Single-photon flux is one of the crucial properties of nitrogen vacancy (NV) centers in diamond for its application in quantum information techniques. Here we fabricate diamond conical nanowires to enhance the singl...Single-photon flux is one of the crucial properties of nitrogen vacancy (NV) centers in diamond for its application in quantum information techniques. Here we fabricate diamond conical nanowires to enhance the single-photon count rate. Through the interaction between tightly confined optical mode in nanowires and NV centers, the single-photon lifetime is much shortened and the collection efficiency is enhanced. As a result, the detected single-photon rate can be at 564 kcps, and the total detection coefficient can be 0.8%, which is much higher than that in bulk diamond. Such a nanowire single-photon device with high photon flux can be applied to improve the fidelity of quantum computation and the precision of quantum sensors.展开更多
An integrated quantum probe for magnetic field imaging is proposed,where the nitrogen–vacancy(NV)center fixed at the fiber tip is located on the periphery of flexible ring resonator.Using flexible polyimide(PI)as the...An integrated quantum probe for magnetic field imaging is proposed,where the nitrogen–vacancy(NV)center fixed at the fiber tip is located on the periphery of flexible ring resonator.Using flexible polyimide(PI)as the substrate medium,we design a circular microstrip antenna,which can achieve a bandwidth of 140 MHz at Zeeman splitting frequency of 2.87 GHz,specifically suitable for NV center experiments.Subsequently,this antenna is seamlessly fixed at a three-dimensional-printed cylindrical support,allowing the optical fiber tip to extend out of a dedicated aperture.To mitigate errors originating from processing,precise tuning within a narrow range can be achieved by adjusting the conformal amplitude.Finally,we image the microwave magnetic field around the integrated probe with high resolution,and determine the suitable area for placing the fiber tip(SAP).展开更多
The diamond anvil cell-based high-pressure technique is a unique tool for creating new states of matter and for understanding the physics underlying some exotic phenomena.In situ sensing of spin and charge properties ...The diamond anvil cell-based high-pressure technique is a unique tool for creating new states of matter and for understanding the physics underlying some exotic phenomena.In situ sensing of spin and charge properties under high pressure is crucially important but remains technically challenging.While the nitrogen-vacancy(NV)center in diamond is a promising quantum sensor under extreme conditions,its spin dynamics and the quantum control of its spin states under high pressure remain elusive.In this study,we demonstrate coherent control,spin relaxation,and spin dephasing measurements for ensemble NV centers up to 32.8 GPa.With this in situ quantum sensor,we investigate the pressure-induced magnetic phase transition of a micron-size permanent magnet Nd2Fe14B sample in a diamond anvil cell,with a spatial resolution of ~2μm,and sensitivity of ~20 μT/Hz1/2. This scheme could be generalized to measure other parameters such as temperature,pressure and their gradients under extreme conditions.This will be beneficial for frontier research of condensed matter physics and geophysics.展开更多
High precision current measurement is very important for the calibration of various high-precision equipment and the measurement of other precision detection fields.A new current sensor based on diamond nitrogen-vacan...High precision current measurement is very important for the calibration of various high-precision equipment and the measurement of other precision detection fields.A new current sensor based on diamond nitrogen-vacancy(NV)color center magnetic measurement method is proposed to realize the accurate measurement of current.This new current method can greatly improve the accuracy of current measurement.Experiments show that the linearity of the current sensor based on diamond NV color center can reach up to 33 ppm,which is superior to other current sensors and solves the problem of low linearity.When the range of input current is 5-40 A,the absolute error of the calculated current is less than 51μA,and the relative error is 2.42×10^(-6) at 40 A.Combined with the research content and results of the experiment,the application of the current sensor in the field of current precision measurement is prospected.展开更多
Determination and control of nitrogen-vacancy(NV)centers play an important role in sensing the vector field by using their quantum information.To measure orientation of NV centers in a diamond particle attached to a t...Determination and control of nitrogen-vacancy(NV)centers play an important role in sensing the vector field by using their quantum information.To measure orientation of NV centers in a diamond particle attached to a tapered fiber rapidly,we propose a new method to establish the direction cosine matrix between the lab frame and the NV body frame.In this method,only four groups of the ODMR spectrum peaks shift data need to be collected,and the magnetic field along±Z and±Y in the lab frame is applied in the meantime.We can also control any NV axis to rotate to the X,Y,Z axes in the lab frame according to the elements of this matrix.The demonstration of the DC and microwave magnetic field vector sensing is presented.Finally,the proposed method can help us to perform vector magnetic field sensing more conveniently and rapidly.展开更多
