Nitrogen-oxygen co-doped corrugation-like porous carbon (NO-PC) has been developed by direct pyrolysis of formaldehyde-melamine polymer containing manganese nitrate. The melamine, formaldehyde and manganese nitrate ...Nitrogen-oxygen co-doped corrugation-like porous carbon (NO-PC) has been developed by direct pyrolysis of formaldehyde-melamine polymer containing manganese nitrate. The melamine, formaldehyde and manganese nitrate act as nitrogen, oxygen source and pore-foaming agent, respectively. NO-PC exhibits favorable porous architecture for efficient ion transfer and moderate heteroatom doping for additional pseudocapacitance, which synergistically enhances the electrochemical performance of the NO-PC-based supercapacitor. The electrode delivers specific capacitance of 240 Fig at 0.3 A/g when tested in 6 mol/L KOH electrolyte, good rate capability (capacitance retention of 83.3% at 5 A/g) as well as stable cycling performance (capacitance remains -96% after 10000 cycles at 3 A/g). The facile synthesis with unique architecture and chemistry modification offers a promising candidate for electrode material of energy storage devices.展开更多
文摘Nitrogen-oxygen co-doped corrugation-like porous carbon (NO-PC) has been developed by direct pyrolysis of formaldehyde-melamine polymer containing manganese nitrate. The melamine, formaldehyde and manganese nitrate act as nitrogen, oxygen source and pore-foaming agent, respectively. NO-PC exhibits favorable porous architecture for efficient ion transfer and moderate heteroatom doping for additional pseudocapacitance, which synergistically enhances the electrochemical performance of the NO-PC-based supercapacitor. The electrode delivers specific capacitance of 240 Fig at 0.3 A/g when tested in 6 mol/L KOH electrolyte, good rate capability (capacitance retention of 83.3% at 5 A/g) as well as stable cycling performance (capacitance remains -96% after 10000 cycles at 3 A/g). The facile synthesis with unique architecture and chemistry modification offers a promising candidate for electrode material of energy storage devices.