期刊文献+
共找到63篇文章
< 1 2 4 >
每页显示 20 50 100
Plant growth and metabolism of exotic and native Crotalaria species for mine land rehabilitation in the Amazon
1
作者 Hemelyn Soares das Chagas Rafael Silva Guedes +6 位作者 Markus Gastauer Paula Godinho Ribeiro Allan Klynger da Silva Lobato Cecílio Frois Caldeira Fabrício William deÁvila AndréRodrigues dos Reis Silvio Junio Ramos 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第1期143-154,共12页
Despite its enormous benefits,mining is respon-sible for intense changes to vegetation and soil properties.Thus,after extraction,it is necessary to rehabilitate the mined areas,creating better conditions for the estab... Despite its enormous benefits,mining is respon-sible for intense changes to vegetation and soil properties.Thus,after extraction,it is necessary to rehabilitate the mined areas,creating better conditions for the establishment of plant species which is challenging.This study evaluated mineral and organic fertilization on the growth,and carbon and nitrogen(N)metabolism of two Crotalaria species[Cro-talaria spectabilis(exotic species)and Crotalaria maypu-rensis(native species from Carajás Mineral Province(CMP)]established on a waste pile from an iron mine in CMP.A control(without fertilizer application)and six fertilization mixtures were tested(i=NPK;ii=NPK+micronutrients;iii=NPK+micronutrients+organic compost;iv=PK;v=PK+micronutrients;vi=PK+micronutrients+organic compost).Fertilization contributed to increased growth of both species,and treatments with NPK and micronutrients had the best results(up to 257%cf.controls),while organic fertilization did not show differences.Exotic Crotalaria had a greater number of nodules,higher nodule dry mass,chlorophyll a and b contents and showed free ammonium as the predominant N form,reflecting greater increments in biomass compared to native species.Although having lower growth,the use of this native species in the rehabilitation of mining areas should be considered,mainly because it has good development and meets current government legislation as an opportunity to restore local biodiversity. 展开更多
关键词 Biological nitrogen fixation Mining Nitrogen metabolism Plant nutrition
下载PDF
Integration of root architecture,root nitrogen metabolism,and photosynthesis of‘Hanfu’apple trees under the cross-talk between glucose and IAA 被引量:2
2
作者 Bianbin Qi Xin Zhang +2 位作者 Zhiquan Mao Sijun Qin Deguo Lv 《Horticultural Plant Journal》 SCIE CAS CSCD 2023年第4期631-644,共14页
Sugars and auxin have important effects on almost all phases of plant life cycle,which are so fundamental to plants and regulate similar processes.However,little is known about the effect of cross-talk between glucose... Sugars and auxin have important effects on almost all phases of plant life cycle,which are so fundamental to plants and regulate similar processes.However,little is known about the effect of cross-talk between glucose and indole-3-acetic acid(IAA)on growth and development of apple trees.To examine the potential roles of glucose and IAA in root architecture,root nitrogen(N)metabolism and photosynthetic capacity in‘Hanfu’(Malus domestica),a total of five treatments was established:single application of glucose,IAA,and auxin polar transport inhibitor(2,3,5-triiodobenzoic acid,TIBA),combined application of glucose with TIBA and that of glucose with IAA.The combined application of glucose with IAA improved root topology system and endogenous IAA content by altering the mRNA levels of several genes involved in root growth,auxin transport and biosynthesis.Moreover,the increased N metabolism enzyme activities and levels of genes expression related to N in roots may suggest higher rates of transformation of nitrate(NO3--N)into amino acids application of glucose and IAA.Contrarily,single application of TIBA decreased the expression levels of auxin transport gene,hindered root growth and decreased endogenous IAA content.Glucose combined with TIBA application effectively attenuated TIBA-induced reductions in root topology structure,photosynthesis and N metabolism activity,and mRNA expression levels involved in auxin biosynthesis and transport.Taken together,glucose application probably changes the expression level of auxin synthesis and transport genes,and induce the allocation of endogenous IAA in root,and thus improves root architecture and N metabolism of root in soil with deficit carbon. 展开更多
关键词 MALUS Cross-talk between glucose and IAA Root morphology Nitrogen metabolism Photosynthesis
下载PDF
Response of growth,metabolism and yield of Dendrocalamopsis oldhami to long-day photoperiod and fertilizer compensation 被引量:1
3
作者 Zixu Yin Shaohui Fan +5 位作者 Wen Xia Yang Zhou Xiao Zhou Xuan Zhang Chengji Li Fengying Guan 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第1期151-166,共16页