Magnetic field measurement plays an extremely important role in material science,electronic en-gineering,power system and even industrial fields.In particular,magnetic field measurement provides a safe and reliable to...Magnetic field measurement plays an extremely important role in material science,electronic en-gineering,power system and even industrial fields.In particular,magnetic field measurement provides a safe and reliable tool for industrial non-destructive testing.The sensitivity of magnetic field measurement deter-mines the highest level of detection.The diamond nitrogen-vacancy(NV)color center is a new type of quan-tum sensor developed in recent years.The external magnetic field will cause Zeeman splitting of the ground state energy level of the diamond NV color center.Optical detection magnetic resonance(ODMR),using a mi-crowave source and a lock-in amplifier to detect the resonant frequency of the NV color center,and finally the change of the resonant frequency can accurately calculate the size of the external magnetic field and the sensi-tivity of the external magnetic field change.In the experiment,a diamond containing a high concentration of NV color centers is coupled with an optical fiber to realize the preparation of a magnetic field scanning probe.Then,the surface cracks of the magnetized iron plate weld are scanned,and the scanning results are drawn into a two-dimensional magnetic force distribution map,according to the magnetic field gradient change of the magnetic force distribution map,the position and size of the crack can be judged very accurately,which pro-vides a very effective diagnostic tool for industrial safety.展开更多
We design proposals to generate a remote Greenberger-Horne-Zeilinger(GHZ) state and a W state of nitrogenvacancy(NV) centers coupled to microtoroidal resonators(MTRs) through noisy channels by utilizing time-bin...We design proposals to generate a remote Greenberger-Horne-Zeilinger(GHZ) state and a W state of nitrogenvacancy(NV) centers coupled to microtoroidal resonators(MTRs) through noisy channels by utilizing time-bin encoding processes and fast-optical-switch-based polarization rotation operations.The polarization and phase noise induced by noisy channels generally affect the time of state generation but not its success probability and fidelity.Besides,the above proposals can be generalized to n-qubit between two or among n remote nodes with success probability unity under ideal conditions.Furthennore,the proposals are robust for regular noise-changeable channels for the n-node case.This method is also useful in other remote quantum information processing tasks through noisy channels.展开更多
We develop a design of a hybrid quantum interface for quantum information transfer (QIT), adopting a nanome- chanical resonator as the intermedium, which is magnetically coupled with individual nitrogen-vacancy cent...We develop a design of a hybrid quantum interface for quantum information transfer (QIT), adopting a nanome- chanical resonator as the intermedium, which is magnetically coupled with individual nitrogen-vacancy centers as the solid qubits, while eapacitively coupled with a coplanar waveguide resonator as the quantum data bus. We describe the Hamiltonian of the model, and analytically demonstrate the QIT for both the resonant interaction and large detuning cases. The hybrid quantum interface allows for QIT between arbitrarily selected individual nitrogen-vacancy centers, and has advantages of the sealability and controllability. Our methods open an alter- native perspective for implementing QIT, which is important during quantum storing or processing procedures in quantum computing.展开更多
Nitrogen-vacancy(NV)centers in a bulk diamond are often employed to realize measurement of multiple physical quantities,which depends on orientation information of NV axis.We report a fast and effective method to dete...Nitrogen-vacancy(NV)centers in a bulk diamond are often employed to realize measurement of multiple physical quantities,which depends on orientation information of NV axis.We report a fast and effective method to determine the orientation of NV axis with the aid of a static magnetic field.By measuring the optically detected magnetic resonance spectra,we can precisely extract the polar angle information between the NV axis and the known magnetic field.Combining with the polar angle information of different kinds of NV centers,we employ the Nelder-Mead algorithm to get the optimal solution of the orientation of NV axis.This method is simple and efficient,and is easily applied in NV-based quantum sensing.展开更多
Crystallization of diamond with different nitrogen concentrations was carried out with a FeNiCo-C system at pressure of 6.5 GPa.As the nitrogen concentration in diamond increased,the color of the synthesized diamond c...Crystallization of diamond with different nitrogen concentrations was carried out with a FeNiCo-C system at pressure of 6.5 GPa.As the nitrogen concentration in diamond increased,the color of the synthesized diamond crystals changed from colorless to yellow and finally to atrovirens(a dark green).All the Raman peaks for the obtained crystals were located at about 1330 cm^(-1)and contained only the sp^(3)hybrid diamond phase.Based on Fourier transform infrared results,the nitrogen concentration of the colorless diamond was<1 ppm and absorption peaks corresponding to nitrogen impurities were not detected.However,the C-center nitrogen concentration of the atrovirens diamond reached 1030 ppm and the value of A-center nitrogen was approximately 180 ppm with a characteristic absorption peak at 1282 cm^(-1).Furthermore,neither the NV^(0)nor the NV^(-)optical color center existed in diamond crystal with nitrogen impurities of less than 1 ppm by photoluminescence measurement.However,Ni-related centers located at 695 nm and 793.6 nm were observed in colorless diamond.The NE8 color center at 793.6 nm has more potential for application than the common NV centers.NV^(0)and NV^(-)optical color centers coexist in diamond without any additives in the synthesis system.Importantly,only the NV^(-)color center was noticed in diamond with a higher nitrogen concentration,which maximized optimization of the NV^(-)/NV^(0)ratio in the diamond structure.This study has provided a new way to prepare diamond containing only NV^(-)optical color centers.展开更多
Entanglement in macroscopic systems,as a fundamental quantum resource,has been utilized to propel the advancement of quantum technology and probe the boundary between the quantum and classical realms.This study focuse...Entanglement in macroscopic systems,as a fundamental quantum resource,has been utilized to propel the advancement of quantum technology and probe the boundary between the quantum and classical realms.This study focuses on a unique hybrid quantum system comprising of an ensemble of silicon vacancy(SiV)centers coupled to phononic waveguides in diamond via strain interactions.By employing two sets of time-dependent,non-overlapping driving fields,we investigate the generation process and dynamic properties of macroscopic quantum entanglement,providing fresh insights into the behavior of such hybrid quantum systems.Furthermore,it paves the way for new possibilities in utilizing quantum entanglement as an information carrier in quantum information processing and quantum communication.展开更多
