Rechargeable lithium-sulfur(Li-S)batteries are considered one of the most promising energy storage techniques owing to the high theoretical energy density.However,challenges still remain such as the shuttle effect of ...Rechargeable lithium-sulfur(Li-S)batteries are considered one of the most promising energy storage techniques owing to the high theoretical energy density.However,challenges still remain such as the shuttle effect of lithium polysulfides(LPSs)and the instability of lithium metal anode.Herein,we propose to use nitrogen-rich azoles,i.e.,triazole(Ta)and tetrazole(Tta),as trifunctional electrolyte additives for Li-S batteries.The azoles afford strong lithiophilicity for the chemisorption of LPSs.The density functional theory and experimental analysis verify the presence of Li bonds between the azoles and LPSs.The azoles can also interact with lithium salt in the electrolyte,leading to increase ionic conductivity and lithiumion transference number.Moreover,the azoles render particle-like lithium deposition on the lithium metal anode,leading to superlong cycling of a Li symmetric cell.The Li-S batteries with Ta and Tta exhibit the initial discharge capacity of 1425.5 and 1322.2 m Ah g^(-1),respectively,at 0.2 C rate,and promising cycling stability.They also enable enhanced cycling performance of a Li-organosulfide battery.展开更多
From the standpoint of chemical structures,the organic backbones of energetic materials can be classified into aromatic rings,nonaromatic rings,and open chains.Although the category of aromatic energetic compounds exh...From the standpoint of chemical structures,the organic backbones of energetic materials can be classified into aromatic rings,nonaromatic rings,and open chains.Although the category of aromatic energetic compounds exhibits several advantages in the regulation of energetic properties,the nonaromatic heterocycles,assembling nitramino explosophores with simple alkyl bridges,still have prevailed in benchmark materials.The methylene bridge plays a pivotal role in the constructions of the classic nonaromatic heterocycle-based energetic compounds,e.g.,hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX)and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine(HMX),whereas ethylene bridge is the core moiety of state-of-the-art explosive 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20).In this context,it is of great interest to employ simple and practical bridges to assemble aromatic and nonaromatic nitrogen-rich heterocycles,thereby expanding the structural diversity of energetic materials,e.g.,bridged and fused nitrogen-rich poly-heterocycles.Furthermore,alkyl-bridged poly-heterocycles highlight the potential for the open chain type of energetic materials.In this review,the development of alkyl bridges in linking nitrogen-rich heterocycles is presented,and the perspective of the newly constructed energetic backbones is summarized for the future design of advanced energetic materials.展开更多
Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous...Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous explosive reactions when subjected to external stimuli such as electrical discharge.Therefore,developing a reliable model for predicting their electrostatic discharge sensitivity(ESD)becomes imperative.This study proposes a novel and straightforward model based on the presence of specific groups(-NH_(2) or-NH-,-N=N^(+)-O^(-)and-NNO_(2),-ONO_(2) or-NO_(2))under certain conditions to assess the ESD of NRHECs and their salts,employing interpretable structural parameters.Utilizing a comprehensive dataset comprising 54 ESD measurements of NRHECs and their salts,divided into 49/5 training/test sets,the model achieves promising results.The Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Maximum Error for the training set are reported as 0.16 J,0.12 J,and 0.5 J,respectively.Notably,the ratios RMSE(training)/RMSE(test),MAE(training)/MAE(test),and Max Error(training)/Max Error(test)are all greater than 1.0,indicating the robust predictive capabilities of the model.The presented model demonstrates its efficacy in providing a reliable assessment of ESD for the targeted NRHECs and their salts,without the need for intricate computer codes or expert involvement.展开更多
Composting as a solution to the increasing generation of municipal solid waste (MSW), also contribute to GHGs emission when not controlled and could lack some basic nutrients, especially nitrogen. This study assessed ...Composting as a solution to the increasing generation of municipal solid waste (MSW), also contribute to GHGs emission when not controlled and could lack some basic nutrients, especially nitrogen. This study assessed the split-additions of nitrogen-rich substrate to composting materials and their effect on GHGs emissions as well as the quality of the composts. Nitrogen-rich substrates formulated from pig and goat manure were co-composted with MSW for a 12-weeks period by split adding at mesophilic (˚C) and thermophilic (>50˚C) stages in five different treatments. Representative samples from the compost were taken from each treatment for physicochemical, heavy metals and bacteriological