期刊文献+
共找到3,862篇文章
< 1 2 194 >
每页显示 20 50 100
Regulatory potential of soil available carbon,nitrogen,and functional genes on N_(2)O emissions in two upland plantation systems
1
作者 Peng Xu Mengdie Jiang +4 位作者 Imran Khan Muhammad Shaaban Hongtao Wu Barthelemy Harerimana Ronggui Hu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第8期2792-2806,共15页
Dynamic nitrification and denitrification processes are affected by changes in soil redox conditions,and they play a vital role in regulating soil N_(2)O emissions in rice-based cultivation.It is imperative to underst... Dynamic nitrification and denitrification processes are affected by changes in soil redox conditions,and they play a vital role in regulating soil N_(2)O emissions in rice-based cultivation.It is imperative to understand the influences of different upland crop planting systems on soil N_(2)O emissions.In this study,we focused on two representative rotation systems in Central China:rapeseed–rice(RR)and wheat–rice(WR).We examined the biotic and abiotic processes underlying the impacts of these upland plantings on soil N_(2)O emissions.The results revealed that during the rapeseed-cultivated seasons in the RR rotation system,the average N_(2)O emissions were 1.24±0.20 and 0.81±0.11 kg N ha^(–1)for the first and second seasons,respectively.These values were comparable to the N_(2)O emissions observed during the first and second wheat-cultivated seasons in the WR rotation system(0.98±0.25 and 0.70±0.04 kg N ha^(–1),respectively).This suggests that upland cultivation has minimal impacts on soil N_(2)O emissions in the two rotation systems.Strong positive correlations were found between N_(2)O fluxes and soil ammonium(NH_(4)^(+)),nitrate(NO_(3)^(–)),microbial biomass nitrogen(MBN),and the ratio of soil dissolved organic carbon(DOC)to NO_(3)^(–)in both RR and WR rotation systems.Moreover,the presence of the AOA-amoA and nirK genes were positively associated with soil N_(2)O fluxes in the RR and WR systems,respectively.This implies that these genes may have different potential roles in facilitating microbial N_(2)O production in various upland plantation models.By using a structural equation model,we found that soil moisture,mineral N,MBN,and the AOA-amoA gene accounted for over 50%of the effects on N_(2)O emissions in the RR rotation system.In the WR rotation system,soil moisture,mineral N,MBN,and the AOA-amoA and nirK genes had a combined impact of over 70%on N_(2)O emissions.These findings demonstrate the interactive effects of functional genes and soil factors,including soil physical characteristics,available carbon and nitrogen,and their ratio,on soil N_(2)O emissions during upland cultivation seasons under rice-upland rotations. 展开更多
关键词 upland-rice cultivation N_(2)O emission regulatory factors functional genes
下载PDF
Genome-wide analysis of nuclear factor Y genes and functional investigation of watermelon ClNF-YB9 during seed development
2
作者 Qin Feng Ling Xiao +8 位作者 Jiafa Wang Jie Wang Chenyang Chen Jianyang Sun Xixi Wu Man Liu Xian Zhang Shujuan Tian Li Yuan 《The Crop Journal》 SCIE CSCD 2023年第5期1469-1479,共11页
The nuclear factor Y(NF-Y) gene family is a class of transcription factors that are widely distributed in eukaryotes and are involved in various biological processes. However, the NF-Y gene family members in watermelo... The nuclear factor Y(NF-Y) gene family is a class of transcription factors that are widely distributed in eukaryotes and are involved in various biological processes. However, the NF-Y gene family members in watermelon, a valued and nutritious fruit, remain largely unknown and their functions have not been characterized. In the present study, 22 ClNF-Y genes in watermelon, 29 CsNF-Y genes in cucumber, and 24CmNF-Y genes in melon were identified based on the whole-genome investigation and their protein properties, gene location, gene structure, motif composition, conserved domain, and evolutionary relationship were investigated. ClNF-YB9 from watermelon and its homologs in cucumber and melon were expressed specifically in seeds. Its expression remained low in the early stages of watermelon seed development,increased at 20 days after pollination(DAP), and peaked at 45–50 DAP. Moreover, the knockout mutant Clnf-yb9 exhibited abnormal leafy cotyledon phenotype, implying its critical role during seed formation.Finally, protein interaction assays showed that ClNF-YB9 interacts with all ClNF-YCs and the ClNF-YB9-YC4 heterodimer was able to recruit a ClNF-YA7 subunit to assemble a complete NF-Y complex, which may function in seed development. This study revealed the structure and evolutionary relationships of the NF-Y gene family in Cucurbitaceae and the novel function of ClNF-YB9 in regulating seed development in watermelon. 展开更多