The effects of long-day photoperiod on growth,photo synthetic fluorescence,carbon and nitrogen metabolism,and yield of Dendrocalamopsis oldhami and the compensation effects of fertilization were investigated.A complet... The effects of long-day photoperiod on growth,photo synthetic fluorescence,carbon and nitrogen metabolism,and yield of Dendrocalamopsis oldhami and the compensation effects of fertilization were investigated.A completely randomized design was used with two light factors(bamboo culms cultivated in solar greenhouse under long-day[Ls]and short-day[Ln]treatments);two organic nitrogen fertilizer levels(application of organic fertilizer[OF]and no organic fertilizer[NF]);and three nitrogen fertilizer levels(Low[N0],medium[N1]and high nitrogen[N2]).Leaf chlorophyll and fluorescence parameters(φPo,PIABS,and ETo/CSm)decreased and DIo/CSmincreased in Ls compared to Ln.Indole acetic acid(IAA)and gibberellic acid(GA3)levels decreased,whereas abscisic acid(ABA)increased.Leaf area decreased and leaf dry mass increased.The contents of carbon and nitrogen metabolism-related enzymes(nitrate reductase,glutamine synthetase,amylase,and sucrose synthase)and products(total nitrogen,organic carbon,soluble sugar,and starch)increased.Single bamboo shoot weight and diameter at breast height decreased,whereas shoot quantity and total yield increased.Fertilizer application significantly affected physiological growth and yield in the two light treatments,thus promoting carbon and nitrogen metabolism.TheφPo,PIABS,IAA,and GA3contents increased slightly,whereas ABA levels decreased.Shoot quantity,individual weight,and total yield improved.IA A,soluble sugar,and total yield to organic manure and light were lower than those of nitrogen levels(FN>FL,FO).Other indicators showed lower responses to different fertilization treatments than the light factor(FL>FN,FO).The ability of D.oldhami to alter its morphological and physiobiochemical traits and yield in response to variations in light applications may translate into high phenotypic plasticity.Fertilization significantly improved photoplasticity of D.oldhami.Under Ls,D.oldhami had high metabolic rates.was easily inhibited by light,and showed accelerated leaf senescence,and shoot quantity and total output increased.However,the quality of individual shoots decreased.Different fertilization treatments affected D.oldhami differently under the two light intensities.Ls sensitivity to nitrogen was higher.Fertilization could delay leaf dormancy and senescence under Ls treatment.Organic fertilizer addition could improve yield more effectively,with OFN1being the optimal fertilization level. 展开更多
关键词 Light Nitrogen Organic fertilizer Fluorescence parameters Carbon and nitrogen metabolism YIELD
下载PDF
Effects of Postponing N Application on Metabolism,Absorption and Utilization of Nitrogen of Summer Maize in SuperHigh Yield Region 被引量:3
4
作者 王宜伦 王群 +3 位作者 韩丹 任丽 谭金芳 李潮海 《Agricultural Science & Technology》 CAS 2013年第1期131-134,185,共5页
[Objective] The aim was to explore effects of application postponing of N fertilizer and the mechanism of yield increase in order to provide references for N fertilizer application in a rational way. [Method] In a sup... [Objective] The aim was to explore effects of application postponing of N fertilizer and the mechanism of yield increase in order to provide references for N fertilizer application in a rational way. [Method] In a super-high yielded region of summer maize, field experiment was conducted to research effects of N fertilizer postponing on key enzymes of N metabolism, yield of maize and N fertilizer use. [Result] After application of N fertilizer was postponed, NR, SPS and GS activities of ear-leaf of summer maize increased by 11.99%-34.87%, 8.25%-10.64% and 10.00%- 16.81% on the 28^th d of silking; content of soluble sugar in leaves enhanced signifi- cantly and accumulated nitrogen increased by 5.00%-9.74% in mature stage. The postponing fertilization of "30% of fertilizer in seedling stage+30% of fertilizer in flare- opening stage+40% of fertilizer in silking stage meets N demands of summer maize in late growth period. Compared with conventional fertilization, the maize yield, agro- nomic efficiency and use of N fertilizer all improved by 5.05%, 1.75 kg/kg and 6.87%, respectively, after application postponed. [Conclusion] Application postponing of N fertilizer maintains activity of NR, GS and SPS higher and coordinates metabolism of C and N in late growth period, to further improve yield of maize. 展开更多
关键词 Summer maize Super high yield Application postponing of N fertilizer Nitrogen metabolism Use efficiency of N fertilizer
下载PDF
Effects of Irrigation on Nitrogen Metabolism and Yield of Strong Gluten Wheat 被引量:1
5
作者 李晓 姚占军 +2 位作者 管涛 郭天财 冯伟 《Agricultural Science & Technology》 CAS 2010年第3期68-71,共4页
[Objective] The aim was to provide reference for the field irrigation management of high yield and quality cultivation of strong gluten wheat.[Method]Under field conditions,the effects of irrigation times on nitrogen ... [Objective] The aim was to provide reference for the field irrigation management of high yield and quality cultivation of strong gluten wheat.[Method]Under field conditions,the effects of irrigation times on nitrogen metabolism and yield of strong gluten wheat cultivar zhengmai 9023 were studied.[Result]The results indicated that NR activity,Chlorophyll and nitrogen content in flag leaf increased with irrigation times,and the irrigation treatment had obvious advantages during middle filling stage.Grain protein content showed "V" type change with grain filling going on,and protein content decreased when irrigation times going on.There was significant difference among treatments during early stage of grain filling,and the difference became smaller in the late grain filling stage.The grain yield and protein yield increased but the protein content decreased with increasing of irrigation times.[Conclusion] Increasing irrigation times properly could improve grain yield and protein yield per unit area,but reduce the grain protein content. 展开更多
关键词 Winter wheat IRRIGATION Nitrogen metabolism Grain yield
下载PDF
Could natural phytochemicals be used to reduce nitrogen excretion and excreta‑derived N_(2)O emissions from ruminants?