analysis. In-situ CH<sub>4</sub>, CO<sub>2</sub>, N<sub>2</sub>O gas emissions were also analyzed weekly during composting. It was observed that all the treatments showed significant organic matter decomposition, reaching thermophilic temperatures in the first week of composting. The absence affects the suitable agronomic properties. All nitrogen-rich substrate applied at thermophilic stage (Treatment two) recorded the highest N, P and K concentrations of 1.34%, 0.97% and 2.45%, respectively with highest nitrogen retention. In terms of GHG emissions, CO<sub>2</sub> was highest at the thermophilic stage when N-rich substrate was added in all treatment, while CH<sub>4</sub> was highest in the mesophilic stage with N-rich substrate addition. N<sub>2</sub>O showed no specific trend in the treatments. Split addition of the N-rich substrate for co-composting of MSW produced compost which is stable, has less nutrient loss and low GHG emissions. Split addition of a nitrogen-rich substrate could be an option for increasing the fertilizer value of MSW compost.展开更多
Objective To evaluate the synergy of the Burkholderia signaling molecule cis-2-dodecenoic acid(BDSF) and fluconazole(FLU) or itraconazole(ITRA) against two azole-resistant C. albicans clinical isolates in vitro and in...Objective To evaluate the synergy of the Burkholderia signaling molecule cis-2-dodecenoic acid(BDSF) and fluconazole(FLU) or itraconazole(ITRA) against two azole-resistant C. albicans clinical isolates in vitro and in vivo. Methods Minimum inhibitory concentrations(MICs) of antibiotics against two azole-resistant C. albicans were measured by the checkerboard technique, E-test, and time-kill assay. In vivo antifungal synergy testing was performed on mice. Analysis of the relative gene expression levels of the strains was conducted by quantitative reverse-transcription polymerase chain reaction(qR T-PCR). Results BDSF showed highly synergistic effects in combination with FLU or ITRA with a fractional inhibitory concentration index of ≤ 0.08. BDSF was not cytotoxic to normal human foreskin fibroblast cells at concentrations of up to 300 μg/mL. The qR T-PCR results showed that the combination of BDSF and FLU/ITRA significantly inhibits the expression of the efflux pump genes CDR1 and MDR1 via suppression of the transcription factors TAC1 and MRR1, respectively, when compared with FLU or ITRA alone. No dramatic difference in the mR NA expression levels of ERG1, ERG11, and UPC2 was found, which indicates that the drug combinations do not significantly interfere with UPC2-mediated ergosterol levels. In vivo experiments revealed that combination therapy can be an effective therapeutic approach to treat candidiasis. Conclusion The synergistic effects of BDSF and azoles may be useful as an alternative approach to control azole-resistant Candida infections.展开更多
Chemical insecticides targeting the digestive system of diamondback moth(DBM),Plutella xylostella,have not been developed.The discovery of an insecticide with novel mode of action is a challenge for the control of DBM...Chemical insecticides targeting the digestive system of diamondback moth(DBM),Plutella xylostella,have not been developed.The discovery of an insecticide with novel mode of action is a challenge for the control of DBM.In this study,a class of selenium-and difluoromethyl-modified azoles(fluoroazole selenoureas,FASU)were designed and synthesized for the control of DBM.Of these azoles,compound B4 showed the highest insecticidal activity against DBM.The LC50of third-and second-instar larvae reached 32.3 and 4.6μg mL^(–1),respectively.The midgut tissue of larvae was severely disrupted,and the larval intestinal tissue was dotted with unique red spots after treatment with compound B4.Compound B4 led to disintegration of the peritrophic matrix,swelling of the midgut epithelium,fracture of the microvilli,and extensive leakage of cellular debris in the midgut lumen.Surviving larvae grew very slowly,and the larval duration was significantly prolonged after exposure to compound B4 at sublethal doses(LC10,LC25and LC50).Furthermore,the pupation rate,emergence rate and pupae weight were significantly decreased.Compound B4 also induced abnormal pupae,causing adults to be trapped in the cocoon or failure to fly due to twisted wings.These results demonstrated that FASU could reduce the population of DBM in sublethal doses.FASU is the first synthetic insecticidal lead compound that has been shown to disrupt the midgut tissue of the larvae of DBM,and its mode of action totally differs from that of commercial chemical insecticides.展开更多