关键词 WATERMELON NF-Y gene family Evolution relationship ClNF-YB9 gene function Seed development
下载PDF
Mapping and Functional Analysis of LE Gene in a Lethal Etiolated Rice Mutant at Seedling Stage
3
作者 XIA Xiaodong ZHANG Xiaobo +8 位作者 WANG Zhonghao CHENG Benyi Sun Huifeng XU Xia GONG Junyi YANG Shihua WU Jianli SHI Yongfeng XU Rugen 《Rice science》 SCIE CSCD 2023年第6期567-576,共10页
An EMS(ethy methanesulfonate)-induced lethal etiolated(le)mutant obtained from the rice variety Zhongjian 100 was characterized by lethal etiolated phenotypes,with significantly reduced levels of chlorophyll a,chlorop... An EMS(ethy methanesulfonate)-induced lethal etiolated(le)mutant obtained from the rice variety Zhongjian 100 was characterized by lethal etiolated phenotypes,with significantly reduced levels of chlorophyll a,chlorophyll b,total chlorophyll,and carotenoids.Additionally,the mutant displayed a significantly decreased number of chloroplast grana,along with irregular and less-stacked grana lamellae.The le mutant showed markedly diminished root length,root surface area,and root volume compared with the wild type.It also exhibited significantly lower catalase activity and total protein content,while peroxidase activity was significantly higher.Using the map-based cloning method,we successfully mapped the LE gene to a 48-kb interval between markers RM16107 and RM16110 on rice chromosome 3.A mutation(from T to C)was identified at nucleotide position 692 bp of LOC_Os03g59640(ChlD),resulting in a change from leucine to proline.By crossing HM133(a pale green mutant with a single-base substitution of A for G in exon 10 of ChlD subunit)with a heterozygous line of le(LEle),we obtained two plant lines heterozygous at both the LE and HM133 loci.Among 15 transgenic plants,3 complementation lines displayed normal leaf color with significantly higher total chlorophyll,chlorophyll a,and chlorophyll b contents.The mutation in le led to a lethal etiolated phenotype,which has not been observed in other ChlD mutants.The mutation in the AAA+domain of ChlD disrupted the interaction of ChlDle with ChlI as demonstrated by a yeast two-hybrid assay,leading to the loss of ChlD function and hindering chlorophyll synthesis and chloroplast development.Consequently,this disruption is responsible for the lethal etiolated phenotype in the mutant. 展开更多
关键词 Oryza sativa lethal etiolated mutant gene cloning functional analysis reactive oxygen species
下载PDF
Cloning and Functional Validation of Mung Bean VrPR Gene
4
作者 Xiaokui Huang Yingbin Xue +3 位作者 Aaqil Khan Hanqiao Hu Naijie Feng Dianfeng Zheng 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第8期2369-2382,共14页
For the purpose of functional validation,the mung bean(Vigna radiata)VrPR gene was cloned and overexpressed in Arabidopsis thaliana.Thefindings revealed that the ORF of VrPR contained 1200 bp,in which 399 amino acids w... For the purpose of functional validation,the mung bean(Vigna radiata)VrPR gene was cloned and overexpressed in Arabidopsis thaliana.Thefindings revealed that the ORF of VrPR contained 1200 bp,in which 399 amino acids were encoded.Bioinformatics analysis showed that the VrPR protein belonged to the NADB Rossmann superfamily,which was one of the non-transmembrane hydrophilic proteins.VrPR was assumed to have 44 amino acid phosphorylation sites and be contained in chloroplasts.The VrPR secondary structure comprised of random coil,αhelix,βangle,and extended chain,all of which were quite compatible with the anticipated tertiary structure.Moreover,analysis of the phylogenetic tree indicated that the soybean PR(Glyma.12G222200)and VrPR were closely related.Furthermore,chlorophyll content in leaves is markedly increased in Arabidopsis when VrPR is overexpressed.Ourfindings will serve as a reference for more functional studies on the PR genes in mung bean. 展开更多
关键词 Mung bean gene cloning VrPR transgenic arabidopsis functional verification
下载PDF
Research Progress on Functional Analysis of Rice WRKY Genes 被引量:28
5
作者 SONG Yu AI Chong-rui +1 位作者 JING Shao-juan Yu Di-qiu 《Rice science》 SCIE 2010年第1期60-72,共13页