6
作者 Yuchao Zhao Ming Liu +1 位作者 Linshu Jiang Leluo Guan 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第2期490-508,共19页
Ruminants play a critical role in our food system by converting plant biomass that humans cannot or choose not to consume into edible high-quality food.However,ruminant excreta is a significant source of nitrous oxide... Ruminants play a critical role in our food system by converting plant biomass that humans cannot or choose not to consume into edible high-quality food.However,ruminant excreta is a significant source of nitrous oxide(N_(2)O),a potent greenhouse gas with a long-term global warming potential 298 times that of carbon dioxide.Natural phytochemicals or forages containing phytochemicals have shown the potential to improve the efficiency of nitrogen(N)utilization and decrease N_(2)O emissions from the excreta of ruminants.Dietary inclusion of tannins can shift more of the excreted N to the feces,alter the urinary N composition and consequently reduce N_(2)O emissions from excreta.Essential oils or saponins could inhibit rumen ammonia production and decrease urinary N excretion.In grazed pastures,large amounts of glucosinolates or aucubin can be introduced into pasture soils when animals consume plants rich in these compounds and then excrete them or their metabolites in the urine or feces.If inhibitory compounds are excreted in the urine,they would be directly applied to the urine patch to reduce nitrification and subsequent N_(2)O emissions.The phytochemicals’role in sustainable ruminant production is undeniable,but much uncertainty remains.Inconsistency,transient effects,and adverse effects limit the effectiveness of these phytochemicals for reducing N losses.In this review,we will identify some current phytochemicals found in feed that have the potential to manipulate ruminant N excretion or mitigate N_(2)O production and deliberate the challenges and opportunities associated with using phytochemicals or forages rich in phytochemicals as dietary strategies for reducing N excretion and excreta-derived N_(2)O emissions. 展开更多
关键词 Nitrogen metabolism Nitrous oxide Plant bioactive compounds RUMINANT Urine patches
下载PDF
Optimizing the Bacillus thuringiensis(Bt)protein concentration in cotton:Coordinated application of exogenous amino acids and EDTA to reduce spatiotemporal variability in boll and leaf toxins
7
作者 Zhenyu Liu Shu Dong +8 位作者 Yuting Liu Hanjia Li Fuqin Zhou Junfeng Ding Zixu Zhao Yinglong Chen Xiang Zhang Yuan Chen Dehua Chen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第10期3419-3436,共18页
During the boll formation stage,cotton bolls exhibit the lowest expression of Bacillus thuringiensis(Bt)insecticidal proteins.Resistance to insects varies notably among different organs,which poses challenges for cont... During the boll formation stage,cotton bolls exhibit the lowest expression of Bacillus thuringiensis(Bt)insecticidal proteins.Resistance to insects varies notably among different organs,which poses challenges for controlling cotton bollworms.Consequently,an experimental strategy was designed in the 2020-2021 cotton growing season to coordinate the enhancement of protein synthesis and the attenuation of degradation.Two Bt cultivars of Gossypium hirsutum,namely the hybrid Sikang 3 and the conventional Sikang 1,were used as test materials.Three treatments were applied at the peak flowering period:CK(the control),T1(amino acids),and T2(amino acids and EDTA).The results show that,in comparison to the CK group,the Bt protein contents were significantly increased in both cotton bolls and their subtending leaves under the T1 and T2 treatments.The maximum levels of increase observed were 67.5%in cotton bolls and 21.7%in leaves.Moreover,the disparity in Bt protein content between cotton bolls and their subtending leaves notably decreased by 31.2%.Correlation analysis suggested that the primary physiological mechanisms for augmenting Bt protein content involve increased protein synthesis and reduced protein catabolism,which are independent of Bt gene expression levels.Stepwise regression and path analysis revealed that elevating the soluble protein content and transaminase activity,while reducing the catabolic enzyme activities,are instrumental in enhancing the Bt protein content.Consequently,the coordinated application of amino acids and EDTA emerges as a strategy that can improve the overall resistance of Bt cotton and mitigate the spatiotemporal variations in Bt toxin concentrations in both cotton bolls and leaves. 展开更多
关键词 Gossypium hirsutum Bt cotton insecticidal protein bolls and their subtending leaves nitrogen metabolism
下载PDF
Effects of Cadmium Stress on Key Enzymes Involved in Nitrogen Metabolism and Nitrogen,Phosphorus, Potassium Accumulation of Different Varieties of Rice
8
作者 黄维 彭建伟 +2 位作者 龚蓉 庹海波 范艳咪 《Agricultural Science & Technology》 CAS 2015年第6期1204-1208,共5页