Aim: Candida, an opportunistic organism is one of the commonest causes of hospital acquired infections among fungi. Currently available antifungal drugs have numerous adverse effects and drug-drug interactions (DDIs) ...Aim: Candida, an opportunistic organism is one of the commonest causes of hospital acquired infections among fungi. Currently available antifungal drugs have numerous adverse effects and drug-drug interactions (DDIs) along with increase in resistance over the time. Therefore, it is highly emergent to consider alternative treatments for candidal infections, having fewer adverse effects and is cost-effective. The current in-vitro study is undertaken to assess and compare the antifungal effects of the herbs, Berberis aristata (B. aristata, Darehald/Darhald) and Punica granatum (P. granatum, Pomegranate) with fluconazole and voriconazole, based on culture and sensitivity of candidal isolates. Materials and Methods: Ethanolic extracts of herbs (Berberis aristata and Punica granatum) and concentrations were formulated as per standard procedure. 130 samples were obtained for the study from in and out patients reported in clinical subsets of Ziauddin Hospital, Karachi from March to May, 2018. Samples were collected and grown according to the standard procedures like, wet mount test and gram’s staining. Species were identified by CHROM agar candida and API 20 C AUX methods. Sensitivity tests were performed by Kirby Bauer’s disc diffusion method according to CLSI guide lines M-44 A2, 2009. Data analysis was done by one-way ANOVA to compare the antifungal activities of drugs and herbs. Results: Mean inhibitory zones of herbs, B. aristata and P. granatum were highly significant against clinical candidal isolates with respective p-values of 0.00 and 0.02. Both of the herbs, B. aristata and P. granatum were found to be more sensitive, 98.5% and 97.7% respectively in comparison to fluconazole showing 42.3% and voriconazole showing 29.2% sensitivity against candidal isolates. The most resistant candidal specie was C. tropicalis that showed resistance against both fluconazole and voriconazole, contrary to that, this specie was highly sensitive to both of the herbs, showing sensitivity of 100% respective for Darehald and Pomegranate. Conclusion: In comparison to azoles: Culture sensitivity of both herbs (B. aristata and P. granatum) displayed more sensitivity against candidal isolates of patients having non-invasive and invasive candidiasis. These herbs can be considered as substitute or alternative antifungal agents to the conventional antifungal therapy, particularly in cases of treating candidemia patients, which is a life threating condition.展开更多
Some azoles were tested such as 3-amino-1,2,4-triazole (ATA), 3-4’-bitriazole -1,2,4 (BiTA)and 2-Mercaptobenzimidazole (MBI) against Cu-30Ni alloy corrosion in 3%NaCl polluted by ammonia using potentiodynamic measure...Some azoles were tested such as 3-amino-1,2,4-triazole (ATA), 3-4’-bitriazole -1,2,4 (BiTA)and 2-Mercaptobenzimidazole (MBI) against Cu-30Ni alloy corrosion in 3%NaCl polluted by ammonia using potentiodynamic measurements and electrochemical impedance spectroscopy and non-electrochemical techniques (scanning Electron Microscopy (SEM)) studied surface morphology has been used to characterize electrode surface. This study permitted to follow the evolution of the inhibitory effect of some azoles, on Cu-30Ni alloy corrosion in 3%NaCl polluted by ammonia and indicate that the tested inhibitors act as a good mixed-type inhibitor retarding the anodic and cathodic reactions. An increase of the inhibitors concentration leads to a decrease of corrosion rate and inhibition efficiency increase.展开更多
Azole derivatives such as 2-mercaptobenzothiazole(MBT) and 2-mercaptobenzimidazole(MBI) were introduced as corrosion inhibitors into the interlayer space of sodium montmorillonite clay(Na+-MMT). The corrosion protecti...Azole derivatives such as 2-mercaptobenzothiazole(MBT) and 2-mercaptobenzimidazole(MBI) were introduced as corrosion inhibitors into the interlayer space of sodium montmorillonite clay(Na+-MMT). The corrosion protection behavior of mild steel in solutions containing MBT, MBI, MMT + MBT, MMT + MBI, Na^+-MMT, and NaCl(3.5 wt%) was evaluated using polarization and electrochemical impedance spectroscopy(EIS). Also, the release of penetrated species into the medium from the clay nanocarriers was evaluated using ultraviolet-visible(UV-Vis) spectroscopy. Small-angle X-ray scattering(SAXS) confirmed the insertion of MBT and MBI into the inner space of the clay layers and the interaction between two organic and inorganic phases. Scanning electron microscopy(SEM) was used to assess the morphology of the surface of the steel samples after the samples had been immersed for 24 h in the extraction solution. The corrosion protection in the solutions with clay nanocarriers containing MBT and MBI was better than that in solutions without MMT. The UV-Vis results showed that the release of MBI species from Na+-MMT nanocarriers in neutral pH was far lower than that of MBT species.展开更多
