kinetics,the as-prepared S-NMC/CNTs anode demonstrates an excellent electrochemical performance for lithium-ion batteries,and it delivers a high reversible capacity of 588.1 mAh∙g^(−1)at the current of 0.1 A∙g^(−1)after 100 cycles,along with a superior cycling stability.Specifically noted,the controlled assembly route developed in our work can also be applied to other support materials with different structures and compositions. 展开更多
关键词 mesoporous carbon carbon nanotubes controllable assembly formation mechanism lithium-ion batteries
原文传递
Hierarchically nitrogen-doped mesoporous carbon nanospheres with dual ion adsorption capability for superior rate and ultra-stable zinc ion hybrid supercapacitors 被引量:2
10
作者 Zhongyou Peng Junxi Guo +3 位作者 Qichang He Shulong Li Licheng Tan Yiwang Chen 《Science China Materials》 SCIE EI CAS CSCD 2022年第9期2401-2411,共11页
Although significant progress has been achieved in developing high energy aqueous zinc ion hybrid supercapacitors(ZHSCs),the sluggish diffusion of zinc ion(Zn^(2+))and unsatisfactory cathodes still hinder their energy... Although significant progress has been achieved in developing high energy aqueous zinc ion hybrid supercapacitors(ZHSCs),the sluggish diffusion of zinc ion(Zn^(2+))and unsatisfactory cathodes still hinder their energy density and cycling life span.This work demonstrates the use of nitrogen-doped mesoporous carbon nanospheres(NMCSs)with appropriately hierarchical pore distribution and enhanced zinc ion storage capability for efficient Zn^(2+)storage.The asprepared aqueous ZHSC delivers a significant specific capacity of 157.8 mA h g^(-1),a maximum energy density of 126.2 W h kg^(-1) at 0.2 A g^(-1),and an ultra-high power density of 39.9 kW kg^(-1) with a quick charge time of 5.5 s.Furthermore,the ZHSC demonstrates an ultra-long cycling life span of 50,000 cycles with an exciting capacity retention of 96.2%.More interestingly,a new type of planar ZHSC is fabricated with outstanding low-temperature electrochemical performance,landmark volumetric energy density of 31.6 mW h cm^(-3),and excellent serial and parallel integration.Mechanism investigation verifies that the superior electrochemical capability is due to the synergistic effect of cation and anion adsorption,as well as the reversible chemical adsorption of NMCSs.This work provides not only an innovative strategy to construct and develop novel high-performance ZHSCs,but also a deeper understanding of the electrochemical characteristics of ZHSCs. 展开更多
关键词 mesoporous carbon nanospheres nitrogen doping dual ion adsorption anti-freezing electrolyte zinc ion hybrid supercapacitors
原文传递
Nitrogen-doped mesoporous carbon nanospheres loaded with cobalt nanoparticles for oxygen reduction and Zn–air batteries
11
作者 Lulu Chen Yelong Zhang Jianbo Jia 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第7期318-322,共5页
Mesoporous carbon supported with transition metals nanoparticles performs desired activities for oxygen reduction reaction(ORR) and clean energy conversion devices such as Zn–air batteries. In this work,we synthesize... Mesoporous carbon supported with transition metals nanoparticles performs desired activities for oxygen reduction reaction(ORR) and clean energy conversion devices such as Zn–air batteries. In this work,we synthesized N-doped mesoporous carbon loaded with cobalt nanoparticles(CoMCN) through selfassembly method. There are sufficient mesopores on the carbon substrate which stem from the poreforming agent. These mesopores can provide enough accessible active sites and profitable charge/mass transport for ORR. The high content of pyridinic and graphitic N is beneficial for promoting O_(2) adsorption and reduction. The smaller value of ID/IGindicates the higher degree of graphitization of CoMCN,providing better electronic conductivity. The half-wave potential of CoMCN is 0.865 V in basic solution,which is 24 mV more positive than that of the commercial Pt/C(0.841 V). In addition, CoMCN performs excellent methanol tolerance and stability under both basic and acidic conditions. The Zn–air battery assembled with CoMCN performs the larger power density and open-circuit voltage than the commercial Pt/C-based battery, indicating the potential application in energy conversion systems. This work provides thoughtful ideas for fabricating transition metal nanoparticles based porous carbon for electrocatalysis and metal–air batteries. 展开更多