Rice is a model plant for genomic study of grass species. Functional identification and definition of rice genes becomes the object of its functional genomics research. WRKY gene superfamily, one of the transcription ... Rice is a model plant for genomic study of grass species. Functional identification and definition of rice genes becomes the object of its functional genomics research. WRKY gene superfamily, one of the transcription factor gene families, was recently suggested to play important roles in plant development and stress response. In rice, the results of analyses of expression pattern and ectopic overexpressor lines also support this viewpoint, and the evidences implicate rice WRKY proteins in transcriptional reprogramming during biotic or abiotic stresses, senescence, sugar metabolites, and morphological architecture. In this paper, we review the advance in study of rice WRKY gene family and also propose unified nomenclature for rice WRKY factors to eliminate confusion. 展开更多
关键词 RICE WRKYgene gene function transcription factor
下载PDF
Gene polymorphisms associated with functional dyspepsia 被引量:8
6
作者 Anastasia Kourikou George P Karamanolis +1 位作者 George D Dimitriadis Konstantinos Triantafyllou 《World Journal of Gastroenterology》 SCIE CAS 2015年第25期7672-7682,共11页
Functional dyspepsia(FD) is a constellation of functional upper abdominal complaints with poorly elucidated pathophysiology. However, there is increasing evidence that susceptibility to FD is influenced by hereditary ... Functional dyspepsia(FD) is a constellation of functional upper abdominal complaints with poorly elucidated pathophysiology. However, there is increasing evidence that susceptibility to FD is influenced by hereditary factors. Genetic association studies in FD have examined genotypes related to gastrointestinal motility or sensation, as well as those related to inflammation or immune response. G-protein b3 subunit gene polymorphisms were first reported as being associated with FD. Thereafter, several gene polymorphisms including serotonin transporter promoter, interlukin-17 F, migration inhibitory factor, cholecystocynine-1 intron 1, cyclooxygenase-1, catechol-o-methyltransferase, transient receptor potential vanilloid 1 receptor, regulated upon activation normal T cell expressed and secreted, p22 PHOX, Toll like receptor 2, SCN10 A, CD14 and adrenoreceptors have been investigated in relation to FD; however, the results are contradictory. Several limitations underscore the value of current studies. Among others, inconsistencies in the definitions of FD and controls, subject composition differences regarding FD subtypes, inadequate samples, geographical and ethnical differences, as well as unadjusted environmental factors. Further well-designed studies are necessary to determine how targeted genes polymorphisms, influence the clinical manifestations and potentially the therapeutic response in FD. 展开更多
关键词 functional DYSPEPSIA gene POLYMORPHISM geneTIC SUSCEPTIBILITY PATHOPHYSIOLOGY
下载PDF
Cloning and Functional Analysis of Lycopene ε-Cyclase (IbLCYe) Gene from Sweetpotato, Ipomoea batatas (L.) Lam. 被引量:7
7
作者 YU Ling ZHAI Hong +2 位作者 CHEN Wei HE Shao-zhen LIU Qing-chang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第5期773-780,共8页
This paper reported firstly successful cloning of lycopene ε-cyclase (lbLCYe) gene from sweetpotato, lpomoea batatas (L.) Lam. Using rapid amplification of cDNA ends (RACE), lbLCYe gene was cloned from sweetpot... This paper reported firstly successful cloning of lycopene ε-cyclase (lbLCYe) gene from sweetpotato, lpomoea batatas (L.) Lam. Using rapid amplification of cDNA ends (RACE), lbLCYe gene was cloned from sweetpotato cv. Nongdafu 14 with high carotenoid content. The 1 805 bp cDNA sequence oflbLCYe gene contained a 1236 bp open reading frame (ORF) encoding a 411 amino acids polypeptide with a molecular weight of 47 kDa and an isoelectric point (pI) of 6.95. IbLCYe protein contained one potential lycopene ε-cyclase domain and one potential FAD (flavinadenine dinucleotide)/NAD(P) (nicotinamide adenine dinucleotide phosphate)-binding domain, indicating that this protein shares the typical characteristics of LCYe proteins. The gDNA oflbLCYe gene was 4 029 bp and deduced to contain 5 introns and 6 exons. Real-time quantitative PCR analysis revealed that the expression level of IbLCYe gene was significantly higher in the storage roots of Nongdafu 14 than those in the leaves and stems. Transgenic tobacco (cv. Wisconsin 38) expressing [bLCYe gene accumulated significantly more ^-carotene compared to the untransformed control plants. These results showed that lbLCYe gene has an important function for the accumulation of carotenoids of sweetpotato. 展开更多
关键词 IbLCYe gene CLONING functional analysis carotenoid lpomoea batatas (L.) Lam.