Nitrogen-rich porous carbonaceous materials have shown great potential in energy storage and conversion applications due to their facile fabrication,high electronic conductivity,and improved hydrophilic property.Herei...Nitrogen-rich porous carbonaceous materials have shown great potential in energy storage and conversion applications due to their facile fabrication,high electronic conductivity,and improved hydrophilic property.Herein,three-dimensional porous N-rich carbon foams are fabricated through a one-step carbonization-activation method of the commercial melamine foam,and displaying hierarchically porous structure(macro-,meso-,and micro-pores),large surface area(1686.5 m2 g^-1),high N-containing level(3.3 at%),and excellent compressibility.The as-prepared carbon foams as electrodes for quasi-solid-state supercapacitors exhibit enhanced energy storage ability with 210 F g^-1 and 2.48c at 0.1 A g^-1,and150 F g^-1 and 1.77 F cm^-2 at 1 A g^-1,respectively.Moreover,as an electrode for lithium-based dual-ion capacitor,this distinctive porous carbon also delivers remarkable specific capacitance with 143.6 F g^-1 at0.1 A g^-1 and 116.2 F g^-1 at 1 A g^-1.The simple preparation method and the fascinating electrochemical performance endow the N-rich porous carbon foams great prospects as high-performance electrodes for electrochemical energy storage.展开更多
Cu-based MOFs,i.e.,HKUST-1,etc.,have been pertinently chosen as the pristine materials for CO_(2) ER due to the unique ability of copper for generation hydrocarbon fuel.However,the limited conductivity and stability b...Cu-based MOFs,i.e.,HKUST-1,etc.,have been pertinently chosen as the pristine materials for CO_(2) ER due to the unique ability of copper for generation hydrocarbon fuel.However,the limited conductivity and stability become the stumbling-block that prevents the development of it.The exploring of MOFsderived M-C materials starts a new chapter for the MOFs precursors,which provides a remarkable electronic connection between carbon matrix and metals/metal oxides.N-doped M-N-C with extensive M-N sites scattering into the carbon matrix are more popular because of their impressive contribution to catalytic activity and specific product selectivity.Nevertheless,Cu-N-C system remained undeveloped up to now.The lack of ideal precursor,the sensitivity of Cu to be oxidized,and the difficulties in the synthesis of small size Cu nanoparticles are thus known as the main barriers to the development of Cu-N-C electrocatalysts.Herein,a nitrogen-rich Cu-BTT MOF is employed for the derivation of N-doped Cu-N-CT composite electrocatalysts by the pyrolyze method.High-temperature pyrolysis product of Cu-N-C1100exhibits the best catalytic activity for productions of CO(-0.6 V vs.RHE,jCO=0.4 mA/cm^(2))and HCOOH(-0.9 V vs.RHE,jHCOOH=1.4 mA/cm^(2)).展开更多
Cardiac toxicity is an uncommon side effect of anti-fungal therapy. Until the recent reports of itraconazole (ITZ) associated cardiac failure, amphotericin was the antifungal most frequently reported with arrhythmias....Cardiac toxicity is an uncommon side effect of anti-fungal therapy. Until the recent reports of itraconazole (ITZ) associated cardiac failure, amphotericin was the antifungal most frequently reported with arrhythmias. We evaluated the cardiac effect of azole antifungals, specifically ITZ, and possible mechanisms of toxicity. Ex vivo live-heart studies were performed utilizing Sprague Dawley rats. Short exposure (<5 minutes), random crossover, dose ranging studies were performed with each pharmacologic agent. ITZ focused trials also included dose ranging utilizing a non-crossover design. The only azole found to have significant toxicity was ITZ. At ITZ ~ ED25 (2 - 2.5 ug/mL) exposures, contractility decreased by 22.2% ± 15.7% and amplitude of left ventricular pressure decreased by 11% ± 0.17%. Electron micrograph and alterations in mitochondrial respiration suggest mitochondrial toxicity as an underlying mechanism. In conclusion, ITZ was associated with reductions in contractility, possibly secondary to mitochondrial dysfunction and dilated cardiomyopathy.展开更多
Transition metal nitrides have become the focus of research in sodium ion batteries(SIBs)due to their unique metal properties and high theoretical capacity.However,the low actual capacity is still the main bottleneck ...Transition metal nitrides have become the focus of research in sodium ion batteries(SIBs)due to their unique metal properties and high theoretical capacity.However,the low actual capacity is still the main bottleneck for their application.Herein,using Mo-aniline frameworks as precursors,the carbon encapsulated nitrogen-rich Mo_(x)N is decorated by few-layered MoSe_(2) nanosheets(MoSe_(2)@Mo_(x)N/C-I)after the facile calcinating,selenizing,and nitriding.The carbon encapsulation can effectively strengthen the structural stability of Mo_(x)N.The nitrogen-rich Mo_(x)N and decoration of few-layered MoSe_(2) can create rich heterointerfaces and extra active sites for rapid sodium-ion storage,thus promoting reaction kinetics and improving actual capacity.The MoSe_(2)@Mo_(x)N/C-I as an anode achieves a large reversible capacity of 522.8 mAh g^(-1)at 0.1 A g^(-1),and 254.3 mAh g^(-1)capacity is obtained after 6000 cycles at 5.0 A g^(-1),showing signally improved sodium-ion storage properties.The storage mechanisms and kinetic behaviors are described systematically via the advanced testing techniques and density functional theory(DFT)calculations.It is found that the nitrogen-rich Mo_(x)N as the substrate is the basis of long cycling stability,and the few-layered MoSe_(2) are the key to improving actual capacity.This work indicates that the decoration of few-layered selenides has a broad application prospect in high-performance metal-ion batteries.展开更多
