Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil ...Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.展开更多
Drought is a bottleneck for worldwide soybean production which is getting more serious as the climate continues to worsen. Dehydration responsive element binding(DREB) is a kind of transcription factor that regulate...Drought is a bottleneck for worldwide soybean production which is getting more serious as the climate continues to worsen. Dehydration responsive element binding(DREB) is a kind of transcription factor that regulates the expression of stress tolerance-related genes in response to drought, high salinity and cold stress in plant. Soybean with DREB gene possesses the drought resisting capability which is helpful to increase the yield. However, the potential risk of genetically modified plants(GMPs) on soil microbial community is still in debate. In order to understand the effects of transgenic DREB soybean on the nitrogen-fixing bacteria, the diversity of nif H gene in pot experiments planted transgenic soybean and near-isogenic nontransgenic soybean under normal water condition and drought stress condition was analyzed by PCR-DGGE and sequence analysis. The results showed that transgenic soybean under normal water condition decrease the diversity of the nitrogen-fixing bacteria in the seeding stage and flowering stage, but had no notable effect in other stages. Under drought stress, transgenic soybean reduced the diversity of the nitrogen-fixing bacteria in the flowering stage, but had no notable effects on other stages. Phylogenic analysis revealed that g7, g13, g15 and g19 had a close relationship with Alphaproteobacteria, g12 had a close relationship with Azonexus, others were related to Betaproteobacteria and Burkholderia.展开更多
A sediment sample was collected from a deep-sea hydrothermal vent field located at a depth of 2 951 m on the Southwest Indian Ridge. Phylogenetic analyses were performed on the prokaryotic community using polymerase c...A sediment sample was collected from a deep-sea hydrothermal vent field located at a depth of 2 951 m on the Southwest Indian Ridge. Phylogenetic analyses were performed on the prokaryotic community using polymerase chain reaction(PCR) amplification of the 16 S rRNA and nifH genes. Within the Archaea, the dominant clones were from marine benthic group E(MBGE) and marine group I(MGI) belonging to the phyla Euryarchaeota and Thaumarchaeota, respectively. More than half of the bacterial clones belonged to the Proteobacteria, and most fell within the Gammaproteobacteria. No epsilonproteobacterial sequence was observed. Additional phyla were detected including the Actinobacteria, Bacteroidetes, Planctomycetes, Acidobacteria, Nitrospirae, Chloroflexi, Chlorobi, Chlamydiae, Verrucomicrobia, and candidate divisions OD1, OP11, WS3 and TM6, confirming their existence in hydrothermal vent environments. The detection of nifH gene suggests that biological nitrogen fixation may occur in the hydrothermal vent field of the Southwest Indian Ridge. Phylogenetic analysis indicated that only Clusters I and III NifH were present. This is consistent with the phylogenetic analysis of the microbial 16 S rRNA genes, indicating that Bacteria play the main role in nitrogen fixation in this hydrothermal vent environment.展开更多
基金Preject supported by the National Basic Research Program (973) of China(No. 2004CB418503)the Overseas Fund of Institute of AppliedEcology, Chinese Academy of Sciences.
文摘Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.
基金Supported by the Special Scientific Fund for Non-profit Environmental Industry(2010467038)
文摘Drought is a bottleneck for worldwide soybean production which is getting more serious as the climate continues to worsen. Dehydration responsive element binding(DREB) is a kind of transcription factor that regulates the expression of stress tolerance-related genes in response to drought, high salinity and cold stress in plant. Soybean with DREB gene possesses the drought resisting capability which is helpful to increase the yield. However, the potential risk of genetically modified plants(GMPs) on soil microbial community is still in debate. In order to understand the effects of transgenic DREB soybean on the nitrogen-fixing bacteria, the diversity of nif H gene in pot experiments planted transgenic soybean and near-isogenic nontransgenic soybean under normal water condition and drought stress condition was analyzed by PCR-DGGE and sequence analysis. The results showed that transgenic soybean under normal water condition decrease the diversity of the nitrogen-fixing bacteria in the seeding stage and flowering stage, but had no notable effect in other stages. Under drought stress, transgenic soybean reduced the diversity of the nitrogen-fixing bacteria in the flowering stage, but had no notable effects on other stages. Phylogenic analysis revealed that g7, g13, g15 and g19 had a close relationship with Alphaproteobacteria, g12 had a close relationship with Azonexus, others were related to Betaproteobacteria and Burkholderia.
基金The China Ocean Mineral Resources R&D Association(COMRA)Special Foundation under contract No.DY125-15-R-03the National Natural Science Foundation of China under contract Nos 41276173 and 41206104the Scientific Research Fund of the Second Institute of Oceanography,State Oceanic Administration under contract No.JT1011
文摘A sediment sample was collected from a deep-sea hydrothermal vent field located at a depth of 2 951 m on the Southwest Indian Ridge. Phylogenetic analyses were performed on the prokaryotic community using polymerase chain reaction(PCR) amplification of the 16 S rRNA and nifH genes. Within the Archaea, the dominant clones were from marine benthic group E(MBGE) and marine group I(MGI) belonging to the phyla Euryarchaeota and Thaumarchaeota, respectively. More than half of the bacterial clones belonged to the Proteobacteria, and most fell within the Gammaproteobacteria. No epsilonproteobacterial sequence was observed. Additional phyla were detected including the Actinobacteria, Bacteroidetes, Planctomycetes, Acidobacteria, Nitrospirae, Chloroflexi, Chlorobi, Chlamydiae, Verrucomicrobia, and candidate divisions OD1, OP11, WS3 and TM6, confirming their existence in hydrothermal vent environments. The detection of nifH gene suggests that biological nitrogen fixation may occur in the hydrothermal vent field of the Southwest Indian Ridge. Phylogenetic analysis indicated that only Clusters I and III NifH were present. This is consistent with the phylogenetic analysis of the microbial 16 S rRNA genes, indicating that Bacteria play the main role in nitrogen fixation in this hydrothermal vent environment.