下载PDF
Development of Simple Functional Markers for Low Glutelin Content Gene 1 (Lgc1) in Rice (Oryza sativa) 被引量:7
8
作者 CHEN Tao TIAN Meng-xiang ZHANG Ya-dong ZHU Zhen ZHAO Ling ZHAO Qing-yong LIN Jing ZHOU Li-hui WANG Cai-lin 《Rice science》 SCIE 2010年第3期173-178,共6页
关键词 Oryza sativa low glutelin-content gene functional marker double polymerase chain reaction
下载PDF
Verify the Function of a Potential Growth-Regulating Gene in Marine Bivalve Using a Candidate Model Organism Mulinia lateralis
9
作者 WANG Chen KONG Lingling +6 位作者 LIAN Shanshan YANG Zujing MENG Deting LI Moli ZHANG Xiangchao BAO Zhenmin HU Xiaoli 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第4期1012-1022,共11页
A better understanding of genetic bases of growth regulation is essential for bivalve breeding,which is helpful to improve the yield of the commercially important bivalves.While previous studies have identified some c... A better understanding of genetic bases of growth regulation is essential for bivalve breeding,which is helpful to improve the yield of the commercially important bivalves.While previous studies have identified some candidate genes accounting for variation in growth-related traits through genotype-phenotype association analyses,seldom of them have verified the functions of these putative,growth-related genes beyond the genomic level due to the difficulty of culturing commercial bivalves under laboratory conditions.Fortunately,dwarf surf clam Mulinia lateralis can serve as a model organism for studying marine bivalves given its short generation time,the feasibility of being grown under experimental conditions and the availability of genetic and biological information.Using dwarf surf clam as a model bivalve,we characterize E2F3,a gene that has been found to account for variation in growth in scallops by a previous genome-wide association study,and verify its function in growth regulation through RNA interference(RNAi)experiments.For the first time,E2F3 in dwarf surf clam,which is termed as MulE2F3,is characterized.The results reveal that dwarf surf clams with MulE2F3 knocked down exhibit a reduction in both shell size and soft-tissue weight,indicating the functions of MulE2F3 in positively regulating bivalve growth.More importantly,we demonstrate how dwarf surf clam can be used as a model organism to investigate gene functions in commercial bivalves,shedding light on genetic causes for variation in growth to enhance the efficiency of bivalve farming. 展开更多
关键词 growth-regulating gene function marine bivalve model organism Mulinia lateralis
下载PDF
Application of Functional Markers to Identify Genes for Bacterial Blight Resistance in Oryza rufipogon 被引量:2
10
作者 XIA Zhi-hui HAN Fei +4 位作者 GAO Li-fen YUAN Qian-hua ZHAI Wen-xue LIU Di LUO Yue-hua 《Rice science》 SCIE 2010年第1期73-76,共4页
Field resistances of nine accessions of common wild rice (Oryza rufipogon Griff.) and one rice variety (IR24) were evaluated by using nine strains of bacterial blight pathogen (Xanthomonas oryzae pv. oryzae) fro... Field resistances of nine accessions of common wild rice (Oryza rufipogon Griff.) and one rice variety (IR24) were evaluated by using nine strains of bacterial blight pathogen (Xanthomonas oryzae pv. oryzae) from the Philippines. IR24 was highly susceptible to all the strains, and six common wild rice accessions resisted all the nine strains, with a resistance frequency of 67%. The accessions Yulin and Wanning were only susceptible to PXO280 and PXO71, respectively. The accession Gaozhou was susceptible to the three strains PXO79, PXO99 and PXO339, whereas resistant to the other six strains. It could be concluded that there is at least one resistance gene in each common wild rice accession. The functional markers of the genes xa5, xa13, Xa21 and Xa27 were used to detect the presence of these resistance genes in the nine tested wild rice accessions, and it was found that four wild rice accessions contained heterozygous xa13. Among the nine common wild rice accessions, five were homozygous for Xa27 and three homozygous for xa27, and the accession Laibin contained neither xa27 nor Xa27. In addition, there were no xa5 and Xa21 in all of these accessions. 展开更多
关键词 Oryza rufipogon bacterial blight resistance gene functional marker
下载PDF
Changes in bacterial community and abundance of functional genes in paddy soil with cry1Ab transgenic rice 被引量:1
11
作者 SONG Ya-na CHEN Zai-jie +2 位作者 WU Ming-ji LI Gang WANG Feng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第6期1674-1686,共13页