The combination of a powerful CO_(2)-enriching carrier and robust active component provides a new idea for the construction of efficient catalysts for electrocatalytic CO_(2)reduction.Herein,novel perforated nitrogen-...The combination of a powerful CO_(2)-enriching carrier and robust active component provides a new idea for the construction of efficient catalysts for electrocatalytic CO_(2)reduction.Herein,novel perforated nitrogen-rich graphene-like carbon nanolayers(PNGC)are prepared from biomass derivatives,which promotes the oriented deposition of In-doped Cu_(2)(OH)_(3)(NO_(3))nanosheet patches.A robust Cu-In/PNGC composite catalyst is then obtained via simple in-situ electrochemical reduction.Unsurprisingly,CuIn/PNGC exhibits a CO Faradaic efficiency(FECO)of 91.3%and a remarkable CO partial current density(jCO)of 136.4 m A cm^(-2)at a moderate overpotential of 0.59 V for electrocatalytic CO_(2)reduction reaction(CO_(2)RR).DFT calculations and experimental studies indicate that the strong carrier effect of PNGC makes PNGC carried Cu-In nanosheets improved the adsorption capacity of CO_(2)gas,reconfigured electronic structure,and reduced free energy of key intermediate formation,thereby the CO_(2)activation and conversion are promoted.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.U2004214,21975225,and 51902293)。
文摘Rechargeable lithium-sulfur(Li-S)batteries are considered one of the most promising energy storage techniques owing to the high theoretical energy density.However,challenges still remain such as the shuttle effect of lithium polysulfides(LPSs)and the instability of lithium metal anode.Herein,we propose to use nitrogen-rich azoles,i.e.,triazole(Ta)and tetrazole(Tta),as trifunctional electrolyte additives for Li-S batteries.The azoles afford strong lithiophilicity for the chemisorption of LPSs.The density functional theory and experimental analysis verify the presence of Li bonds between the azoles and LPSs.The azoles can also interact with lithium salt in the electrolyte,leading to increase ionic conductivity and lithiumion transference number.Moreover,the azoles render particle-like lithium deposition on the lithium metal anode,leading to superlong cycling of a Li symmetric cell.The Li-S batteries with Ta and Tta exhibit the initial discharge capacity of 1425.5 and 1322.2 m Ah g^(-1),respectively,at 0.2 C rate,and promising cycling stability.They also enable enhanced cycling performance of a Li-organosulfide battery.
基金National Natural Science Foundation of China(Grant Nos.22075023,22205022,and 22235003)to provide fund for conducting experiments。
文摘From the standpoint of chemical structures,the organic backbones of energetic materials can be classified into aromatic rings,nonaromatic rings,and open chains.Although the category of aromatic energetic compounds exhibits several advantages in the regulation of energetic properties,the nonaromatic heterocycles,assembling nitramino explosophores with simple alkyl bridges,still have prevailed in benchmark materials.The methylene bridge plays a pivotal role in the constructions of the classic nonaromatic heterocycle-based energetic compounds,e.g.,hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX)and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine(HMX),whereas ethylene bridge is the core moiety of state-of-the-art explosive 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20).In this context,it is of great interest to employ simple and practical bridges to assemble aromatic and nonaromatic nitrogen-rich heterocycles,thereby expanding the structural diversity of energetic materials,e.g.,bridged and fused nitrogen-rich poly-heterocycles.Furthermore,alkyl-bridged poly-heterocycles highlight the potential for the open chain type of energetic materials.In this review,the development of alkyl bridges in linking nitrogen-rich heterocycles is presented,and the perspective of the newly constructed energetic backbones is summarized for the future design of advanced energetic materials.
文摘Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous explosive reactions when subjected to external stimuli such as electrical discharge.Therefore,developing a reliable model for predicting their electrostatic discharge sensitivity(ESD)becomes imperative.This study proposes a novel and straightforward model based on the presence of specific groups(-NH_(2) or-NH-,-N=N^(+)-O^(-)and-NNO_(2),-ONO_(2) or-NO_(2))under certain conditions to assess the ESD of NRHECs and their salts,employing interpretable structural parameters.Utilizing a comprehensive dataset comprising 54 ESD measurements of NRHECs and their salts,divided into 49/5 training/test sets,the model achieves promising results.The Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Maximum Error for the training set are reported as 0.16 J,0.12 J,and 0.5 J,respectively.Notably,the ratios RMSE(training)/RMSE(test),MAE(training)/MAE(test),and Max Error(training)/Max Error(test)are all greater than 1.0,indicating the robust predictive capabilities of the model.The presented model demonstrates its efficacy in providing a reliable assessment of ESD for the targeted NRHECs and their salts,without the need for intricate computer codes or expert involvement.