In this study, the pot experiment was used to explore the differences of activity of key enzymes involved in N metabolism and NPK accumulation under Cd stress during the til iering stage of differen varieties of rice.... In this study, the pot experiment was used to explore the differences of activity of key enzymes involved in N metabolism and NPK accumulation under Cd stress during the til iering stage of differen varieties of rice. The results showed that:Cd stress could increase the NPK concentration of different rice type in the til ering stage, while Shen-Liangyou 5867,Yongyou 5550 and Wu-Yunjing 27 showed the highest amplification respectively. Morever, Cd stress can also contribute to the ac-tivity of NR,GS,GOGAT increasing.A s for NR,the Cd stress significantly contribute to NR activity increasing of Huang-Huazhan and Yongyou 538 but is not significant for Wu-Yunjing 27, Shen-Liangyou 5867 and Yongyou 5550, however, the difference among them is not obvious.However, for the activity of GS , Cd stress promote the GS activity. Huang-Huazhan and Wu-Yunjing 27 with low activity in Cd normal level are the most sensitive. Meanwhile the difference between two treatment is the most significant. To the contrary, restrain the GS activity of Shen-Liangyou 5867, Yongy-ou 5550 and the difference is not significant. And under Cd stress, either difference reached significant in GS activity. Cd stress also improve the activity of GOGAT, Wu-Yunjing 27 showed the highest inprovement which showed the lowest GOGAT activity under Cd normal level. Cd stress on rice growth and development of ad-verse, make its lower seed setting rate, 1 000 grain weight decreased, resulting in different degrees of reduction of output of rice. 展开更多
关键词 RICE Cadmium stresses Til ering stage Nitrogen metabolism
下载PDF
Effects of Slow-release Nitrogen Fertilizer on Yield and Nitrogen Accumulation of Summer Maize in Shajiang Black Soil Area
9
作者 Yongfeng XING Changmin WEI +7 位作者 Guoli CHEN Weimeng XU Wanyou SONG Guizhi LI Wenwei ZHOU Yanwei WAN Enzhong ZHOU Weifang LI 《Agricultural Biotechnology》 2024年第2期72-74,共3页
[Objectives] This study was conducted to verify the field application effect of slow-release nitrogen fertilizer on summer maize in Shajiang black soil area by simultaneous sowing and fertilization, and explore the ap... [Objectives] This study was conducted to verify the field application effect of slow-release nitrogen fertilizer on summer maize in Shajiang black soil area by simultaneous sowing and fertilization, and explore the application scope and nitrogen metabolism mechanism, so as to lay a foundation for fertilizer reduction and efficiency improvement. [Methods] With maize variety Beiqing 340 and sulfur-coated urea as experimental materials, five nitrogen application levels were set, namely, control (C0), slow-release nitrogen 70 kg/hm^(2) (C70), slow-release nitrogen 140 kg/hm^(2) (C140), slow-release nitrogen 210 kg/hm^(2) (C210) and slow-release nitrogen 280 kg/hm^(2) (C280). The phosphorus and potassium fertilizers were all in accordance with the unified standard. [Results] With the application rate of slow-release nitrogen increasing, the nitrogen accumulation in organs increased first and then decreased after tasseling stage of maize. In order to reduce the fertilizing amount and increase efficiency, 210 kg/hm^(2) of slow-release nitrogen fertilizer was the best fertilizing amount for summer maize in Shajiang black soil area. [Conclusions] This study provides reference for fertilizer reduction, efficiency improvement and sustainable development of summer maize in Shajiang black soil area. 展开更多
关键词 Slow-release nitrogen fertilizer Shajiang black soil Summer maize Nitrogen metabolism YIELD
下载PDF
Effects of lanthanum(Ⅲ) on nitrogen metabolism of soybean seedlings under elevated UV-B radiation 被引量:9
10
作者 CAO Rui HUANG Xiao-hua +1 位作者 ZHOU Qing CHENG Xiao-ying 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第11期1361-1366,共6页
The hydroponic culture experiments of soybean bean seedlings were conducted to investigate the effect of lanthanum (La) on nitrogen metabolism under two different levels of elevated UV-B radiation (UV-B, 280-320 nm... The hydroponic culture experiments of soybean bean seedlings were conducted to investigate the effect of lanthanum (La) on nitrogen metabolism under two different levels of elevated UV-B radiation (UV-B, 280-320 nm). The whole process of nitrogen metabolism involves uptake and transport of nitrate, nitrate assimilation, ammonium assimilation, amino acid biosynthesis, and protein synthesis. Compared with the control, UV-B radiation with the intensity of low level 0.15 W/m^2 and high level 0.45 W/m^2 significantly affected the whole nitrogen metabolism in soybean seedlings (p 〈 0.05). It restricted uptake and transport of NO3^-, inhibited activity of