A field experiment involving cry1Ab transgenic rice(GM) and its parental non-cry1Ab rice(M) has been on-going since 2014. The diversity of the bacterial communities and the abundance of the microbial functional genes ... A field experiment involving cry1Ab transgenic rice(GM) and its parental non-cry1Ab rice(M) has been on-going since 2014. The diversity of the bacterial communities and the abundance of the microbial functional genes which drive the conversion of nitrogen in paddy soil were analyzed during the growth period of rice in the fifth year of the experiment, using 16 S rRNAbased Illumina Mi Seq and real-time PCR on the amoA, nirS and nirK genes. The results showed no differences in the alpha diversity indexes of the bacterial communities, including Chao1, Shannon and Simpson, between the fields cultivated with line GM and cultivar M at any of the growth stages of rice. However, the bacterial communities in the paddy soil with line GM were separated from those of paddy soil with cultivar M at each of the growth stages of rice, based on the unweighted Uni Frac NMDS or PCoA. In addition, the analyses of ADONIS and ANOSIM, based on the unweighted Uni Frac distance, indicated that the above separations between line GM and cultivar M were statistically significant(P<0.05) during the growth season of rice. The increases in the relative abundances of Acidobacteria or Bacteroidetes, in the paddy soils with line GM or cultivar M, respectively, led to the differences in the bacterial communities between them. At the same time, functional gene prediction based on Illumina Mi Seq data suggested that the abundance of many functional genes increased in the paddy soil with line GM at the maturity stage of rice, such as genes related to the metabolism of starch, amino acids and nitrogen. Otherwise, the copies of bacterial amo A gene, archaeal amo A gene and denitrifying bacterial nir K gene significantly increased(P<0.05 or 0.01) in the paddy soil with line GM. In summary, the release of cry1Ab transgenic rice had effects on either the composition of bacterial communities or the abundance of microbial functional genes in the paddy soil. 展开更多
关键词 cry1Ab transgenic rice bacterial community microbial functional gene Illumina MiSeq Platform real-time PCR
下载PDF
Development and application of functional gene arrays for microbial community analysis 被引量:23
12
作者 Z. L. HE J. D. VAN NOSTRAND L.Y. WU J. Z. ZHOU 《中国有色金属学会会刊:英文版》 EI CSCD 2008年第6期1319-1327,共9页
功能的基因标记能关于功能的基因差异和微生物引起的社区的潜在的活动提供重要信息。尽管 microarray 技术成功地被使用了为纯文化学习基因表示,简单、人工的微生物引起的社区,改编如此的一种技术分析复杂微生物引起的社区仍然以设计... 功能的基因标记能关于功能的基因差异和微生物引起的社区的潜在的活动提供重要信息。尽管 microarray 技术成功地被使用了为纯文化学习基因表示,简单、人工的微生物引起的社区,改编如此的一种技术分析复杂微生物引起的社区仍然以设计,样品准备,和数据分析提出很多挑战。这个工作集中于功能的基因数组(FGA ) 的开发和应用程序为微生物引起的社区研究指向关键功能的基因标记。一些与 FGA 有关明确地给问题调音,例如 oligonucleotide 探查设计, nucleic 酸抽取和纯化,数据分析,特性,敏感,和量的能力详细被讨论。最近的研究证明了 FGA 能从许多自然环境关于微生物引起的社区提供特定、敏感、潜在地量的信息并且控制生态系统。这种技术被期望革命化微生物引起的社区的分析,并且连接微生物引起的结构到生态系统工作。 展开更多
关键词 微数列 应用 函数基因标记 微生物种群
下载PDF
Development of a rapid and efficient system for CR genes identification based on hairy root transformation in Brassicaceae
13
作者 Wenlin Yu Lu Yang +12 位作者 Yuanyuan Xiang Rongde Li Xueqing Zhou Longcai Gan Xianyu Xiang Yunyun Zhang Lei Yuan Yanqing Luo Genze Li Youning Wang Yinhua Chen Peng Chen Chunyu Zhang 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第4期1049-1060,共12页
Many economically important crops and vegetables belonging to the cruciferous family are heavily endangered by clubroot disease caused by Plasmodiophora brassicae infection.Breeding of clubroot resistant cultivars bas... Many economically important crops and vegetables belonging to the cruciferous family are heavily endangered by clubroot disease caused by Plasmodiophora brassicae infection.Breeding of clubroot resistant cultivars based on mapping and cloning of resistant genes is commonly regarded as the most cost-effective and efficient way to fight against this disease.The traditional way of R gene functional validation requires stable transformation that is both time-and labor-consuming.In this study,a rapid and efficient hairy-root transgenic protocol mediated by Agrobacterium rhizogenes was developed.The transformation positive rate was over 80%in Brassica napus showed by GUS reporter gene and this transformation only took 1/6 of the time compared with stable transformation.The system was applicable to different B.napus varieties and other cruciferous crops including Brassica rapa and Brassica oleracea.In particular,two known CR genes,CRA3.7.1 and CRA8.2.4 were used respectively,as example to show that the system works well for CR gene study combined with subsequent P.brassicae infection in B.napus.Most importantly,it works both in over-expression that led to disease resistance,as well as in RNAi which led to disease susceptible phenotype.Therefore,this system can be used in batch-wise identification of CR genes,and also offered the possibility of manipulating key genes within the P.brassicae genome that could improve our knowledge on host-pathogen interaction. 展开更多
