Alkylphenols are a group of valuable phenolic compounds that can be derived from lignocellulosic biomass.In this study,three activated carbons(ACs)were prepared for catalytic fast pyrolysis(CFP)of walnut shell to prod...Alkylphenols are a group of valuable phenolic compounds that can be derived from lignocellulosic biomass.In this study,three activated carbons(ACs)were prepared for catalytic fast pyrolysis(CFP)of walnut shell to produce alkylphenols,including nitrogen-doped walnut shell-derived activated carbon(N/WSAC),nitrogen-doped rice husk-derived activated carbon(N/RHAC)and walnut shell-derived activated carbon(WSAC).Pyrolysis-gas chromatography/mass spectrometry(Py-GC/MS)experiments were carried out to reveal the influences of AC type,pyrolytic temperature,and AC-to-walnut shell(AC-to-WS)ratio on the product distributions.Results showed that with nitrogen doping,the N/WSAC possessed stronger capability than WSAC toward the alkylphenols production,and moreover,the N/WSAC also exhibited better effects than N/RHAC to prepare alkylphenols.Under the catalysis of N/WSAC,yields of alkylphenols were significantly increased,especially phenol,cresol and 4-ethylphenol.As the increase of pyrolytic temperature,the alkylphenols yield first increased and then decreased,while high selectivity could be obtained at low pyrolytic temperatures.Such a trend was also observed as the AC-to-WS ratio continuously increased.The alkylphenols production achieved a maximal yield of 44.19 mg/g with the corresponding selectivity of 34.7%at the pyrolytic temperature of 400℃and AC-to-WS ratio of 3,compared with those of only 4.67 mg/g and 6.1%without catalyst.In addition,the possible formation mechanism of alkylphenols was also proposed with the catalysis of N/WSAC.展开更多
Tea (Camellia sinensis L.) seed shells, the main byproduct of the manufacture of tea seed oil, were used as precursors for the preparation of tea activated carbon (TAC) in the present study. A high yield (44.1%) of TA...Tea (Camellia sinensis L.) seed shells, the main byproduct of the manufacture of tea seed oil, were used as precursors for the preparation of tea activated carbon (TAC) in the present study. A high yield (44.1%) of TAC was obtained from tea seed shells via a one-step chemical method using ZnCl2 as an agent. The Brunauer-Emmett-Teller (BET) surface area and the total pore volumes of the obtained TAC were found to be 1 530.67 mg2/g and 0.7826 cm3/g, respectively. The equilibrium adsorption results were complied with Langmuir isotherm model and its maximum monolayer adsorption capacity was 324.7 mg/g for methylene blue. Adsorption kinetics studies indicated that the pseudosecond-order model yielded the best fit for the kinetic data. An intraparticle diffusion model suggested that the intraparticle diffusion was not the only rate-controlling step. Thermodynamics studies revealed the spontaneous and exothermic nature of the sorption process. These results indicate that tea seed shells could be utilized as a renewable resource to develop activated carbon which is a potential adsorbent for methylene blue.展开更多
Nitrogen-doped carbon materials as promising oxygen reduction reaction(ORR) electrocatalysts attract great interest in fuel cells and metal-air batteries because of their relatively high activity, high surface area, h...Nitrogen-doped carbon materials as promising oxygen reduction reaction(ORR) electrocatalysts attract great interest in fuel cells and metal-air batteries because of their relatively high activity, high surface area, high conductivity and low cost. To maximize their catalytic efficiency, rational design of efficient electrocatalysts with rich exposed active sites is highly desired. Besides, due to the complexity of nitrogen species, the identification of active nitrogen sites for ORR remains challenging. Herein, we develop a facile and scalable template method to construct high-concentration nitrogen-doped carbon hollow frameworks(NC), and reveal the effect of different nitrogen species on theirORRactivity on basis of experimental analysis and theoretical calculations. The formation mechanism is clearly revealed, including low-pressure vapor superassembly of thin zeolitic imidazolate framework(ZIF-8) shell on ZnO templates,in situ carbonization and template removal. The obtained NC-800 displays better ORR activity compared with other NC-700 and NC-900 samples. Our results indicate that the superior ORR activity of NC-800 is mainly attributed to its content balance of three nitrogen species. The graphitic N and pyrrolic N sites are responsible for lowering the working function, while the pyridinic N and pyrrolic N sites as possible active sites are beneficial for increasing the density of states.展开更多
基金the National Natural Science Foundation of China(Grant Nos.51922040 and 51821004)Grants from Fok Ying Tung Education Foundation(No.161051)Fundamental Research Funds for the Central Universities(Nos.2020DF01,2019QN002,and 2018ZD08)for financial support.