Nitrogen-vacancy (NV) center in diamond is one of the most promising candidates to implement room temperature quantum computing. In this review, we briefly discuss the working principles and recent experimental prog...Nitrogen-vacancy (NV) center in diamond is one of the most promising candidates to implement room temperature quantum computing. In this review, we briefly discuss the working principles and recent experimental progresses of this spin qubit. These results focus on understanding and prolonging center spin coherence, steering and probing spin states with dedicated quantum control techniques, and exploiting the quantum nature of these multi-spin systems, such as superposition and entanglement, to demonstrate the superiority of quantum information processing. Those techniques also stimulate the fast development of NV-based quantum sensing, which is an interdisciplinary field with great potential applications.展开更多
We prepared the isolated micrometer-sized diamond particles without seeding on the substrate in hot filament chemical vapor deposition. The diamond particles with specific crystallographic planes and strong silicon-va...We prepared the isolated micrometer-sized diamond particles without seeding on the substrate in hot filament chemical vapor deposition. The diamond particles with specific crystallographic planes and strong silicon-vacancy(SiV) photoluminescence(PL) have been prepared by adjusting the growth pressure. As the growth pressure increases from 2.5 to 3.5 kPa,the diamond particles transit from composite planes of {100} and {111} to only smooth {111} planes. The {111}-faceted diamond particles present better crystal quality and stronger normalized intensity of SiV PL with a narrower bandwidth of 5 nm. Raman depth profiles show that the SiV centers are more likely to be formed on the near-surface areas of the diamond particles, which have poorer crystal quality and greater lattice stress than the inner areas. Complex lattice stress environment in the near-surface areas broadens the bandwidth of SiV PL peak. These results provide a feasible method to prepare diamond particles with specific crystallographic planes and stronger SiV PL.展开更多
We present the experimental results of nitrogen-vacancy (NV) electron spin decoherence, which are linked to the coexistence of electron spin bath of nitrogen impurity (PI center) and 13C nuclear spin bath. In prev...We present the experimental results of nitrogen-vacancy (NV) electron spin decoherence, which are linked to the coexistence of electron spin bath of nitrogen impurity (PI center) and 13C nuclear spin bath. In previous works, only one dominant decoherence source is studied: P1 electron spin bath for type-Ⅰb diamond; or 13C nuclear spin bath for type-Ⅱa diamond. In general, the thermal fluctuation from both spin baths can be eliminated by the Hahn echo sequence, resulting in a long coherence time (T2 ) of about 400#8. However, in a high-purity type-Ⅱa diamond where 1℃ nuclear spin bath is the dominant decoherence source, dramatic decreases of NV electron spin T2 time caused by P1 electron spin bath are observed under certain magnetic field. We further apply the engineered Hahn echo sequence to confirm the decoherenee mechanism of multiple spin baths and quantitatively estimate the contribution of P1 electron spin bath. Our results are helpful to understand the NV decoherence mechanisms, which will benefit quantum computing and quantum metrology.展开更多
Spin squeezing is a fascinating manifestation of many-particle entanglement and one of the most promising quantum resources.In this paper,we propose a novel realization of a solid-state quantum spin squeezing by apply...Spin squeezing is a fascinating manifestation of many-particle entanglement and one of the most promising quantum resources.In this paper,we propose a novel realization of a solid-state quantum spin squeezing by applying SiV centers embedded in a diamond waveguide with the help of a microwave field.The phenomena about the generation of spin squeezing are analyzed numerically in Markovian environments.Our analysis shows that spin squeezing can be generated with the microwave field’s help under some realistic conditions,despite the presence of dephasing and mechanical damping.This solid-state spin squeezing based on SiV centers in diamonds might be applied to magnetometers,interferometry,and other precise measurements.展开更多
Femtosecond laser direct writing provides an efficient approach to fabricating single nitrogen vacancy(NV) color centers with a relatively high yield. Different from previously reported NV color centers with a random ...Femtosecond laser direct writing provides an efficient approach to fabricating single nitrogen vacancy(NV) color centers with a relatively high yield. Different from previously reported NV color centers with a random distribution in a bulk diamond or nanocrystals, this gives an opportunity to study the photophysical properties of single NV color centers with precise numbers and positions. However, ultrafast studies on single NV color centers prepared by localization femtosecond laser direct writing are still rare, especially for the graphitization inside a diamond and its relationship with single NV color centers. Here, we report the broadband transient absorption(TA) spectroscopic features of the graphitization and NV color centers in a diamond fabricated by localization femtosecond laser direct writing at room temperature under 400 nm excitation. In comparison with the graphene oxide film, the bleaching features of the graphitization point array in a diamond are similar to reduced graphene oxide,accompanied by excited state absorption signals from local carbon atom vacancy defects in graphene-like structures induced by laser writing. On the other hand, transient features of laser processing array containing single NV color centers with a yield of~50% are different from those of the graphitization point array. Our findings suggest that for ultrashort pulse processing of diamonds, broadband TA spectral signals are sensitive to the surrounding atomic environment of processing sites, which could be applied to laser writing point defects in other materials used as solid-state single photon sources.展开更多