some key nitrogen-metabolism-related enzymes, such as: nitrate reductase (NR) to the nitrate reduction, glutamine systhetase (GS) and glutamine synthase (GOGAT) to the ammonia assimilation, while it increased the content of free amino acids and decreased that of soluble protein as well. The damage effect of high level of UV-B radiation on nitrogen metabolism was greater than that of low level. And UV-B radiation promoted the activity of the anti-adversity enzyme glutamate dehydrogenase (GDH), which reduced the toxicity of excess ammonia in plant. After pretreatment with the optimum concentration of La (20 mg/L), La could increase the activity of NR, GS, GOGAT, and GDH, and ammonia assimilation, but decrease nitrate and ammonia accumulation. In conclusion, La could relieve the damage effect of UV-B radiation on plant by regulating nitrogen metabolism process, and its alleviating effect under low level was better than that under the high one. 展开更多
关键词 lanthanum(Ⅲ) UV-B radiation soybean seedlings nitrogen metabolism alleviating effect
下载PDF
High Temperature at Grain-filling Stage Affects Nitrogen Metabolism Enzyme Activities in Grains and Grain Nutritional Quality in Rice 被引量:12
11
作者 Cheng-gang LIANG Li-ping CHEN +3 位作者 Yan WANG Jia LIU Guang-li XU Tian LI 《Rice science》 SCIE 2011年第3期210-216,共7页
Rice plants would more frequently suffer from high temperature (HT) stress at the grain-filling stage in future. A japonica rice variety Koshihikari and an indica rice variety IR72 were used to study the effect of hig... Rice plants would more frequently suffer from high temperature (HT) stress at the grain-filling stage in future. A japonica rice variety Koshihikari and an indica rice variety IR72 were used to study the effect of high temperature on dynamic changes of glutamine synthetase (GS) activity, glutamate synthase (GOGAT) activity, glutamic oxalo-acetic transminase (GOT) activity, glutamate pyruvate transminase (GPT) activity in grains and grain nutritional quality at the grain-filling stage. Under HT, the activities of GOGAT, GOT, GPT and soluble protein content in grains significantly increased, whereas GS activity significantly decreased at the grain-filling stage. In addition to the increase of protein and amino acids contents, it was suggested that GOGAT, GOT and GPT in grains played important roles in nitrogen metabolism at the grain-filling stage. Since the decrease of GS activity in grains did not influence the accumulations of amino acids and protein, it is implied that GS might not be the key enzyme in regulating glutamine content in grains. 展开更多
关键词 high temperature nitrogen metabolism enzyme protein amino acid RICE
下载PDF
Effects of Aeration on Root Physiology and Nitrogen Metabolism in Rice 被引量:13
12
作者 XU Chun-mei WANG Dan-ying +2 位作者 CHEN Song CHEN Li-ping ZHANG Xiu-fu 《Rice science》 SCIE 2013年第2期148-153,共6页
In order to clarify the effects of aeration on root nitrogen metabolism in rice seedlings,rice cultivars Guodao 6 (indica) and Xiushui 09 (japonica) were investigated for root growth,the activities of glutamine sy... In order to clarify the effects of aeration on root nitrogen metabolism in rice seedlings,rice cultivars Guodao 6 (indica) and Xiushui 09 (japonica) were investigated for root growth,the activities of glutamine synthetase (GS),glutamic acid-pyruvic acid transaminase (GPT) and glutamic acid oxaloacetate transaminase (GOT),the nitrate (NO 3-N) concertration,the contents of free amino acids and soluble sugar in root under hydroponics with continuous aeration treatment.The results showed that rice seedlings grown in oxygenation solutions had higher root dry matter,longer root length,stronger root activity and larger root absorption area compared with the control.In addition,the contents of soluble sugar,root vigor and the activities of GS,GOT and GPT in the aeration solutions were higher than those in the control.The results also indicated that the activities of enzymes involved in root nitrogen metabolism of Xiushui 09 were enhanced by aeration,however,there was no significant influence on root nitrogen metabolism of Guodao 6,which suggested that effect of oxygenation on rice root nitrogen metabolism might be genotype-specific. 展开更多
关键词 RICE AERATION root physiology nitrogen metabolism
下载PDF
Weakened carbon and nitrogen metabolisms under post-silking heat stress reduce the yield and dry matter accumulation in waxy maize 被引量:9
13
作者 YANG Huan GU Xiao-tian +2 位作者 DING Meng-qiu LU Wei-ping LU Da-lei 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第1期78-88,共11页