关键词 nitrogen-doped carbon mesoporous carbon Metallic cobalt nanoparticles Oxygen reduction reaction Zn–air batteries
原文传递
Encapsulating polysulfide with high pyridinic nitrogen-doped ordered mesoporous carbons for long-life lithium-sulfur batteries
12
作者 TAN Yingbin LI Zhengzheng YANG Bing 《Baosteel Technical Research》 CAS 2021年第1期34-41,共8页
Rechargeable lithium-sulfur(Li-S)batteries are promising candidates for next-generation batteries because of their high theoretical specific capacity(1675 mAh/g)and specific energy(2600 Wh/kg);more-over,S is abundant,... Rechargeable lithium-sulfur(Li-S)batteries are promising candidates for next-generation batteries because of their high theoretical specific capacity(1675 mAh/g)and specific energy(2600 Wh/kg);more-over,S is abundant,inexpensive,non-toxic,and environment friendly.However,the inherent insulating nature of S,discharge products of Li 2S,and dissolution of Li polysulfides(LiPSs)severely limit the practical applications of Li-S batteries.In this study,an N-doped ordered mesoporous carbon(NOMC)with a large specific surface area and high pyridinic N content was successfully prepared via the hard templating method.The synergetic effects of physical nanoconfinement and chemisorption restricted the LiPSs dissolution in the electrolyte.Graphitic N improved the electrical conductivity of the C materials,and pyridinic N effectively adsorbed the LiPSs,thereby inhibiting the shuttling of polysulfides in the electrolyte.The obtained C material was used as an S host,and the resultant S@NOMC composite exhibited a first discharge capacity of 853 mAh/g.The capacity of the composite was retained at 679 mAh/g after 500 cycles at 1 C,which corresponds to a decay rate of 0.042%per cycle. 展开更多
关键词 pyridine nitrogen ordered mesoporous carbon POLYSULFIDES lithium-sulfur batteries
下载PDF
Enhanced activation of peroxymonosulfate by Fe/N co-doped ordered mesoporous carbon with dual active sites for efficient removal of m-cresol 被引量:1
13
作者 Donghui Li Wenzhe Wu +6 位作者 Xue Ren Xixi Zhao Hongbing Song Meng Xiao Quanhong Zhu Hengjun Gai Tingting Huang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期130-144,共15页
The novel Fe-N co-doped ordered mesoporous carbon with high catalytic activity in m-cresol removal was prepared by urea-assisted impregnation and simple pyrolysis method.During the preparation of the Fe-NC catalyst,th... The novel Fe-N co-doped ordered mesoporous carbon with high catalytic activity in m-cresol removal was prepared by urea-assisted impregnation and simple pyrolysis method.During the preparation of the Fe-NC catalyst,the complexation of N elements in urea could anchor Fe,and the formation of C3N4during urea pyrolysis could also prevent migration and aggregation of Fe species,which jointly improve the dispersion and stability of Fe.The FeN4sites and highly dispersed Fe nanoparticles synergistically trigger the dual-site peroxymonosulfate (PMS) activation for highly efficient m-cresol degradation,while the ordered mesoporous structure of the catalyst could improve the mass transfer rate of the catalytic process,which together promote catalytic degradation of m-cresol by PMS activation.Reactive oxygen species (ROS) analytic experiments demonstrate that the system degrades m-cresol by free radical pathway mainly based on SO_(4)^(-)·and·OH,and partially based on·OH as the active components,and a possible PMS activation mechanism by 5Fe-50 for m-cresol degradation was proposed.This study can provide theoretical guidance for the preparation of efficient and stable catalysts for the degradation of organic pollutants by activated PMS. 展开更多
关键词 Degradation PEROXYMONOSULFATE Fe(II)/Fe(III)/FeN4 Ordered mesopores carbon Catalyst Radical
下载PDF
Core-shell mesoporous carbon hollow spheres as Se hosts for advanced Al-Se batteries
14
作者 Haiping Lei Tianwei Wei +1 位作者 Jiguo Tu Shuqiang Jiao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期899-906,共8页