关键词 Brassicaceae Agrobacterium rhizogenes Hairy root transformation CLUBROOT gene function
下载PDF
Gene signatures to therapeutics:Assessing the potential of ivermectin against t(4;14)multiple myeloma
14
作者 Yang Song Hao-Jun Zhang +5 位作者 Xia Song Jie Geng Hong-Yi Li Li-Zhong Zhang Bo Yang Xue-Chun Lu 《World Journal of Clinical Oncology》 2024年第1期115-129,共15页
BACKGROUND Multiple myeloma(MM)is a terminal differentiated B-cell tumor disease characterized by clonal proliferation of malignant plasma cells and excessive levels of monoclonal immunoglobulins in the bone marrow.Th... BACKGROUND Multiple myeloma(MM)is a terminal differentiated B-cell tumor disease characterized by clonal proliferation of malignant plasma cells and excessive levels of monoclonal immunoglobulins in the bone marrow.The translocation,(t)(4;14),results in high-risk MM with limited treatment alternatives.Thus,there is an urgent need for identification and validation of potential treatments for this MM subtype.Microarray data and sequencing information from public databases could offer opportunities for the discovery of new diagnostic or therapeutic targets.AIM To elucidate the molecular basis and search for potential effective drugs of t(4;14)MM subtype by employing a comprehensive approach.METHODS The transcriptional signature of t(4;14)MM was sourced from the Gene Expression Omnibus.Two datasets,GSE16558 and GSE116294,which included 17 and 15 t(4;14)MM bone marrow samples,and five and four normal bone marrow samples,respectively.After the differentially expressed genes were identified,the Cytohubba tool was used to screen for hub genes.Then,the hub genes were analyzed using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis.Using the STRING database and Cytoscape,protein–protein interaction networks and core targets were identified.Potential small-molecule drugs were identified and validated using the Connectivity Map database and molecular docking analysis,respectively.RESULTS In this study,a total of 258 differentially expressed genes with enriched functions in cancer pathways,namely cytokine receptor interactions,nuclear factor(NF)-κB signaling pathway,lipid metabolism,atherosclerosis,and Hippo signaling pathway,were identified.Ten hub genes(cd45,vcam1,ccl3,cd56,app,cd48,btk,ccr2,cybb,and cxcl12)were identified.Nine drugs,including ivermectin,deforolimus,and isoliquiritigenin,were predicted by the Connectivity Map database to have potential therapeutic effects on t(4;14)MM.In molecular docking,ivermectin showed strong binding affinity to all 10 identified targets,especially cd45 and cybb.Ivermectin inhibited t(4;14)MM cell growth via the NF-κB pathway and induced MM cell apoptosis in vitro.Furthermore,ivermectin increased reactive oxygen species accumulation and altered the mitochondrial membrane potential in t(4;14)MM cells.CONCLUSION Collectively,the findings offer valuable molecular insights for biomarker validation and potential drug development in t(4;14)MM diagnosis and treatment,with ivermectin emerging as a potential therapeutic alternative. 展开更多
关键词 Multiple myeloma functional enrichment analysis Molecular docking simulation gene expression profiling Therapeutic target IVERMECTIN
下载PDF
A callus transformation system for gene functional studies in soybean
15
作者 XU Kun ZHANG Xiao-mei +5 位作者 FAN Cheng-ming CHEN Fu-lu ZHU Jin-long ZHANG Shi-long CHEN Qing-shan FU Yong-fu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第9期1913-1922,共10页
Obtaining transgenic plants is a common method for analyzing gene function. Unfortunately, stable genetic transformation is difficult to achieve, especially for plants(e.g., soybean), which are recalcitrant to genet... Obtaining transgenic plants is a common method for analyzing gene function. Unfortunately, stable genetic transformation is difficult to achieve, especially for plants(e.g., soybean), which are recalcitrant to genetic transformation. Transient expression systems, such as Arabidopsis protoplast, Nicotiana leaves, and onion bulb leaves are widely used for gene functional studies. A simple method for obtaining transgenic soybean callus tissues was reported recently. We extend this system with simplified culture conditions to gene functional studies, including promoter analysis, expression and subcellular localization of the target protein, and protein-protein interaction. We also evaluate the plasticity of this system with soybean varieties, different vector constructs, and various Agrobacterium strains. The results indicated that the callus transformation system is efficient and adaptable for gene functional investigation in soybean genotype-, vector-, and Agrobacterium strain-independent modes. We demonstrated an easy set-up and practical homologous strategy for soybean gene functional studies. 展开更多