文摘Composting as a solution to the increasing generation of municipal solid waste (MSW), also contribute to GHGs emission when not controlled and could lack some basic nutrients, especially nitrogen. This study assessed the split-additions of nitrogen-rich substrate to composting materials and their effect on GHGs emissions as well as the quality of the composts. Nitrogen-rich substrates formulated from pig and goat manure were co-composted with MSW for a 12-weeks period by split adding at mesophilic (˚C) and thermophilic (>50˚C) stages in five different treatments. Representative samples from the compost were taken from each treatment for physicochemical, heavy metals and bacteriological analysis. In-situ CH<sub>4</sub>, CO<sub>2</sub>, N<sub>2</sub>O gas emissions were also analyzed weekly during composting. It was observed that all the treatments showed significant organic matter decomposition, reaching thermophilic temperatures in the first week of composting. The absence affects the suitable agronomic properties. All nitrogen-rich substrate applied at thermophilic stage (Treatment two) recorded the highest N, P and K concentrations of 1.34%, 0.97% and 2.45%, respectively with highest nitrogen retention. In terms of GHG emissions, CO<sub>2</sub> was highest at the thermophilic stage when N-rich substrate was added in all treatment, while CH<sub>4</sub> was highest in the mesophilic stage with N-rich substrate addition. N<sub>2</sub>O showed no specific trend in the treatments. Split addition of the N-rich substrate for co-composting of MSW produced compost which is stable, has less nutrient loss and low GHG emissions. Split addition of a nitrogen-rich substrate could be an option for increasing the fertilizer value of MSW compost.
基金financially supported by the National Natural Science Foundation of China [81273409]the Program for Changjiang Scholars and Innovative Research Team in University [IRT_15R37]the Ministry of Science and Technology of China [2017YFA0205301]
文摘Objective To evaluate the synergy of the Burkholderia signaling molecule cis-2-dodecenoic acid(BDSF) and fluconazole(FLU) or itraconazole(ITRA) against two azole-resistant C. albicans clinical isolates in vitro and in vivo. Methods Minimum inhibitory concentrations(MICs) of antibiotics against two azole-resistant C. albicans were measured by the checkerboard technique, E-test, and time-kill assay. In vivo antifungal synergy testing was performed on mice. Analysis of the relative gene expression levels of the strains was conducted by quantitative reverse-transcription polymerase chain reaction(qR T-PCR). Results BDSF showed highly synergistic effects in combination with FLU or ITRA with a fractional inhibitory concentration index of ≤ 0.08. BDSF was not cytotoxic to normal human foreskin fibroblast cells at concentrations of up to 300 μg/mL. The qR T-PCR results showed that the combination of BDSF and FLU/ITRA significantly inhibits the expression of the efflux pump genes CDR1 and MDR1 via suppression of the transcription factors TAC1 and MRR1, respectively, when compared with FLU or ITRA alone. No dramatic difference in the mR NA expression levels of ERG1, ERG11, and UPC2 was found, which indicates that the drug combinations do not significantly interfere with UPC2-mediated ergosterol levels. In vivo experiments revealed that combination therapy can be an effective therapeutic approach to treat candidiasis. Conclusion The synergistic effects of BDSF and azoles may be useful as an alternative approach to control azole-resistant Candida infections.
基金financially supported by funding from the Guangdong Basic and Applied Basic Research Foundation,China(2019B151502052)the Program of Science and Technology of Guangzhou,China(202002030295)。
文摘Chemical insecticides targeting the digestive system of diamondback moth(DBM),Plutella xylostella,have not been developed.The discovery of an insecticide with novel mode of action is a challenge for the control of DBM.In this study,a class of selenium-and difluoromethyl-modified azoles(fluoroazole selenoureas,FASU)were designed and synthesized for the control of DBM.Of these azoles,compound B4 showed the highest insecticidal activity against DBM.The LC50of third-and second-instar larvae reached 32.3 and 4.6μg mL^(–1),respectively.The midgut tissue of larvae was severely disrupted,and the larval intestinal tissue was dotted with unique red spots after treatment with compound B4.Compound B4 led to disintegration of the peritrophic matrix,swelling of the midgut epithelium,fracture of the microvilli,and extensive leakage of cellular debris in the midgut lumen.Surviving larvae grew very slowly,and the larval duration was significantly prolonged after exposure to compound B4 at sublethal doses(LC10,LC25and LC50).Furthermore,the pupation rate,emergence rate and pupae weight were significantly decreased.Compound B4 also induced abnormal pupae,causing adults to be trapped in the cocoon or failure to fly due to twisted wings.These results demonstrated that FASU could reduce the population of DBM in sublethal doses.FASU is the first synthetic insecticidal lead compound that has been shown to disrupt the midgut tissue of the larvae of DBM,and its mode of action totally differs from that of commercial chemical insecticides.