Incorporating a selenium(Se)positive electrode into aluminum(Al)-ion batteries is an effective strategy for improving the overall battery performance.However,the cycling stability of Se positive electrodes has challen... Incorporating a selenium(Se)positive electrode into aluminum(Al)-ion batteries is an effective strategy for improving the overall battery performance.However,the cycling stability of Se positive electrodes has challenges due to the dissolution of intermediate reaction products.In this work,we aim to harness the advantages of Se while reducing its limitations by preparing a core-shell mesoporous carbon hollow sphere with a titanium nitride(C@TiN)host to load 63.9wt%Se as the positive electrode material for Al-Se batteries.Using the physical and chemical confinement offered by the hollow mesoporous carbon and TiN,the obtained core-shell mesoporous carbon hollow spheres coated with Se(Se@C@TiN)display superior utilization of the active material and remarkable cycling stability.As a result,Al-Se batteries equipped with the as-prepared Se@C@TiN composite positive electrodes show an initial discharge specific capacity of 377 mAh·g^(-1)at a current density of 1000 mA·g^(-1)while maintaining a discharge specific capacity of 86.0 mAh·g^(-1)over 200 cycles.This improved cycling performance is ascribed to the high electrical conductivity of the core-shell mesoporous carbon hollow spheres and the unique three-dimensional hierarchical architecture of Se@C@TiN. 展开更多
关键词 aluminum-selenium batteries intermediate products core-shell mesoporous carbon hollow sphere cycling performance
下载PDF
Hard-carbon hybrid Li-ion/metal anode enabled by preferred mesoporous uniform lithium growth mechanism
15
作者 Fang Yan Yan Liu +11 位作者 Yuan Li Yan Wang Zicen Deng Meng Li Zhenwei Zhu Aohan Zhou Ting Li Jingyi Qiu Gaoping Cao Shaobo Huang Biyan Wang Hao Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期252-259,I0006,共9页
To achieve high energy density in lithium batteries,the construction of lithium-ion/metal hybrid anodes is a promising strategy.In particular,because of the anisotropy of graphite,hybrid anode formed by graphite/Li me... To achieve high energy density in lithium batteries,the construction of lithium-ion/metal hybrid anodes is a promising strategy.In particular,because of the anisotropy of graphite,hybrid anode formed by graphite/Li metal has low transport kinetics and is easy to causes the growth of lithium dendrites and accumulation of dead Li,which seriously affects the cycle life of batteries and even causes safety problems.Here,by comparing graphite with two types of hard carbon,it was found that hybrid anode formed by hard carbon and lithium metal,possessing more disordered mesoporous structure and lithophilic groups,presents better performance.Results indicate that the mesoporous structure provides abundant active site and storage space for dead lithium.With the synergistic effect of this structure and lithophilic functional groups(–COOH),the reversibility of hard carbon/lithium metal hybrid anode is maintained,promoting uniform deposition of lithium metal and alleviating formation of lithium dendrites.The hybrid anode maintains a 99.5%Coulombic efficiency(CE)after 260 cycles at a specific capacity of 500 m Ah/g.This work provides new insights into the hybrid anodes formed by carbon-based materials and lithium metal with high specific energy and fast charging ability. 展开更多
关键词 Hard carbon/Li metal hybrid anode mesoporous structure Surface oxygen functional group Fast charging Lithium batteries
下载PDF
Mesoporous Carbon Nanofibers Loaded with Ordered PtFe Alloy Nanoparticles for Electrocatalytic Nitrate Reduction to Ammonia
16
作者 XIE Meng LUO Wei QIU Pengpeng 《Journal of Donghua University(English Edition)》 CAS 2024年第4期365-376,共12页
Highly dispersed bimetallic alloy nanoparticle electrocatalysts have been demonstrated to exhibit exceptional performance in driving the nitrate reduction reaction(NO_(3)RR)to generate ammonia(NH_(3)).In this study,we... Highly dispersed bimetallic alloy nanoparticle electrocatalysts have been demonstrated to exhibit exceptional performance in driving the nitrate reduction reaction(NO_(3)RR)to generate ammonia(NH_(3)).In this study,we prepared mesoporous carbon nanofibers(mCNFs)functionalized with ordered PtFe alloys(O-PtFe-mCNFs)by a composite micelle interface-induced co-assembly method using poly(ethylene oxide)-block-polystyrene(PEO-b-PS)as a template.When employed as electrocatalysts,O-PtFe-mCNFs exhibited superior electrocatalytic performance for the NO_(3RR)compared to the mCNFs functionalized with disordered PtFe alloys(D-PtFe-mCNFs).Notably,the NH_(3)production performance was particularly outstanding,with a maximum NH_(3)yield of up to 959.6μmol/(h·cm~2).Furthermore,the Faraday efficiency(FE)was even 88.0%at-0.4 V vs.reversible hydrogen electrode(RHE).This finding provides compelling evidence of the potential of ordered PtFe alloy catalysts for the electrocatalytic NO_(3)RR. 展开更多