Post-silking high temperature is one of the abiotic factors that affects waxy maize(Zea mays L. sinensis Kulesh) growth in southern China. We conducted a pot trial in 2016–2017 to study the effects of post-silking da... Post-silking high temperature is one of the abiotic factors that affects waxy maize(Zea mays L. sinensis Kulesh) growth in southern China. We conducted a pot trial in 2016–2017 to study the effects of post-silking daytime heat stress(35°C) on the activities of enzymes involved in leaf carbon and nitrogen metabolisms and leaf reactive oxygen species(ROS) and water contents. This study could improve our understanding on dry matter accumulation and translocation and grain yield production. Results indicated that decreased grain number and weight under heat stress led to yield loss, which decreased by 20.8 and 20.0% in 2016 and 2017, respectively. High temperature reduced post-silking dry matter accumulation(16.1 and 29.5% in 2016 and 2017, respectively) and promoted translocation of pre-silking photoassimilates stored in vegetative organs, especially in leaf. The lower leaf water content and chlorophyll SPAD value, and higher ROS(H2O2 and O2^-·) content under heat stress conditions indicated accelerated senescent rate. The weak activities of phosphoenolpyruvate carboxylase(PEPCase), Ribulose-1,5-bisphosphate carboxylase(Ru BPCase), nitrate reductase(NR), and glutamine synthase(GS) indicated that leaf carbon and nitrogen metabolisms were suppressed when the plants suffered from a high temperature during grain filling. Correlation analysis results indicated that the reduced grain yield was mainly caused by the decreased leaf water content, weakened NR activity, and increased H2O2 content. The increased accumulation of grain weight and post-silking dry matter and the reduced translocation amount in leaf was mainly due to the increased chlorophyll SPAD value and NR activity. Reduced PEPCase and Ru BPCase activities did not affect dry matter accumulation and translocation and grain yield. In conclusion, post-silking heat stress down-regulated the leaf NR and GS activities, increased the leafwater loss rate, increased ROS generation, and induced pre-silking carbohydrate translocation. However, it reduced the post-silking direct photoassimilate deposition, ultimately, leading to grain yield loss. 展开更多
关键词 waxy maize heat stress nitrogen metabolism photosynthetic enzymes SENESCENCE dry matter
下载PDF
Selenium distribution and nitrate metabolism in hydroponic lettuce(Lactuca sativa L.): Effects of selenium forms and light spectra 被引量:7
14
作者 BIAN Zhong-hua LEI Bo +3 位作者 CHENG Rui-feng WANG Yu LI Tao YANG Qi-chang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第1期133-144,共12页
A deficiency in selenium(Se) in the human diet is a worldwide problem. The intake of Se-rich vegetables can be a safe way to combat Se deficiency for humans. However, most leafy vegetables can accumulate a high conten... A deficiency in selenium(Se) in the human diet is a worldwide problem. The intake of Se-rich vegetables can be a safe way to combat Se deficiency for humans. However, most leafy vegetables can accumulate a high content of nitrates, which poses a potential threat to human health. Light is an important environmental factor that regulates the uptake and distribution of mineral elements and nitrogen metabolism in plants. However, the effects of Se forms and light conditions, especially light spectra, on the uptake and translocation of Se and on nitrate reduction are poorly understood. In this study, lettuce(Lactuca sativa L.) was treated with exogenous Se applied as selenate(10 mmol L^-1) and selenite(0.5 mmol L^-1) and grown under five different light spectra: fluorescent light(FL), monochromatic red LED light(R), monochromatic blue LED light(B), and mixed red and blue LED light with a red to blue light ratio at 4(R/B=4), 8(R/B=8), and 12(R/B=12), respectively. The effects of light spectra and Se forms on plant growth, photosynthetic performance, Se accumulation and nitrate reduction were investigated. The results showed that the light spectra and Se forms had significant interactions for plant growth, foliar Se accumulation and nitrate reduction. The Se concentration and nitrate content in the leaves were negatively correlated with the percentage of red light from the light sources. Compared to Se applied as selenite, exogenous Se applied as selenate was more effective in reducing nitrate via promoting nitrate reductase and glutamate synthase activities. The lowest nitrate content and highest plant biomass were observed under R/B=8 for both the selenate and selenite treatments. The significant effect of the light spectra on the root concentration factor and translocation factor of Se resulted in marked variations in the Se concentrations in the roots and leaves. Compared with FL, red and blue LED light led to significant decreases in the foliar Se concentration. The results from this study suggest that the light spectra can contribute to Se distribution and accumulation to produce vegetables with better food quality. 展开更多
关键词 SELENIUM light spectra NITRATES nitrogen metabolism enzymes LEDs Lactuca sativa L.
