To understand the regulation system of nitrogen X-starvation in higher plants, a cDNA library from N-starved rice (Oryza sativa L.) seedlings was constructed using rapid subtraction hybridization (RaSH) procedure. Thr...To understand the regulation system of nitrogen X-starvation in higher plants, a cDNA library from N-starved rice (Oryza sativa L.) seedlings was constructed using rapid subtraction hybridization (RaSH) procedure. Through reverse Northern analysis and Northern blotting, 18 unique known genes and two unique unknown genes were identified, which were up-regulated by N-starvation in rice. The known genes are involved in several metabolisms including carbon metabolism, secondary metabolite synthesis, ubiquitylation and protein degradation, phytohormone metabolism, signal transduction, growth regulator and transcription factors. Different induced expression patterns based on spatial and temporal express ions were found for these genes. The results indicate the cross-talks between N-starvation response and various metabolisms in plants.展开更多
文摘To understand the regulation system of nitrogen X-starvation in higher plants, a cDNA library from N-starved rice (Oryza sativa L.) seedlings was constructed using rapid subtraction hybridization (RaSH) procedure. Through reverse Northern analysis and Northern blotting, 18 unique known genes and two unique unknown genes were identified, which were up-regulated by N-starvation in rice. The known genes are involved in several metabolisms including carbon metabolism, secondary metabolite synthesis, ubiquitylation and protein degradation, phytohormone metabolism, signal transduction, growth regulator and transcription factors. Different induced expression patterns based on spatial and temporal express ions were found for these genes. The results indicate the cross-talks between N-starvation response and various metabolisms in plants.