关键词 ordered PtFe alloy mesoporous carbon nanofiber(mCNF) nitrate reduction reaction(NO3RR) ammonia(NH3)production reaction
下载PDF
Salt template synthesis of CoO@Co nanoparticles encapsulated in 3D porous nitrogen-doped carbon for oxygen reduction reaction
17
作者 Yao Zhang Jing-Ya Song +3 位作者 Jun-Die Hu Lv-Fei Liu Chun-Mei Zhang Jing-Sha Li 《cMat》 2024年第3期13-25,共13页
Developing high performance and cost-effective electrocatalysts toward oxygen reduction reaction(ORR)is of critical significance for fuel cells and metal–air batteries.Herein,CoO@Co nanoparticles encapsulated in thre... Developing high performance and cost-effective electrocatalysts toward oxygen reduction reaction(ORR)is of critical significance for fuel cells and metal–air batteries.Herein,CoO@Co nanoparticles encapsulated in three-dimensional(3D)porous nitrogen-doped carbon(CoO@Co/Co-N-C)have been successfully derived from the cobalt–tannin framework via the NH4Cl salt template strategy.Owing to the generated NH3 and HCl gas from NH4Cl during the pyrolysis process,CoO@Co/Co-N-C formed a 3D porous carbon architecture with ultrahigh-specific surface area(1052.5 m^(2)g^(-1)).This hybrid catalyst exhibits comparable ORR catalytic activity,as well as superior stability to 20 wt%Pt/C in alkaline conditions.This finding offers a novel and facile strategy to synthesize 3D porous carbon as non-precious metal electrocatalysts for energy conversion and storage applications. 展开更多
关键词 cobalt-based nanoparticles cobalt-tannic framework nitrogen-doped carbon oxygen reduction reaction(ORR) salt template strategy
原文传递
N-doped ordered mesoporous carbon as a multifunctional support of ultrafine Pt nanoparticles for hydrogenation of nitroarenes 被引量:8
18
作者 梁继芬 张晓明 +1 位作者 景铃胭 杨恒权 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第7期1252-1260,共9页
Due to the advantages of high surface areas, large pore volumes and pore sizes, abundant nitrogen content that favored the metal-support interactions, N-doped ordered mesoporous carbons are regarded as a kind ... Due to the advantages of high surface areas, large pore volumes and pore sizes, abundant nitrogen content that favored the metal-support interactions, N-doped ordered mesoporous carbons are regarded as a kind of fascinating and potential support for the synthesis of effective supported cat-alysts. Here, a N-doped ordered mesoporous carbon with a high N content (9.58 wt%), high surface area (417 m^2/g), and three-dimensional cubic structure was synthesized successfully and used as an effective support for immobilizing Pt nanoparticles (NPs). The positive effects of nitrogen on the metal particle size enabled ultrasmall Pt NPs (about 1.0 ± 0.5 nm) to be obtained. Moreover, most of the Pt NPs are homogeneously dispersed in the mesoporous channels. However, using the ordered mesoporous carbon without nitrogen as support, the particles were larger (4.4 ± 1.7 nm) and many Pt NPs were distributed on the external surface, demonstrating the important role of the nitrogen species. The obtained N-doped ordered mesoporous material supported catalyst showed excellent catalytic activity (conversion 100%) and selectivity (〉99%) in the hydrogenation of halogenated nitrobenzenes under mild conditions. These values are much higher than those achieved using a commercial Pt/C catalyst (conversion 89% and selectivity 90%). This outstanding catalytic perfor-mance can be attributed to the synergetic effects of the mesoporous structure, N-functionalized support, and stabilized ultrasmall Pt NPs. Moreover, such supported catalyst also showed excellent catalytic performance in the hydrogenation of other halogenated nitrobenzenes and nitroarenes. In addition, the stability of the multifunctional catalyst was excellent and it could be reused more than 10 times without significant losses of activity and selectivity. Our results conclusively show that a N-doped carbon support enable the formation of ultrafine metal NPs and improve the reaction ac-tivity and selectivity. 展开更多
关键词 N-doped mesoporous carbon Multifunctional support Ultrafine platinum nanoparticle Hydrogenation reaction Halogenated nitrobenzene