下载PDF
Effects of Uniconazole on Nitrogen Metabolism and Grain Protein Content of Rice 被引量:6
15
作者 XIANG Zu-fen YANG Wen-yu +1 位作者 REN Wan-jun WANG Xiao-chun 《Rice science》 SCIE 2005年第2期107-113,共7页
The effects of uniconazole by soaking seeds and spraying leaves at booting stage with different concentrations (0, 20 and 40 mg/kg) on the nitrogen metabolism of flag leaf and grains after flowering, and rice grain ... The effects of uniconazole by soaking seeds and spraying leaves at booting stage with different concentrations (0, 20 and 40 mg/kg) on the nitrogen metabolism of flag leaf and grains after flowering, and rice grain protein content and yield were studied with hybrid rice combination Shanyou 63. Under uniconazole treatment, the soluble protein content in flag leaf was increased in early and middle period of grain filling, but this content was nearly the same as or even lower than that of control at maturity; Glutamine synthetase activity in superior and inferior grains and non-protein nitrogen content in superior grains at early stage of grain development were promoted, and moreover, the transforming speed from non-protein nitrogen to protein nitrogen was accelerated; Non-protein nitrogen content was lower than that of control at maturity, but protein nitrogen content at each stage was higher than those of control; Protein nitrogen content in superior and inferior grains and protein nitrogen absolutely accumulative content in a grain both were enhanced and protein content and yield in rice grain were raised. The application of uniconazole by soaking seeds and spraying leaves raised crude protein content by an average of 7.2% and 8.3%, and protein yield by an average of 13.1% and 13.4%, respectively. 展开更多
关键词 RICE UNICONAZOLE nitrogen metabolism PROTEIN
下载PDF
The effects of phenolic acid on nitrogen metabolism in Populus 3 euramericana ‘Neva’ 被引量:3
16
作者 Hui Li Huicheng Xie +5 位作者 Zilong Du Xianshuang Xing Jie Zhao Jing Guo Xia Liu Shuyong Zhang 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第4期923-929,共7页
The declines in soil fertility and productivity in continuously cropped poplar plantations axe related to phenolic acid accumulation in the soil. Nitrogen is a vital life element for poplar and whether the accumulatio... The declines in soil fertility and productivity in continuously cropped poplar plantations axe related to phenolic acid accumulation in the soil. Nitrogen is a vital life element for poplar and whether the accumulation of phenolic acid could influence nitrogen metabolism in poplar and thereby hinder continuous cropping is not clear. In this study, poplar cuttings of Populus × euramericana ‘Neva' were potted in vermiculite, and phenolic acids at three concentrations (032, 0.5X and 1.0X) were added according to the actual content (1.0X) in the soil of a second-generation poplar plantation. Each treatment had eight replicates. We measured gas exchange parameters and the activities of key enzymes related to nitrogen metabolism in the leaves. Leaf photosynthetic parameters varied with the concentration of phenolic acids. The net photosynthetic rate (PN) significantly decreased with increasing phenolic acid concentration, and non-stomatal factors might have been the primary limitation for PN- The activities of nitrate reductase (NR), glutamine synthetase (GS) and glutamate synthase (GOGAT), as well as the contents of nitrate nitrogen, ammonium nitrogen, and total nitrogen in the leaves decreased with increasing phenolic acid concentration. This was significantly and positively related to PN (P 〈 0.05). The low concentration of phe- nolic acids mainly affected the transformation process of NO3- to NO2-, while the high concentration of phenolic acids affected both processes, where NO3- was transferred to NO2- and NH4+ was transferred to glutamine (Gln). Overall, phenolic acid had significant inhibitory effects on the photosynthetic productivity of Populus x euramericana 'Neva'. This was probably due to its influence on the activities of nitrogen assimilation enzymes, which reduced the amount of amino acids that were translated into protein and enzymes. Improving the absorption and utilization of nitrogen by plants could help to overcome the problems caused by continuous cropping. 展开更多
关键词 Continuous cropping management POPLAR Phenolic acids PHOTOSYNTHESIS Nitrogen metabolism Enzyme activity
下载PDF
Dynamics of Bt cotton Cry1Ac protein content under an alternating high temperature regime and effects on nitrogen metabolism 被引量:2
17
作者 ZHANG Xiang RUI Qiu-zhi +5 位作者 LIANG Pan-pan WEI Chen-hua DENG Guo-qiang CHEN Yuan DONG Zhao-di CHEN De-hua 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第9期1991-1998,共8页
This study was conducted to investigate the effects of alternating high temperature on CrylAc protein content on Bt cotton cultivars Sikang 1 (SK-1, a conventional cultivar) and Sikang 3 (SK-3, a hybrid cultivar).... This study was conducted to investigate the effects of alternating high temperature on CrylAc protein content on Bt cotton cultivars Sikang 1 (SK-1, a conventional cultivar) and Sikang 3 (SK-3, a hybrid cultivar). In 2011 and 2012, cotton plants were subjected to high temperature treatments ranging from 32 to 40℃ in climate chambers to investigate the effects of high temperature on boll shell insecticidal protein expression. The experiments showed that significant decline of the boll shell insecticidal protein was detected at temperatures higher than 38℃ after 24 h. Based on the results, the cotton plants were treated with the threshold temperature of 38℃ from 6:00 a.m. to 6:00 p.m. followed by a normal temperature of 27℃ during the remaining night hours (DH/NN) in 2012 and 2013. These treatments were conducted at peak boll growth stage for both cultivars in study periods of 0, 4, 7, and 10 d. Temperature treatment of 32℃ from 6:00 a.m. to 6:00 p.m. and 27℃ in the remaining hours