文摘Aim: Candida, an opportunistic organism is one of the commonest causes of hospital acquired infections among fungi. Currently available antifungal drugs have numerous adverse effects and drug-drug interactions (DDIs) along with increase in resistance over the time. Therefore, it is highly emergent to consider alternative treatments for candidal infections, having fewer adverse effects and is cost-effective. The current in-vitro study is undertaken to assess and compare the antifungal effects of the herbs, Berberis aristata (B. aristata, Darehald/Darhald) and Punica granatum (P. granatum, Pomegranate) with fluconazole and voriconazole, based on culture and sensitivity of candidal isolates. Materials and Methods: Ethanolic extracts of herbs (Berberis aristata and Punica granatum) and concentrations were formulated as per standard procedure. 130 samples were obtained for the study from in and out patients reported in clinical subsets of Ziauddin Hospital, Karachi from March to May, 2018. Samples were collected and grown according to the standard procedures like, wet mount test and gram’s staining. Species were identified by CHROM agar candida and API 20 C AUX methods. Sensitivity tests were performed by Kirby Bauer’s disc diffusion method according to CLSI guide lines M-44 A2, 2009. Data analysis was done by one-way ANOVA to compare the antifungal activities of drugs and herbs. Results: Mean inhibitory zones of herbs, B. aristata and P. granatum were highly significant against clinical candidal isolates with respective p-values of 0.00 and 0.02. Both of the herbs, B. aristata and P. granatum were found to be more sensitive, 98.5% and 97.7% respectively in comparison to fluconazole showing 42.3% and voriconazole showing 29.2% sensitivity against candidal isolates. The most resistant candidal specie was C. tropicalis that showed resistance against both fluconazole and voriconazole, contrary to that, this specie was highly sensitive to both of the herbs, showing sensitivity of 100% respective for Darehald and Pomegranate. Conclusion: In comparison to azoles: Culture sensitivity of both herbs (B. aristata and P. granatum) displayed more sensitivity against candidal isolates of patients having non-invasive and invasive candidiasis. These herbs can be considered as substitute or alternative antifungal agents to the conventional antifungal therapy, particularly in cases of treating candidemia patients, which is a life threating condition.
文摘Some azoles were tested such as 3-amino-1,2,4-triazole (ATA), 3-4’-bitriazole -1,2,4 (BiTA)and 2-Mercaptobenzimidazole (MBI) against Cu-30Ni alloy corrosion in 3%NaCl polluted by ammonia using potentiodynamic measurements and electrochemical impedance spectroscopy and non-electrochemical techniques (scanning Electron Microscopy (SEM)) studied surface morphology has been used to characterize electrode surface. This study permitted to follow the evolution of the inhibitory effect of some azoles, on Cu-30Ni alloy corrosion in 3%NaCl polluted by ammonia and indicate that the tested inhibitors act as a good mixed-type inhibitor retarding the anodic and cathodic reactions. An increase of the inhibitors concentration leads to a decrease of corrosion rate and inhibition efficiency increase.
文摘Azole derivatives such as 2-mercaptobenzothiazole(MBT) and 2-mercaptobenzimidazole(MBI) were introduced as corrosion inhibitors into the interlayer space of sodium montmorillonite clay(Na+-MMT). The corrosion protection behavior of mild steel in solutions containing MBT, MBI, MMT + MBT, MMT + MBI, Na^+-MMT, and NaCl(3.5 wt%) was evaluated using polarization and electrochemical impedance spectroscopy(EIS). Also, the release of penetrated species into the medium from the clay nanocarriers was evaluated using ultraviolet-visible(UV-Vis) spectroscopy. Small-angle X-ray scattering(SAXS) confirmed the insertion of MBT and MBI into the inner space of the clay layers and the interaction between two organic and inorganic phases. Scanning electron microscopy(SEM) was used to assess the morphology of the surface of the steel samples after the samples had been immersed for 24 h in the extraction solution. The corrosion protection in the solutions with clay nanocarriers containing MBT and MBI was better than that in solutions without MMT. The UV-Vis results showed that the release of MBI species from Na+-MMT nanocarriers in neutral pH was far lower than that of MBT species.
基金Financial supports from the National Natural Science Foundation of China(51872027)Beijing Natural Science Foundation(L172023)。
文摘Nitrogen-rich porous carbonaceous materials have shown great potential in energy storage and conversion applications due to their facile fabrication,high electronic conductivity,and improved hydrophilic property.Herein,three-dimensional porous N-rich carbon foams are fabricated through a one-step carbonization-activation method of the commercial melamine foam,and displaying hierarchically porous structure(macro-,meso-,and micro-pores),large surface area(1686.5 m2 g^-1),high N-containing level(3.3 at%),and excellent compressibility.The as-prepared carbon foams as electrodes for quasi-solid-state supercapacitors exhibit enhanced energy storage ability with 210 F g^-1 and 2.48c at 0.1 A g^-1,and150 F g^-1 and 1.77 F cm^-2 at 1 A g^-1,respectively.Moreover,as an electrode for lithium-based dual-ion capacitor,this distinctive porous carbon also delivers remarkable specific capacitance with 143.6 F g^-1 at0.1 A g^-1 and 116.2 F g^-1 at 1 A g^-1.The simple preparation method and the fascinating electrochemical performance endow the N-rich porous carbon foams great prospects as high-performance electrodes for electrochemical energy storage.