Diamond negatively charged nitrogen-vacancy(NV-) centers provide an opportunity for the measurement of the Meissner effect on extremely small samples in a diamond anvil cell(DAC) due to their high sensitivity in detec...Diamond negatively charged nitrogen-vacancy(NV-) centers provide an opportunity for the measurement of the Meissner effect on extremely small samples in a diamond anvil cell(DAC) due to their high sensitivity in detecting the tiny change of magnetic field. We report on the variation of magnetic field distribution in a DAC as a sample transforms from normal to superconducting state by using finite element analysis. The results show that the magnetic flux density has the largest change on the sidewall of the sample, where NV-centers can detect the strongest signal variation of the magnetic field. In addition, we study the effect of magnetic coil placement on the magnetic field variation. It is found that the optimal position for the coil to generate the greatest change in magnetic field strength is at the place as close to the sample as possible.展开更多
A method of detecting the single channel triaxial magnetic field information based on diamond nitrogen-vacancy(NV)color center is introduced.Firstly,the incident angle of the bias magnetic field which can achieve the ...A method of detecting the single channel triaxial magnetic field information based on diamond nitrogen-vacancy(NV)color center is introduced.Firstly,the incident angle of the bias magnetic field which can achieve the equal frequency difference optically-detected magnetic resonance(ODMR)spectrum of diamond NV color center is calculated theoretically,and the triaxial magnetic information solution model is also constructed.Secondly,the microwave time-controlled circuit module is designed to generate equal timing and equal frequency difference microwave pulse signals in one channel.Combining with the optical detection magnetic resonance technology,the purpose of sequentially locking and detecting the four formant signals on one side of the diamond NV color center(m_(s)=-1 state signal)is achieved,and the vector magnetic field information detection is accomplished by combining the triaxial magnetic information solution model.The system can obtain magnetic field detection in a range of 0 mT-0.82 mT.The system's magnetic noise sensitivity is 14.2 nT/Hz^(1/2),and the deviation angle errors of magnetic field detectionθ_(x) andθ_(y) are 1.3° and 8.2° respectively.展开更多
We investigate spontaneous emission properties and control of the zero phonon line (ZPL) from a diamond nitrogen- vacancy (NV) center coherently driven by a single ellipfically polarized control field. We use the ...We investigate spontaneous emission properties and control of the zero phonon line (ZPL) from a diamond nitrogen- vacancy (NV) center coherently driven by a single ellipfically polarized control field. We use the Schrrdinger equation to calculate the probability amplitudes of the wave function of the coupled system and derive analytical expressions of the spontaneous emission spectra. The numerical results show that a few interesting phenomena such as enhancement, narrowing, suppression, and quenching of the ZPL spontaneous emission can be realized by modulating the polarization- dependent phase, the Zeeman shift, and the intensity of the control field in our system. In the dressed-state picture of the control field, we find that multiple spontaneously generated coherence arises due to three close-lying states decaying to the same state. These results are useful in real experiments.展开更多
Although atom configuration in crystals is precisely known thanks to imaging techniques, there is no experimental way to know the exact location of bonds or charges. Many different representations have been proposed, ...Although atom configuration in crystals is precisely known thanks to imaging techniques, there is no experimental way to know the exact location of bonds or charges. Many different representations have been proposed, yet no theory to unify conceptions. The present paper describes methods to derive bonds and charge location in double-face-centered cubic crystals with 4 and 6 atoms per unit cell using two novel rules introduced in earlier works: the even-odd and the isoelectronicity rules. Both of these rules were previously applied to ions, molecules and some solids, and the even-odd rule was also tested on two covalent crystal structures: centered-cubic and single-face-centered cubic crystals. In the present study, the diamond-like structure was subjected to the isoelectronicity rule in order to derive Zinc-blende structures. Rock-salt-like crystals were derived from each other using both rules. These structures represent together more than 230 different crystals. Findings for these structures are threefold: both rules describe a very sure method to obtain valid single covalent-bonded structures;single covalent structures can be used in every case instead of the classical ionic model;covalent bonds and charges positions do not have any relation with the valence number given in the periodic table.展开更多
基金Supported by the National Key Research and Development Program of China under Grant No 2017YFA0304504the National Natural Science Foundation of China under Grant Nos 11374290,61522508,91536219 and 11504363
文摘Single-photon flux is one of the crucial properties of nitrogen vacancy (NV) centers in diamond for its application in quantum information techniques. Here we fabricate diamond conical nanowires to enhance the single-photon count rate. Through the interaction between tightly confined optical mode in nanowires and NV centers, the single-photon lifetime is much shortened and the collection efficiency is enhanced. As a result, the detected single-photon rate can be at 564 kcps, and the total detection coefficient can be 0.8%, which is much higher than that in bulk diamond. Such a nanowire single-photon device with high photon flux can be applied to improve the fidelity of quantum computation and the precision of quantum sensors.