关键词 soybean callus gene function studies transformation
下载PDF
Functional Investigation of a Cotton Fiber HOX Gene
16
作者 GUAN Xue-ying,SHANGGUAN Xiao-xia,WANG Shui,WANG Ling-jian,CHEN Xiao-ya(National Key Laboratory of Plant Molecular Genetics,Institute of Plant Physiology and Ecology,Shanghai Institutes for Biological Sciences,Chinese Academy of Sciences,Shanghai 200032,China) 《棉花学报》 CSCD 北大核心 2008年第S1期53-,共1页
Most of the plant homeodomain-containing proteins play important roles in regulating cell differentiation and organ development,and Arabidopsis GLABRA2(GL2),a member of the class IV homeodomain-Leucine zipper(HD-ZIP) ... Most of the plant homeodomain-containing proteins play important roles in regulating cell differentiation and organ development,and Arabidopsis GLABRA2(GL2),a member of the class IV homeodomain-Leucine zipper(HD-ZIP) proteins,is a trichome and non-root hair cell regulator.We 展开更多
关键词 HOX functional Investigation of a Cotton Fiber HOX gene
下载PDF
Transformation of ammonium nitrogen and response characteristics of nitrifying functional genes in tannery sludge contaminated soil
17
作者 Xiang-ke Kong Zi-xuan Zhang +4 位作者 Ping Wang Yan-yan Wang Zhao-ji Zhang Zhan-tao Han Li-sha Ma 《Journal of Groundwater Science and Engineering》 2022年第3期223-232,共10页
High concentrations of ammonium nitrogen released from tannery sludge during storage in open air may cause nitrogen pollution to soil and groundwater.To study the transformation mechanism of NH_(4)^(+)-N by nitrifying... High concentrations of ammonium nitrogen released from tannery sludge during storage in open air may cause nitrogen pollution to soil and groundwater.To study the transformation mechanism of NH_(4)^(+)-N by nitrifying functional bacteria in tannery sludge contaminated soils,a series of contaminated soil culture experiments were conducted in this study.The contents of ammonium nitrogen(as NH_(4)^(+)-N),nitrite nitrogen(as NO_(2)^(−)-N)and nitrate nitrogen(as NO_(3)^(−)-N)were analyzed during the culture period under different conditions of pollution load,soil particle and redox environment.Sigmodial equation was used to interpret the change of NO_(3)^(−)-N with time in contaminated soils.The abundance variations of nitrifying functional genes(amoA and nxrA)were also detected using the real-time quantitative fluorescence PCR method.The results show that the nitrification of NH_(4)^(+)-N was aggravated in the contaminated silt soil and fine sand under the condition of lower pollution load,finer particle size and more oxidizing environment.The sigmodial equation well fitted the dynamic accumulation curve of the NO_(3)^(−)-N content in the tannery sludge contaminated soils.The Cr(III)content increased with increasing pollution load,which inhibited the reproduction and activity of nitrifying bacteria in the soils,especially in coarse-grained soil.The accumulation of NO_(2)^(−)-N contents became more obvious with the increase of pollution load in the fine sand,and only 41.5%of the NH_(4)^(+)-N was transformed to NO_(3)^(−)-N.The redox environment was the main factor affecting nitrification process in the soil.Compared to the aerobic soil environment,the transformation of NH_(4)^(+)-N was significantly inhibited under anaerobic incubation condition,and the NO_(3)^(−)-N contents decreased by 37.2%,61.9%and 91.9%under low,medium and high pollution loads,respectively.Nitrification was stronger in the silt soil since its copy number of amoA and nxrA genes was two times larger than that of fine sand.Moreover,the copy numbers of amoA and nxrA genes in the silt soil under the aerobic environment were 2.7 times and 2.2 times larger than those in the anaerobic environment.The abundance changes of the amoA and nxrA functional genes have a positive correlation with the nitrification intensity in the tannery sludge-contaminated soil. 展开更多
关键词 Tannery sludge Transformation of ammonium nitrogen Cr(III)aging Fluorescence quantitative PCR functional gene
下载PDF
Transcriptome and Functional Analysis of Fiber-related Gene Expression in Cotton
18
作者 CHEN Z Jeffrey LEE Jinsuk J +1 位作者 HA Misook AGARWAL Vikram 《棉花学报》 CSCD 北大核心 2008年第S1期35-,共1页