基金supported by the National Natural Science Foundation of China(20171169)Six Talent Peaks Project in Jiangsu Province(No.2017-XNY-043)+1 种基金the projects funded by the High-Level Personnel Support Program of Yang-Zhou Universitythe Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Cu-based MOFs,i.e.,HKUST-1,etc.,have been pertinently chosen as the pristine materials for CO_(2) ER due to the unique ability of copper for generation hydrocarbon fuel.However,the limited conductivity and stability become the stumbling-block that prevents the development of it.The exploring of MOFsderived M-C materials starts a new chapter for the MOFs precursors,which provides a remarkable electronic connection between carbon matrix and metals/metal oxides.N-doped M-N-C with extensive M-N sites scattering into the carbon matrix are more popular because of their impressive contribution to catalytic activity and specific product selectivity.Nevertheless,Cu-N-C system remained undeveloped up to now.The lack of ideal precursor,the sensitivity of Cu to be oxidized,and the difficulties in the synthesis of small size Cu nanoparticles are thus known as the main barriers to the development of Cu-N-C electrocatalysts.Herein,a nitrogen-rich Cu-BTT MOF is employed for the derivation of N-doped Cu-N-CT composite electrocatalysts by the pyrolyze method.High-temperature pyrolysis product of Cu-N-C1100exhibits the best catalytic activity for productions of CO(-0.6 V vs.RHE,jCO=0.4 mA/cm^(2))and HCOOH(-0.9 V vs.RHE,jHCOOH=1.4 mA/cm^(2)).
文摘Cardiac toxicity is an uncommon side effect of anti-fungal therapy. Until the recent reports of itraconazole (ITZ) associated cardiac failure, amphotericin was the antifungal most frequently reported with arrhythmias. We evaluated the cardiac effect of azole antifungals, specifically ITZ, and possible mechanisms of toxicity. Ex vivo live-heart studies were performed utilizing Sprague Dawley rats. Short exposure (<5 minutes), random crossover, dose ranging studies were performed with each pharmacologic agent. ITZ focused trials also included dose ranging utilizing a non-crossover design. The only azole found to have significant toxicity was ITZ. At ITZ ~ ED25 (2 - 2.5 ug/mL) exposures, contractility decreased by 22.2% ± 15.7% and amplitude of left ventricular pressure decreased by 11% ± 0.17%. Electron micrograph and alterations in mitochondrial respiration suggest mitochondrial toxicity as an underlying mechanism. In conclusion, ITZ was associated with reductions in contractility, possibly secondary to mitochondrial dysfunction and dilated cardiomyopathy.
基金supported by the National Natural Science Foundation of China(52171207,51762021)the Natural Science Foundation of Jiangxi province(20212BAB204031,20192ACB21009)。
文摘Transition metal nitrides have become the focus of research in sodium ion batteries(SIBs)due to their unique metal properties and high theoretical capacity.However,the low actual capacity is still the main bottleneck for their application.Herein,using Mo-aniline frameworks as precursors,the carbon encapsulated nitrogen-rich Mo_(x)N is decorated by few-layered MoSe_(2) nanosheets(MoSe_(2)@Mo_(x)N/C-I)after the facile calcinating,selenizing,and nitriding.The carbon encapsulation can effectively strengthen the structural stability of Mo_(x)N.The nitrogen-rich Mo_(x)N and decoration of few-layered MoSe_(2) can create rich heterointerfaces and extra active sites for rapid sodium-ion storage,thus promoting reaction kinetics and improving actual capacity.The MoSe_(2)@Mo_(x)N/C-I as an anode achieves a large reversible capacity of 522.8 mAh g^(-1)at 0.1 A g^(-1),and 254.3 mAh g^(-1)capacity is obtained after 6000 cycles at 5.0 A g^(-1),showing signally improved sodium-ion storage properties.The storage mechanisms and kinetic behaviors are described systematically via the advanced testing techniques and density functional theory(DFT)calculations.It is found that the nitrogen-rich Mo_(x)N as the substrate is the basis of long cycling stability,and the few-layered MoSe_(2) are the key to improving actual capacity.This work indicates that the decoration of few-layered selenides has a broad application prospect in high-performance metal-ion batteries.
基金supported by the National Natural Science Foundation of China(U21B2099)。
文摘The combination of a powerful CO_(2)-enriching carrier and robust active component provides a new idea for the construction of efficient catalysts for electrocatalytic CO_(2)reduction.Herein,novel perforated nitrogen-rich graphene-like carbon nanolayers(PNGC)are prepared from biomass derivatives,which promotes the oriented deposition of In-doped Cu_(2)(OH)_(3)(NO_(3))nanosheet patches.A robust Cu-In/PNGC composite catalyst is then obtained via simple in-situ electrochemical reduction.Unsurprisingly,CuIn/PNGC exhibits a CO Faradaic efficiency(FECO)of 91.3%and a remarkable CO partial current density(jCO)of 136.4 m A cm^(-2)at a moderate overpotential of 0.59 V for electrocatalytic CO_(2)reduction reaction(CO_(2)RR).DFT calculations and experimental studies indicate that the strong carrier effect of PNGC makes PNGC carried Cu-In nanosheets improved the adsorption capacity of CO_(2)gas,reconfigured electronic structure,and reduced free energy of key intermediate formation,thereby the CO_(2)activation and conversion are promoted.