下载PDF
Influence of Preparation Conditions on Structural Stability of Ordered Mesoporous Carbons Synthesized by Evaporation-induced Triconstituent Co-assembly Method 被引量:1
19
作者 游波 杨俊 +3 位作者 雍国平 刘少民 谢卫 苏庆德 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2011年第3期365-372,I0004,共9页
Various ordered mesoporous carbons (OMCs) have been prepared by evaporation-induced trieonstituent co-assembly method. Their mesostructural stability under different carbon content, aging time and acidity were conve... Various ordered mesoporous carbons (OMCs) have been prepared by evaporation-induced trieonstituent co-assembly method. Their mesostructural stability under different carbon content, aging time and acidity were conveniently monitored by X-ray diffraction, transmission electron microscopy, and N2 sorption isotherms techniques. The results show mesostruetural stability of OMCs is enhanced as the carbon content increases from 36% to 46%, further increasing carbon content deteriorates the mesostructural stability. Increasing aging time from 0.5 h to 5.0 h make the mesostructural stability go through an optimum (2.0 h) and gradually reduce framework shrinkage of the OMCs. Highly OMCs can only be obtained in the acidity range of 0.2-1.2 mol/L HC1, when the acidity is near the isoelectrie point of silica, the resulting OMCs have the best mesostructure stability. Under the optimum condition, the carbon content of 46%, aging time of 2.0 h, and 0.2 mol/L HCl, the resulting OMCs have the best mesostrueture stability and the highest BET surface areas of 2281 m2/g. 展开更多
关键词 Triblock copolymer Mesostructural stability SELF-ASSEMBLY Ordered mesoporous carbon
下载PDF
Size-control growth of thermally stable Au nanoparticles encapsulated within ordered mesoporous carbon framework 被引量:3
20
作者 王帅 王杰 +3 位作者 朱小娟 王建强 Osamu Terasaki 万颖 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第1期61-72,共12页
Simultaneously controlling the size of Au nanoparticles and immobilizing their location to specific active sites while hindering migration and sintering at elevated temperatures is a current challenge within materials... Simultaneously controlling the size of Au nanoparticles and immobilizing their location to specific active sites while hindering migration and sintering at elevated temperatures is a current challenge within materials chemistry.Typical methods require the use of protecting agents to control the properties of Au nanoparticles and therefore it is difficult to decouple the influence of the protecting agent and the support material.By functionalizing the internal surface area of mesoporous carbon supports with thiol groups and implementing a simple acid extraction step,we are able to design the resulting materials with precise control over the Au nanoparticle size without the need for the presence of any protecting group,whilst simultaneously confining the nanoparticles to within the internal porous network.Monodispersed Au nanoparticles in the absence of protecting agents were encapsulated into ordered mesoporous carbon at various loading levels via a coordination-assisted self-assembly approach.The X-ray diffractograms and transmission electron microscopy micrographs show that the particles have controlled and well-defined diameters between 3 and 18 nm at concentrations between 1.1 and 9.0 wt%.The Au nanoparticles are intercalated into the pore matrix to different degrees depending on the synthesis conditions and are stable after high temperature treatment at 600 °C.N2 adsorption-desorption isotherms show that the Au functionalized mesoporous carbon catalysts possess high surface areas(1269–1743 m^2/g),large pore volumes(0.78–1.38 cm^3/g)and interpenetrated,uniform bimodal mesopores with the primary larger mesopore lying in the range of 3.4–5.7 nm and the smaller secondary mesopore having a diameter close to 2 nm.X-ray absorption near extended spectroscopy analysis reveals changes to the electronic properties of the Au nanoparticles as a function of reduced particle size.The predominant factors that significantly determine the end Au nanoparticle size is both the thiol group concentration and subjecting the as-made materials to an additional concentrated sulfuric acid extraction step. 展开更多
关键词 Gold nanoparticles Size carbon mesoporous
下载PDF
上一页 1 2 66 下一页 到第
使用帮助 返回顶部