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFB2012600)the Science and Technology Plan Project of State Administration of Market Regulation,China(Grant No.2021MK039)。
文摘An integrated quantum probe for magnetic field imaging is proposed,where the nitrogen–vacancy(NV)center fixed at the fiber tip is located on the periphery of flexible ring resonator.Using flexible polyimide(PI)as the substrate medium,we design a circular microstrip antenna,which can achieve a bandwidth of 140 MHz at Zeeman splitting frequency of 2.87 GHz,specifically suitable for NV center experiments.Subsequently,this antenna is seamlessly fixed at a three-dimensional-printed cylindrical support,allowing the optical fiber tip to extend out of a dedicated aperture.To mitigate errors originating from processing,precise tuning within a narrow range can be achieved by adjusting the conformal amplitude.Finally,we image the microwave magnetic field around the integrated probe with high resolution,and determine the suitable area for placing the fiber tip(SAP).
基金Supported by the National Basic Research Program of China under Grant No 2015CB921103the National Key R&D Program of China under Grant No 2016YFA0401503+2 种基金the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDB28000000the National Natural Science Foundation of China under Grant Nos 11574386,11575288 and 51402350the Youth Innovation Promotion Association of Chinese Academy of Sciences under Grant No 2016006
文摘The diamond anvil cell-based high-pressure technique is a unique tool for creating new states of matter and for understanding the physics underlying some exotic phenomena.In situ sensing of spin and charge properties under high pressure is crucially important but remains technically challenging.While the nitrogen-vacancy(NV)center in diamond is a promising quantum sensor under extreme conditions,its spin dynamics and the quantum control of its spin states under high pressure remain elusive.In this study,we demonstrate coherent control,spin relaxation,and spin dephasing measurements for ensemble NV centers up to 32.8 GPa.With this in situ quantum sensor,we investigate the pressure-induced magnetic phase transition of a micron-size permanent magnet Nd2Fe14B sample in a diamond anvil cell,with a spatial resolution of ~2μm,and sensitivity of ~20 μT/Hz1/2. This scheme could be generalized to measure other parameters such as temperature,pressure and their gradients under extreme conditions.This will be beneficial for frontier research of condensed matter physics and geophysics.
基金Project supported in part by the National Natural Science Foundation of China(Grant Nos.51922009,51727808,62175219,62103385,and 51821003)the Key Laboratory of Shanxi Province(Grant No.201905D121001)the Shanxi‘1331 Project’Key Subjects Construction.
文摘High precision current measurement is very important for the calibration of various high-precision equipment and the measurement of other precision detection fields.A new current sensor based on diamond nitrogen-vacancy(NV)color center magnetic measurement method is proposed to realize the accurate measurement of current.This new current method can greatly improve the accuracy of current measurement.Experiments show that the linearity of the current sensor based on diamond NV color center can reach up to 33 ppm,which is superior to other current sensors and solves the problem of low linearity.When the range of input current is 5-40 A,the absolute error of the calculated current is less than 51μA,and the relative error is 2.42×10^(-6) at 40 A.Combined with the research content and results of the experiment,the application of the current sensor in the field of current precision measurement is prospected.
基金Supported by the National Key R&D Program of China(Grant No.2017YFB0403602)the Nature Science Foundation of Jiangsu Province(Grant No.SBK2020041231)the Suqian Sci&Tech Program(Grant No.K201912)。
文摘Determination and control of nitrogen-vacancy(NV)centers play an important role in sensing the vector field by using their quantum information.To measure orientation of NV centers in a diamond particle attached to a tapered fiber rapidly,we propose a new method to establish the direction cosine matrix between the lab frame and the NV body frame.In this method,only four groups of the ODMR spectrum peaks shift data need to be collected,and the magnetic field along±Z and±Y in the lab frame is applied in the meantime.We can also control any NV axis to rotate to the X,Y,Z axes in the lab frame according to the elements of this matrix.The demonstration of the DC and microwave magnetic field vector sensing is presented.Finally,the proposed method can help us to perform vector magnetic field sensing more conveniently and rapidly.
基金supported by the Provincial Control Technology Project No.52120519002N.
文摘Magnetic field measurement plays an extremely important role in material science,electronic en-gineering,power system and even industrial fields.In particular,magnetic field measurement provides a safe and reliable tool for industrial non-destructive testing.The sensitivity of magnetic field measurement deter-mines the highest level of detection.The diamond nitrogen-vacancy(NV)color center is a new type of quan-tum sensor developed in recent years.The external magnetic field will cause Zeeman splitting of the ground state energy level of the diamond NV color center.Optical detection magnetic resonance(ODMR),using a mi-crowave source and a lock-in amplifier to detect the resonant frequency of the NV color center,and finally the change of the resonant frequency can accurately calculate the size of the external magnetic field and the sensi-tivity of the external magnetic field change.In the experiment,a diamond containing a high concentration of NV color centers is coupled with an optical fiber to realize the preparation of a magnetic field scanning probe.Then,the surface cracks of the magnetized iron plate weld are scanned,and the scanning results are drawn into a two-dimensional magnetic force distribution map,according to the magnetic field gradient change of the magnetic force distribution map,the position and size of the crack can be judged very accurately,which pro-vides a very effective diagnostic tool for industrial safety.
