This paper reviews the detonative properties of low bulk density(LBD),high bulk density(HBD)Nitroguanidine(NGu)(1),CAS-No:[556-88-7]and 82 explosive formulations based on NGu reported in the public domain.To rank the ...This paper reviews the detonative properties of low bulk density(LBD),high bulk density(HBD)Nitroguanidine(NGu)(1),CAS-No:[556-88-7]and 82 explosive formulations based on NGu reported in the public domain.To rank the performance of those formulations they are compared with 15 reference compositions containing both standard high explosives such as octogen(HMX)(2),hexogen(RDX)(3),pentaerythritol tetranitrate(PETN)(4),2,4,6-trinitrotoluene(TNT)(5)as well as insensitive high explosives such as 3-nitro-1,2,4-triazolone(NTO)(6),1,3,5-triamino-2,4,6-trinitrobenzene(TATB)(7),1,1-diamino-2,2-dinitroethylene(FOX-7)(8)and N-Guanylurea dinitramide(FOX 12)(9).NGu based formulations are superior to those based on FOX-12 or TATB and are a close match with FOX-7 based explosives,the latter just having higher Gurney Energies(-10%)and slightly higher detonation pressure(+2%).NGu based explosives even reach up to 78% of the detonation pressure,82% Gurney energy and up to 95% of detonation velocity of HMX.LBD-NGu dissolves in many melt cast eutectics forming dense charges thereby eliminating the need for costly High Bulk Density NGu.Nitroguanidine based formulations are at the rock bottom of sensitiveness among all the above-mentioned explosives which contributes to the safety of these formulations.The review gives 132 references to the public domain.For a review on the synthesis spectroscopy and sensitiveness of Nitroguanidine see Ref.[1].展开更多
Nitroguanidine(NQ) isa high energy and low sensitivity explosive and solid-liquid equilibrium data are significant for study on crystallization of NQ. The solubilities of NQ in water, dimethyl sulfoxide, N, N dimeth...Nitroguanidine(NQ) isa high energy and low sensitivity explosive and solid-liquid equilibrium data are significant for study on crystallization of NQ. The solubilities of NQ in water, dimethyl sulfoxide, N, N dimethylformamide, 1,4 butyrolaetone and dimethyl sulfoxide @ water, N, N dimethylformamide + water were measured by dynamic laser monitoring within a temperature range from 298. 15 K to 338. 15 K. The experimental data were correlated by modified Apelblat equation, 2h equation, CNIBS/R K model, andJouyban-Acree model. The results show that the four thermodynamic models can all be used to predict solubility with high accuracy. Accrding to the Akaike's information criterion (AIC), the better models for correlating the solubility of NQ are judged. Additionally, the dissolution enthalpy, entropy and Gibbs free energy were calculated by the van't Hoff equation.展开更多
为了降低CL-20感度,采用喷雾结晶工艺将钝感炸药NQ包覆在CL-20表面,制备CL-20/NQ复合含能微球。使用扫描电子显微镜(SEM)、差示扫描量热法(DSC)、X-射线衍射(XRD)、撞击感度仪对其形貌、热稳定性、晶型、撞击感度进行测试分析。结果表明...为了降低CL-20感度,采用喷雾结晶工艺将钝感炸药NQ包覆在CL-20表面,制备CL-20/NQ复合含能微球。使用扫描电子显微镜(SEM)、差示扫描量热法(DSC)、X-射线衍射(XRD)、撞击感度仪对其形貌、热稳定性、晶型、撞击感度进行测试分析。结果表明:NQ呈球体团聚,并成功地包覆在CL-20表面,所得CL-20/NQ复合颗粒为球形,粒径约为20μm,包覆后CL-20晶型保持为ε型,与CL-20原料相比,CL-20/NQ复合含能微球的活化能提高了72.62 k J/mol,热稳定性大大提升,撞击感度与CL-20原料、CL-20/NQ简单混合物相比,特性落高分别提升32.65 cm、10.9 cm,机械感度降低。展开更多
基金AlzChem Trostberg GmbH, Trostberg, Germany for funding this work
文摘This paper reviews the detonative properties of low bulk density(LBD),high bulk density(HBD)Nitroguanidine(NGu)(1),CAS-No:[556-88-7]and 82 explosive formulations based on NGu reported in the public domain.To rank the performance of those formulations they are compared with 15 reference compositions containing both standard high explosives such as octogen(HMX)(2),hexogen(RDX)(3),pentaerythritol tetranitrate(PETN)(4),2,4,6-trinitrotoluene(TNT)(5)as well as insensitive high explosives such as 3-nitro-1,2,4-triazolone(NTO)(6),1,3,5-triamino-2,4,6-trinitrobenzene(TATB)(7),1,1-diamino-2,2-dinitroethylene(FOX-7)(8)and N-Guanylurea dinitramide(FOX 12)(9).NGu based formulations are superior to those based on FOX-12 or TATB and are a close match with FOX-7 based explosives,the latter just having higher Gurney Energies(-10%)and slightly higher detonation pressure(+2%).NGu based explosives even reach up to 78% of the detonation pressure,82% Gurney energy and up to 95% of detonation velocity of HMX.LBD-NGu dissolves in many melt cast eutectics forming dense charges thereby eliminating the need for costly High Bulk Density NGu.Nitroguanidine based formulations are at the rock bottom of sensitiveness among all the above-mentioned explosives which contributes to the safety of these formulations.The review gives 132 references to the public domain.For a review on the synthesis spectroscopy and sensitiveness of Nitroguanidine see Ref.[1].
文摘Nitroguanidine(NQ) isa high energy and low sensitivity explosive and solid-liquid equilibrium data are significant for study on crystallization of NQ. The solubilities of NQ in water, dimethyl sulfoxide, N, N dimethylformamide, 1,4 butyrolaetone and dimethyl sulfoxide @ water, N, N dimethylformamide + water were measured by dynamic laser monitoring within a temperature range from 298. 15 K to 338. 15 K. The experimental data were correlated by modified Apelblat equation, 2h equation, CNIBS/R K model, andJouyban-Acree model. The results show that the four thermodynamic models can all be used to predict solubility with high accuracy. Accrding to the Akaike's information criterion (AIC), the better models for correlating the solubility of NQ are judged. Additionally, the dissolution enthalpy, entropy and Gibbs free energy were calculated by the van't Hoff equation.
文摘为了降低CL-20感度,采用喷雾结晶工艺将钝感炸药NQ包覆在CL-20表面,制备CL-20/NQ复合含能微球。使用扫描电子显微镜(SEM)、差示扫描量热法(DSC)、X-射线衍射(XRD)、撞击感度仪对其形貌、热稳定性、晶型、撞击感度进行测试分析。结果表明:NQ呈球体团聚,并成功地包覆在CL-20表面,所得CL-20/NQ复合颗粒为球形,粒径约为20μm,包覆后CL-20晶型保持为ε型,与CL-20原料相比,CL-20/NQ复合含能微球的活化能提高了72.62 k J/mol,热稳定性大大提升,撞击感度与CL-20原料、CL-20/NQ简单混合物相比,特性落高分别提升32.65 cm、10.9 cm,机械感度降低。