文摘Alkylphenols are a group of valuable phenolic compounds that can be derived from lignocellulosic biomass.In this study,three activated carbons(ACs)were prepared for catalytic fast pyrolysis(CFP)of walnut shell to produce alkylphenols,including nitrogen-doped walnut shell-derived activated carbon(N/WSAC),nitrogen-doped rice husk-derived activated carbon(N/RHAC)and walnut shell-derived activated carbon(WSAC).Pyrolysis-gas chromatography/mass spectrometry(Py-GC/MS)experiments were carried out to reveal the influences of AC type,pyrolytic temperature,and AC-to-walnut shell(AC-to-WS)ratio on the product distributions.Results showed that with nitrogen doping,the N/WSAC possessed stronger capability than WSAC toward the alkylphenols production,and moreover,the N/WSAC also exhibited better effects than N/RHAC to prepare alkylphenols.Under the catalysis of N/WSAC,yields of alkylphenols were significantly increased,especially phenol,cresol and 4-ethylphenol.As the increase of pyrolytic temperature,the alkylphenols yield first increased and then decreased,while high selectivity could be obtained at low pyrolytic temperatures.Such a trend was also observed as the AC-to-WS ratio continuously increased.The alkylphenols production achieved a maximal yield of 44.19 mg/g with the corresponding selectivity of 34.7%at the pyrolytic temperature of 400℃and AC-to-WS ratio of 3,compared with those of only 4.67 mg/g and 6.1%without catalyst.In addition,the possible formation mechanism of alkylphenols was also proposed with the catalysis of N/WSAC.
基金supported by the Science and Technology Department of Zhejiang Province (No. 2010C32051)the Ministry of Science and Technology (No. 2011BAD01B03-5-1), China
文摘Tea (Camellia sinensis L.) seed shells, the main byproduct of the manufacture of tea seed oil, were used as precursors for the preparation of tea activated carbon (TAC) in the present study. A high yield (44.1%) of TAC was obtained from tea seed shells via a one-step chemical method using ZnCl2 as an agent. The Brunauer-Emmett-Teller (BET) surface area and the total pore volumes of the obtained TAC were found to be 1 530.67 mg2/g and 0.7826 cm3/g, respectively. The equilibrium adsorption results were complied with Langmuir isotherm model and its maximum monolayer adsorption capacity was 324.7 mg/g for methylene blue. Adsorption kinetics studies indicated that the pseudosecond-order model yielded the best fit for the kinetic data. An intraparticle diffusion model suggested that the intraparticle diffusion was not the only rate-controlling step. Thermodynamics studies revealed the spontaneous and exothermic nature of the sorption process. These results indicate that tea seed shells could be utilized as a renewable resource to develop activated carbon which is a potential adsorbent for methylene blue.
基金supported by the National Natural Science Foundation of China (51832004 and 51521001)the National Key Research and Development Program of China (2016YFA0202603)+2 种基金the Natural Science Foundation of Hubei Province (2019CFA001)the Programme of Introducing Talents of Discipline to Universities (B17034)the Yellow Crane Talent (Science & Technology) Program of Wuhan City。
文摘Nitrogen-doped carbon materials as promising oxygen reduction reaction(ORR) electrocatalysts attract great interest in fuel cells and metal-air batteries because of their relatively high activity, high surface area, high conductivity and low cost. To maximize their catalytic efficiency, rational design of efficient electrocatalysts with rich exposed active sites is highly desired. Besides, due to the complexity of nitrogen species, the identification of active nitrogen sites for ORR remains challenging. Herein, we develop a facile and scalable template method to construct high-concentration nitrogen-doped carbon hollow frameworks(NC), and reveal the effect of different nitrogen species on theirORRactivity on basis of experimental analysis and theoretical calculations. The formation mechanism is clearly revealed, including low-pressure vapor superassembly of thin zeolitic imidazolate framework(ZIF-8) shell on ZnO templates,in situ carbonization and template removal. The obtained NC-800 displays better ORR activity compared with other NC-700 and NC-900 samples. Our results indicate that the superior ORR activity of NC-800 is mainly attributed to its content balance of three nitrogen species. The graphitic N and pyrrolic N sites are responsible for lowering the working function, while the pyridinic N and pyrrolic N sites as possible active sites are beneficial for increasing the density of states.