基金supported by the National Natural Science Foundation of China(Grant Nos.11264042,61465013,11465020,and 11165015)the Program for Chun Miao Excellent Talents of Jilin Provincial Department of Education(Grant No.201316)the Talent Program of Yanbian University of China(Grant No.950010001)
文摘We design proposals to generate a remote Greenberger-Horne-Zeilinger(GHZ) state and a W state of nitrogenvacancy(NV) centers coupled to microtoroidal resonators(MTRs) through noisy channels by utilizing time-bin encoding processes and fast-optical-switch-based polarization rotation operations.The polarization and phase noise induced by noisy channels generally affect the time of state generation but not its success probability and fidelity.Besides,the above proposals can be generalized to n-qubit between two or among n remote nodes with success probability unity under ideal conditions.Furthennore,the proposals are robust for regular noise-changeable channels for the n-node case.This method is also useful in other remote quantum information processing tasks through noisy channels.
基金Supported by the National Natural Science Foundation of China under Grant No 11305021the Fundamental Research Funds for the Central Universities of China under Grants Nos 3132014229 and 3132014328
文摘We develop a design of a hybrid quantum interface for quantum information transfer (QIT), adopting a nanome- chanical resonator as the intermedium, which is magnetically coupled with individual nitrogen-vacancy centers as the solid qubits, while eapacitively coupled with a coplanar waveguide resonator as the quantum data bus. We describe the Hamiltonian of the model, and analytically demonstrate the QIT for both the resonant interaction and large detuning cases. The hybrid quantum interface allows for QIT between arbitrarily selected individual nitrogen-vacancy centers, and has advantages of the sealability and controllability. Our methods open an alter- native perspective for implementing QIT, which is important during quantum storing or processing procedures in quantum computing.
基金This work was supported by the National Key R&D Program of China(Grant No.2020YFA0309400)the National Natural Science Foundation of China(Grant No.12174081)the Fundamental Research Funds for the Central Universities(Grant Nos.JZ2021HGTB0126 and PA2021KCPY0052).
文摘Nitrogen-vacancy(NV)centers in a bulk diamond are often employed to realize measurement of multiple physical quantities,which depends on orientation information of NV axis.We report a fast and effective method to determine the orientation of NV axis with the aid of a static magnetic field.By measuring the optically detected magnetic resonance spectra,we can precisely extract the polar angle information between the NV axis and the known magnetic field.Combining with the polar angle information of different kinds of NV centers,we employ the Nelder-Mead algorithm to get the optimal solution of the orientation of NV axis.This method is simple and efficient,and is easily applied in NV-based quantum sensing.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12064038 and 52072113)the Natural Science Foundation of Guizhou Province Science and Technology Agency(Grant Nos.ZK[2021]019 and ZK[2021]031)+1 种基金the Outstanding Young Science and Technology Talents of Guizhou Pronice,China(Grant No.[2019]5673)the Open Project of Inner Mongolia Key Lab of High-pressure Phase Functional Materials(Grant No.cfxygy202004)。
文摘Crystallization of diamond with different nitrogen concentrations was carried out with a FeNiCo-C system at pressure of 6.5 GPa.As the nitrogen concentration in diamond increased,the color of the synthesized diamond crystals changed from colorless to yellow and finally to atrovirens(a dark green).All the Raman peaks for the obtained crystals were located at about 1330 cm^(-1)and contained only the sp^(3)hybrid diamond phase.Based on Fourier transform infrared results,the nitrogen concentration of the colorless diamond was<1 ppm and absorption peaks corresponding to nitrogen impurities were not detected.However,the C-center nitrogen concentration of the atrovirens diamond reached 1030 ppm and the value of A-center nitrogen was approximately 180 ppm with a characteristic absorption peak at 1282 cm^(-1).Furthermore,neither the NV^(0)nor the NV^(-)optical color center existed in diamond crystal with nitrogen impurities of less than 1 ppm by photoluminescence measurement.However,Ni-related centers located at 695 nm and 793.6 nm were observed in colorless diamond.The NE8 color center at 793.6 nm has more potential for application than the common NV centers.NV^(0)and NV^(-)optical color centers coexist in diamond without any additives in the synthesis system.Importantly,only the NV^(-)color center was noticed in diamond with a higher nitrogen concentration,which maximized optimization of the NV^(-)/NV^(0)ratio in the diamond structure.This study has provided a new way to prepare diamond containing only NV^(-)optical color centers.
基金the National Natural Science Foundationof China (Grant No. 12265022)the Natural ScienceFoundation of Inner Mongolia Autonomous Region, China(Grant No. 2021MS01012)the Inner Mongolia FundamentalResearch Funds for the Directly Affiliated Universities(Grant No. 2023RCTD014).