Fiber cell initiation is a complex process involving many pathways,including phytohormones and components for transcriptional and posttranscriptional regulation.Here we report expression
关键词 Transcriptome and functional Analysis of Fiber-related gene Expression in Cotton
下载PDF
Molecular cloning and functional analyses of low-temperature induced genes from Ammopiptanthus mongolicus
19
作者 CAO Peng-xiu1,SONG Jian1,ZHOU Chun-jiang1,WENG Man-li1,JIN De-min1,ZHAO Feng1,LIU Jing2,FENG Dian-qi2,WANG Bin1(1.The State Key Laboratory of Plant Genomics,Institute of Genetics and Developmental Biology,CAS,Beijing,100101,China 2.Taishan Branch of Shandong Academy of Forestry Sciences,Taian 271000,China) 《湖南农业大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第S1期240-,共1页
Studies on the cold-responsive genes and cold signaling of woody species drop far behind in comparison to herbaceous plants.Due to similar lignified structure,perennial characteristic,and enhanced tolerance,it seems m... Studies on the cold-responsive genes and cold signaling of woody species drop far behind in comparison to herbaceous plants.Due to similar lignified structure,perennial characteristic,and enhanced tolerance,it seems much easier to find strongly antifreeze genes and obtain effective results in transgenic woody plants.In this study,Ammopiptanthus mongolicus,an evergreen,broadleaf and cold-resist leguminous shrub growing in the desert of Inner Mongolia,was used as a material for low-temperature induced gene isolation.Through differential expression analysis induced by low-temperature,thirteen up-regulated cDNAs were identified.One of them,AmEBP1,(accession number:DQ519359)confers enhanced cold-tolerance to both transgenic E.coli and transgenic Arabidopsis.Results suggest that AmEBP1 can stimulate the synthesis of ribosome and the dephosphyration of the α-subunit of initiation factor 2(eIF2α),and subsequently promote the translation process.By which the transgenic plants obtained increased cold-resistant ability. 展开更多
关键词 Molecular cloning and functional analyses of low-temperature induced genes from Ammopiptanthus mongolicus
下载PDF
Geochip-based analysis of microbial functional genes diversity in rutile bio-desilication reactor
20
作者 宋翔宇 邱冠周 +3 位作者 王海东 谢建平 徐靖 王娟 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第8期2922-2928,共7页
Biological desilication process is an effective way to remove silicate from rutile so that high purity rutile could be obtained. However, little is known about the molecular mechanism of this process. In this work, a ... Biological desilication process is an effective way to remove silicate from rutile so that high purity rutile could be obtained. However, little is known about the molecular mechanism of this process. In this work, a newly developed rutile bio-desilication reactor was applied to enrich rutile from rough rutile concentrate obtained from Nanzhao rutile mine and a comprehensive high through-put functional gene array(Geo Chip 4.0) was used to analyze the functional gene diversity, structure and metabolic potential of microbial communities in the biological desilication reactor. The results show that TiO2 grade of the rutile concentrate could increase from 78.21% to above 90% and the recovery rate could reach to 96% or more in 8-12 d. The results also show that almost all the key functional genes involved in the geochemical cycling process, totally 4324 and 4983 functional microorganism genes, are detected in the liquid and ore surface, respectively. There are totally 712 and 831 functional genes involved in nitrogen cycling for liquid and ore surface samples, respectively. The relative abundance of functional genes involved in the phosphorus and sulfur cycling is higher in the ore surface than liquid. These results indicate that nitrogen, phosphorus and sulfur cycling are also present in the desiliconization process of rutile. Acetogenesis genes are detected in the liquid and ore surface, which indicates that the desiliconizing process mainly depends on the function of acetic acid and other organic acids. Four silicon transporting genes are also detected in the sample, which proves that the bacteria have the potential to transfer silicon in the molecule level. It is shown that bio-desilication is an effective and environmental-friendly way for enrichment of rough rutile concentrate and presents an overview of functional diversity and structure of desilication microbial communities, which also provides insights into our understanding of metabolic potential in biological desilication reactor ecosystems. 展开更多
关键词 微生物群落结构 金红石矿 功能基因 多样性分析 反应器 脱硅 表面检测 基因芯片
下载PDF
上一页 1 2 194 下一页 到第
使用帮助 返回顶部