was set as control. The results showed that, compared with the control, after the DH/NN stress treatment applied for 7 d, the boll shell CrylAc protein content level was significantly decreased by 19.1 and 17.5% for SK-1 and by 15.3 and 13.7% for SK-3 in 2012 and 2013, respectively. Further analysis of nitrogen metabolic physiology under DH/NN showed that the soluble protein content and the glutamic pyruvic transaminase (GPT) activities decreased slightly after 4 d, and then decreased sharply after 7 d. The free amino acid content and the protease content increased sharply after 7 d. The changes in SK-1 were greater than those in SK-3. These results suggest that under DH/NN stress, boll shell CrylAc protein content decline was delayed. Reduced protein synthesis and increased protein degradation in the boll shell decreased protein content, including Bt protein, which may reduce resistance to the cotton bollworm. 展开更多
关键词 Bt cotton alternating temperature CrylAc protein nitrogen metabolism
下载PDF
Effect of Water Deficit Stress on Isotope ^15N Uptake and Nitrogen Metabolism of Newhall Orange and Yamasitaka Mandarin Seedling 被引量:3
18
作者 Shenxi Xie Shangyin Cao +2 位作者 Qiang Liu Xingyao Xiong Xiaopong Lu 《Journal of Life Sciences》 2013年第11期1170-1178,共9页
Soil water content significantly influenced uptake and distribution of ^15N in both Newhall and Yamasitaka. The content of ^15N uptake in treated plants was less than that in controlled plants, under 20% soil water co... Soil water content significantly influenced uptake and distribution of ^15N in both Newhall and Yamasitaka. The content of ^15N uptake in treated plants was less than that in controlled plants, under 20% soil water content, ^15N was only taken up 16.02% by Newhall and 10.11% by Yamasitaka. The most ^15N was detained in root and old shoots under water stress. Protein concentration in two cultivars significantly decreased by water deficit stress, protein content of Newhall and Yamasitaka in controlled plants was 16.29 mg/g fresh weight and 15.89 mg/g fresh weight, but at 20% of water content, these were 9.60 mg/g fresh weight and 9.02 mg/g fresh weight. Water stress increased concentration of NH3-NH4^+, Arginine and Proline. Compared with control plants, concentrations of NH3-NH4^+ in both Newhall and Yamasitaka at 20% water content treatment increased 5.83 fold and 5.71 fold, Arginine increased 197% and 205%, and Proline increased 112% and 132%. 展开更多
关键词 Newhall and Yamasitaka water stress ^15N uptake and distribution nitrogen metabolism
下载PDF
Effect of CO_2 Concentration on Nitrogen Metabolism of Winter Wheat 被引量:1
19
作者 MEN Zhong-hua LI Sheng-xiu 《Agricultural Sciences in China》 CAS CSCD 2005年第8期601-608,共8页
Hoagland's solution was used as water culture medium to study the effect of CO2 concentration on nitrate metabolism of wheat under natural light and light-shaded conditions. NO3^-N, NH4^+-N, nitrate reductase activi... Hoagland's solution was used as water culture medium to study the effect of CO2 concentration on nitrate metabolism of wheat under natural light and light-shaded conditions. NO3^-N, NH4^+-N, nitrate reductase activity, total uptake N by wheat plants during solution cultural period and total N in plants were determined for comprehensive evaluation of the effect. Results showed that under both natural light and light-shaded conditions, addition of CO2 increased NO3^-N uptake and its assimilative capabilities by plants. However, there were some difference between shoots and roots. With increase of CO2 concentration, the concentration of NO3^-N and NH4^+-N as well as nitrate reductase activity were all decreased for shoots while the difference was not so distinct in roots, and the nitrate reductase activity was not decreased, but increased. Since NO3^-N uptake by plants from the solution and the total N in plants were much higher by CO2 addition, it may be concluded that addition of CO2 has resulted in rise of nitrate absorption, assimilation and metabolism of wheat. 展开更多
关键词 CO2 concentration Winter wheat Water culture Nitrogen metabolism
下载PDF
Effect of Euchsaena mexicana Schrad Diets on Nutrient Digestibility and Nitrogen Metabolism for Wulong Goose 被引量:1
20
作者 WANGBao-wei WUXiao-ping WANGLei LIUGuang-lei JIAXiao-hui ZHANGMing-ai GEWen-hua ZHANGTing-rong ZHUXin-chan 《Agricultural Sciences in China》 CAS CSCD 2005年第5期389-394,共6页
One trial was conducted to study nutrition digestibility of Euchsaena mexicana Schrad (EMC) diets for Wulong Goose. Thirty-two geese of 9 months old were selected and divided into four groups randomly, with eight gees... One trial was conducted to study nutrition digestibility of Euchsaena mexicana Schrad (EMC) diets for Wulong Goose. Thirty-two geese of 9 months old were selected and divided into four groups randomly, with eight geese in each group. Four groups were fed with the isocaloric and isonitrogenous diets of different EMC contents (12, 19, 25 and 31%), respectively. The results showed that, as dietary EMC increased, dry matter (DM) digestibility was decreased significantly, meanwhile the digestibility of crude fiber (CF), neutral detergent fiber (NDF) and acid detergent fiber (ADF) increased significantly (P<0.05). The ratio of apparent essential amino acid (EAA) digestibility (except Leu) among the four groups had significant difference (P<0.01). the content of NH3-N in feces dropped (P>0.05). There were no significant differences in net protein utilization (NPU), N apparent digestibility, N deposition and Ca apparent digestibility in different groups (P> 0.05). The apparent digestibility of P in different groups elevated, while there was significant difference between group D and A (P<0.01), and there was significant difference between group D and B (P<0.05). 展开更多
关键词 Wulong goose Euchsaena mexicana Schrad Nutrition digestibility Nitrogen metabolism
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部