文摘Entanglement in macroscopic systems,as a fundamental quantum resource,has been utilized to propel the advancement of quantum technology and probe the boundary between the quantum and classical realms.This study focuses on a unique hybrid quantum system comprising of an ensemble of silicon vacancy(SiV)centers coupled to phononic waveguides in diamond via strain interactions.By employing two sets of time-dependent,non-overlapping driving fields,we investigate the generation process and dynamic properties of macroscopic quantum entanglement,providing fresh insights into the behavior of such hybrid quantum systems.Furthermore,it paves the way for new possibilities in utilizing quantum entanglement as an information carrier in quantum information processing and quantum communication.
基金Project supported by the National Basic Research Program of China(Grant Nos.2014CB921402 and 2015CB921103)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB07010300)+1 种基金the National Natural Science Foundation of China(Grant No.11574386)the Key Research Program of the Chinese Academy of Sciences(Grant No.XDPB0803)
文摘Nitrogen-vacancy (NV) center in diamond is one of the most promising candidates to implement room temperature quantum computing. In this review, we briefly discuss the working principles and recent experimental progresses of this spin qubit. These results focus on understanding and prolonging center spin coherence, steering and probing spin states with dedicated quantum control techniques, and exploiting the quantum nature of these multi-spin systems, such as superposition and entanglement, to demonstrate the superiority of quantum information processing. Those techniques also stimulate the fast development of NV-based quantum sensing, which is an interdisciplinary field with great potential applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.50972129 and 50602039)the International Science Technology Cooperation Program of China(Grant No.2014DFR51160)+3 种基金the National Key Research and Development Program of China(Grant No.2016YFE0133200)European Union’s Horizon 2020 Research and Innovation Staff Exchange(RISE)Scheme(Grant No.734578)One Belt and One Road International Cooperation Project from Key Research and Development Program of Zhejiang Province,China(Grant No.2018C04021)the Natural Science Foundation of Zhejiang Province,China(Grant No.LY18E020013)
文摘We prepared the isolated micrometer-sized diamond particles without seeding on the substrate in hot filament chemical vapor deposition. The diamond particles with specific crystallographic planes and strong silicon-vacancy(SiV) photoluminescence(PL) have been prepared by adjusting the growth pressure. As the growth pressure increases from 2.5 to 3.5 kPa,the diamond particles transit from composite planes of {100} and {111} to only smooth {111} planes. The {111}-faceted diamond particles present better crystal quality and stronger normalized intensity of SiV PL with a narrower bandwidth of 5 nm. Raman depth profiles show that the SiV centers are more likely to be formed on the near-surface areas of the diamond particles, which have poorer crystal quality and greater lattice stress than the inner areas. Complex lattice stress environment in the near-surface areas broadens the bandwidth of SiV PL peak. These results provide a feasible method to prepare diamond particles with specific crystallographic planes and stronger SiV PL.
基金Supported by the National Basic Research Program of China under Grant Nos 2014CB921402 and 2015CB921103the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDB07010300the National Natural Science Foundation of China under Grant No 11574386
文摘We present the experimental results of nitrogen-vacancy (NV) electron spin decoherence, which are linked to the coexistence of electron spin bath of nitrogen impurity (PI center) and 13C nuclear spin bath. In previous works, only one dominant decoherence source is studied: P1 electron spin bath for type-Ⅰb diamond; or 13C nuclear spin bath for type-Ⅱa diamond. In general, the thermal fluctuation from both spin baths can be eliminated by the Hahn echo sequence, resulting in a long coherence time (T2 ) of about 400#8. However, in a high-purity type-Ⅱa diamond where 1℃ nuclear spin bath is the dominant decoherence source, dramatic decreases of NV electron spin T2 time caused by P1 electron spin bath are observed under certain magnetic field. We further apply the engineered Hahn echo sequence to confirm the decoherenee mechanism of multiple spin baths and quantitatively estimate the contribution of P1 electron spin bath. Our results are helpful to understand the NV decoherence mechanisms, which will benefit quantum computing and quantum metrology.
基金supported by the National Natural Science Foundation of China(Grant No.11664029)the Inner Mongolia Natural Science Foundation,China(Grant No.2021MS01012).
文摘Spin squeezing is a fascinating manifestation of many-particle entanglement and one of the most promising quantum resources.In this paper,we propose a novel realization of a solid-state quantum spin squeezing by applying SiV centers embedded in a diamond waveguide with the help of a microwave field.The phenomena about the generation of spin squeezing are analyzed numerically in Markovian environments.Our analysis shows that spin squeezing can be generated with the microwave field’s help under some realistic conditions,despite the presence of dephasing and mechanical damping.This solid-state spin squeezing based on SiV centers in diamonds might be applied to magnetometers,interferometry,and other precise measurements.
基金supported by the National Natural Science Foundation of China (Grant Nos. 62175088, 61927814, 21773087, 21603083, 21903035)China Postdoctoral Science Foundation (Grant No. 2016M590259)。
文摘Femtosecond laser direct writing provides an efficient approach to fabricating single nitrogen vacancy(NV) color centers with a relatively high yield. Different from previously reported NV color centers with a random distribution in a bulk diamond or nanocrystals, this gives an opportunity to study the photophysical properties of single NV color centers with precise numbers and positions. However, ultrafast studies on single NV color centers prepared by localization femtosecond laser direct writing are still rare, especially for the graphitization inside a diamond and its relationship with single NV color centers. Here, we report the broadband transient absorption(TA) spectroscopic features of the graphitization and NV color centers in a diamond fabricated by localization femtosecond laser direct writing at room temperature under 400 nm excitation. In comparison with the graphene oxide film, the bleaching features of the graphitization point array in a diamond are similar to reduced graphene oxide,accompanied by excited state absorption signals from local carbon atom vacancy defects in graphene-like structures induced by laser writing. On the other hand, transient features of laser processing array containing single NV color centers with a yield of~50% are different from those of the graphitization point array. Our findings suggest that for ultrashort pulse processing of diamonds, broadband TA spectral signals are sensitive to the surrounding atomic environment of processing sites, which could be applied to laser writing point defects in other materials used as solid-state single photon sources.
基金supported by the National Key R&D Program of China(Grant No.2018YFA0305900)the National Natural Science Foundation of China(Grant Nos.11774126,11674404,and 51772125)
文摘Diamond negatively charged nitrogen-vacancy(NV-) centers provide an opportunity for the measurement of the Meissner effect on extremely small samples in a diamond anvil cell(DAC) due to their high sensitivity in detecting the tiny change of magnetic field. We report on the variation of magnetic field distribution in a DAC as a sample transforms from normal to superconducting state by using finite element analysis. The results show that the magnetic flux density has the largest change on the sidewall of the sample, where NV-centers can detect the strongest signal variation of the magnetic field. In addition, we study the effect of magnetic coil placement on the magnetic field variation. It is found that the optimal position for the coil to generate the greatest change in magnetic field strength is at the place as close to the sample as possible.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 51635011, 51805493, 51775522, 51727808, and 51922009)the Applied Basic Research Program in Shanxi Province,China (Grant No. 201901D111011(ZD))+3 种基金the Key Research and Development Program in Shanxi Province,China(Grant No. 201803D121067)the Fund from the Key Laboratory for Information Detection and Processing of Shanxi Province,China (Grant No. ISPT2020-2)the Fund from the Key Laboratory of Shanxi Province,China (Grant No. 201905D121001)the Shanxi “1331 Project” Key Subjects Construction,China
文摘A method of detecting the single channel triaxial magnetic field information based on diamond nitrogen-vacancy(NV)color center is introduced.Firstly,the incident angle of the bias magnetic field which can achieve the equal frequency difference optically-detected magnetic resonance(ODMR)spectrum of diamond NV color center is calculated theoretically,and the triaxial magnetic information solution model is also constructed.Secondly,the microwave time-controlled circuit module is designed to generate equal timing and equal frequency difference microwave pulse signals in one channel.Combining with the optical detection magnetic resonance technology,the purpose of sequentially locking and detecting the four formant signals on one side of the diamond NV color center(m_(s)=-1 state signal)is achieved,and the vector magnetic field information detection is accomplished by combining the triaxial magnetic information solution model.The system can obtain magnetic field detection in a range of 0 mT-0.82 mT.The system's magnetic noise sensitivity is 14.2 nT/Hz^(1/2),and the deviation angle errors of magnetic field detectionθ_(x) andθ_(y) are 1.3° and 8.2° respectively.
基金Part of this project supported by the National Natural Science Foundation of China(Grant Nos.11375067,11275074,11104210,11004069,and 91021011)the Doctoral Foundation of the Ministry of Education of China(Grant No.20100142120081)the National Basic Research Program of China(GrantNo.2012CB922103)
文摘We investigate spontaneous emission properties and control of the zero phonon line (ZPL) from a diamond nitrogen- vacancy (NV) center coherently driven by a single ellipfically polarized control field. We use the Schrrdinger equation to calculate the probability amplitudes of the wave function of the coupled system and derive analytical expressions of the spontaneous emission spectra. The numerical results show that a few interesting phenomena such as enhancement, narrowing, suppression, and quenching of the ZPL spontaneous emission can be realized by modulating the polarization- dependent phase, the Zeeman shift, and the intensity of the control field in our system. In the dressed-state picture of the control field, we find that multiple spontaneously generated coherence arises due to three close-lying states decaying to the same state. These results are useful in real experiments.
文摘Although atom configuration in crystals is precisely known thanks to imaging techniques, there is no experimental way to know the exact location of bonds or charges. Many different representations have been proposed, yet no theory to unify conceptions. The present paper describes methods to derive bonds and charge location in double-face-centered cubic crystals with 4 and 6 atoms per unit cell using two novel rules introduced in earlier works: the even-odd and the isoelectronicity rules. Both of these rules were previously applied to ions, molecules and some solids, and the even-odd rule was also tested on two covalent crystal structures: centered-cubic and single-face-centered cubic crystals. In the present study, the diamond-like structure was subjected to the isoelectronicity rule in order to derive Zinc-blende structures. Rock-salt-like crystals were derived from each other using both rules. These structures represent together more than 230 different crystals. Findings for these structures are threefold: both rules describe a very sure method to obtain valid single covalent-bonded structures;single covalent structures can be used in every case instead of the classical ionic model;covalent bonds and charges positions do not have any relation with the valence number given in the periodic table.